1
|
Tanev MZ, Tomov GT, Georgiev KG, Georgieva ED, Petkova-Parlapanska KV, Nikolova GD, Karamalakova YD. Evaluation of indocyanine green antimicrobial photodynamic therapy in radical species elimination: an in vitro study. Folia Med (Plovdiv) 2024; 66:876-883. [PMID: 39774359 DOI: 10.3897/folmed.66.e135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Antimicrobial photodynamic therapy (aPDT) utilizes light-sensitive materials to inactivate pathogens. Indocyanine green (ICG) is an FDA-approved photosensitizer known for its effective photo-thermal and photo-chemical properties.
Collapse
|
2
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
3
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
4
|
Maspero A, Vavassori F, Nardo L, Vesco G, Vitillo JG, Penoni A. Synthesis, Characterization, Fluorescence Properties, and DFT Modeling of Difluoroboron Biindolediketonates. Molecules 2023; 28:4688. [PMID: 37375243 DOI: 10.3390/molecules28124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We report a simple and efficient strategy to enhance the fluorescence of biocompatible biindole diketonates (bdks) in the visible spectrum through difluoroboronation (BF2bdks complexes). Emission spectroscopy testifies an increase in the fluorescence quantum yields from a few percent to as much as >0.7. This massive increment is essentially independent of substitutions at the indole (-H, -Cl, and -OCH3) and corresponds to a significant stabilization of the excited state with respect to non-radiative decay mechanisms: the non-radiative decay rates are reduced by as much as an order of magnitude, from 109 s-1 to 108 s-1, upon difluoroboronation. The stabilization of the excited state is large enough to enable sizeable 1O2 photosensitized production. Different time-dependent (TD) density functional theory (DFT) methods were assessed in their ability to model the electronic properties of the compounds, with TD-B3LYP-D3 providing the most accurate excitation energies. The calculations associate the first active optical transition in both the bdks and BF2bdks electronic spectra to the S0 → S1 transition, corresponding to a shift in the electronic density from the indoles to the oxygens or the O-BF2-O unit, respectively.
Collapse
Affiliation(s)
- Angelo Maspero
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Federico Vavassori
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Luca Nardo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Guglielmo Vesco
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Andrea Penoni
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
5
|
Ishchenko AA, Syniugina AT. Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Kang JH, Lee OH, Ko YT. Novel aggregation-induced emission-photosensitizers with built-in capability of mitochondria targeting and glutathione depletion for efficient photodynamic therapy. NANOSCALE 2023; 15:4882-4892. [PMID: 36779550 DOI: 10.1039/d2nr06593b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to its non-invasive feature and excellent therapeutic effect, photodynamic therapy has received considerable interest in cancer therapy. However, the therapeutic efficacy of photodynamic therapy is limited by some intrinsic drawbacks of photosensitizers such as aggregation-caused quenching and non-specificity towards cellular organelles. Moreover, the overexpressed glutathione in tumour cells which exhibits a potent scavenging effect on reactive oxygen species generated during the photodynamic therapy process also reduces the efficacy of photodynamic therapy. Therefore, the synthesis of aggregation-induced emission based photosensitizers with cellular organelle targeting and glutathione-depletion capability is highly desirable in photodynamic therapy. Here, two new aggregation-induced emission based photosensitizers namely tetraphenylethylene-1-phenyvinyl-pyridine-phenylboronic acid (TPEPy-BA) and tetraphenylethylene-1-phenyvinyl-pyridine-phenylboronic acid pinacol ester (TPEPy-BE) were synthesized which easily aggregated under aqueous conditions and showed bright emission in the near infra-red region. Furthermore, these photosensitizers were encapsulated into an amphiphilic block copolymer (DSPE-PEG) to improve the aqueous stability and cellular internalization of photosensitizers. The developed photosensitizer nanoparticles showed high reactive oxygen species generation efficacy, mitochondria-targeting and glutathione-depletion capability. The results showed that tetraphenylethylene-1-phenyvinyl-pyridine-phenylboronic acid pinacol ester nanoparticles exhibited a highly efficient photodynamic ablation of MCF-7 cells compared to tetraphenylethylene-1-phenyvinyl-pyridine-phenylboronic acid nanoparticles, upon white light irradiation, due to its high intracellular reactive oxygen species generation efficiency and mitochondria-dysfunction ability. Moreover, tetraphenylethylene-1-phenyvinyl-pyridine-phenylboronic acid pinacol ester nanoparticles produced a glutathione-depleting adjuvant, quinone methide, which greatly reduced the glutathione level in cancer cells, thus enhancing the efficacy of photodynamic therapy. This study provides a new strategy for the synthesis of aggregation-induced emission based photosensitizers with combined mitochondria-targeting and glutathione-depletion capability for efficacious photodynamic therapy.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - OHyun Lee
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Zhao XD. Mitochondria-targeted red light-activated superoxide radical-mediated photodynamic therapy of breast cancer. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Zhou W, Yin L, Zhang X, Liang T, Guo Z, Liu Y, Xie C, Fan Q. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Front Bioeng Biotechnol 2022; 10:1002006. [PMID: 36246348 PMCID: PMC9556702 DOI: 10.3389/fbioe.2022.1002006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window has gained more and more attention in recent years and showed great potential in the field of bioimaging. Until now, numerous materials have been developed as contrast agents for NIR-II PA imaging. Among them, small molecule dyes hold unique advantages such as definite structures and capability of fast clearance from body. By virtue of these advantages, small molecule dyes-constructed nanoparticles have relatively small size and show promise in the clinical translation. Thus, in this minireview, we summarize recent advances in small molecule dyes-based nanotheranostics for NIR-II PA imaging and cancer therapy. Studies about NIR-II PA imaging-guided phototherapy are first introduced. Then, NIR-II PA imaging-guided phototherapy-based combination therapeutic systems are reviewed. Finally, the conclusion and perspectives of this field are summarized and discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Xie
- *Correspondence: Chen Xie, ; Quli Fan,
| | - Quli Fan
- *Correspondence: Chen Xie, ; Quli Fan,
| |
Collapse
|
9
|
Yang L, Chen Q, Wan Y, Gan S, Li S, Lee CS, Jiang Y, Zhang H, Sun H. A NIR molecular rotor photosensitizer for efficient PDT and synchronous mitochondrial viscosity imaging. Chem Commun (Camb) 2022; 58:9425-9428. [PMID: 35916476 DOI: 10.1039/d2cc03592h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, two mitochondria-targeting photosensitizers (PSs, CCVJ-Mito-1 and CCVJ-Mito-2) that exhibit a turn-on fluorescence response towards increasing viscosity are reported. Notably, CCVJ-Mito-2 exhibits absorption in the near-infrared (NIR) region, and can be employed as a NIR PS targeting mitochondria and a fluorescent probe for tracking mitochondrial viscosity changes during photodynamic therapy (PDT). This dual functional PS can help to shed light on the dynamic changes of the cellular microenvironment during PDT and further guide the PDT process.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China. .,Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yingpeng Wan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Shengliang Li
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun-Sing Lee
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Liu J, Wang L, Shen R, Zhao J, Qian Y. A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121083. [PMID: 35248855 DOI: 10.1016/j.saa.2022.121083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new cyanine-based photosensitizer Cy-N-Rh was developed for photodynamic therapy. Based on fluorescence resonance energy transfer (FRET) mechanism, utilizing the absorption of the donor rhodamine (Rh), the acceptor heptamethine cyanine unit (Cy) was indirectly excited to produce singlet oxygen (1O2). The efficiency of energy transfer from the donor Rh to the acceptor Cy was 78.5%. Meanwhile, the singlet oxygen yield of Cy-N-Rh (ΦΔ = 12.00%) was much higher than that of the acceptor Cy (ΦΔ = 4.35%) without FRET. Moreover, the dual cation gave Cy-N-Rh with excellent mitochondria-targeting ability with Pearson's correlation coefficients of 0.90 and 0.91, respectively. In the MTT test, Cy-N-Rh had low dark cytotoxicity with cell survival rate above 90% and high photo cytotoxicity with cell survival rate below 40%. The cell apoptosis assay also demonstrated the role of the photosensitizer Cy-N-R visually. More importantly, Cy-N-Rh fulfilled two-photon excitation fluorescence imaging under the 800 nm femtosecond laser. All results indicate that this design strategy provides a new method for the development of higher-level cyanine photosensitizers.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ronghua Shen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
11
|
Yan D, Zhang H, Xu X, Ren C, Han C, Li Z. Theranostic nanosystem with supramolecular self-assembly for enhanced reactive oxygen species-mediated apoptosis guided by dual-modality tumor imaging. Pharmacol Res 2022; 180:106241. [DOI: 10.1016/j.phrs.2022.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
12
|
Huang H, Zhu Y, Yu ZP, Wang J, Chen L, Wu Z, Yu J, Zhong F, Zhu X, Zhou H. Near-Infrared multifunctional theranostic agent with Wave-Like aggregates modulated by substituent position effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120881. [PMID: 35042042 DOI: 10.1016/j.saa.2022.120881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Precise design of organic photosensitizers (PSs) promoted the technological innovation for multimodal imaging-guided synergistic therapy. Nonetheless, various group substitution could not only optimize the basic photophysical behavior, but possibly change the aggregate, which handicaps the deep understanding of the "Formula-Aggergete-Property" relationship. Bearing this in mind, herein two isomers, named 6-TDE and 7-TDE, were prepared via substituting position modification. Among them, 6-TDE exhibited the grid-like structure, while 7-TDE presented wavy-like structure. Despite the aggregates were different, 6-TDE and 7-TDE shared common features including partly twisted backbone and non-overlapped-orbit, hence resulting in similar optical physical behavior such as decent extinction coefficient, near-IR emission, large stockes shifts, etc. Meanwhile, though two PSs could both generated Type-I and Type-II ROS, 7-TDE possessed smaller singlet-triplet splitting (ΔEST), which exhibited favorable ROS as well as outstanding mitochondrial targeting, achieving efficient photodynamic therapy (PDT) effect. During this process, mitochondrial autophagy could be tracked and observed effectively and in real-time. Moreover, 7-TDE presented outstanding performance in multimodal imaging, including fluorescence imaging (FLI), photoacousticimaging (PAI) and photothermal imaging (PTI). This study enriches the strategy of precise molecular engineering to optimize theranostic agents.
Collapse
Affiliation(s)
- Houshi Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Yuhan Zhu
- College of Life Science, Anhui University, Hefei, 230601, PR China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Feng Zhong
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| |
Collapse
|
13
|
Zhang L, Jia H, Liu X, Zou Y, Sun J, Liu M, Jia S, Liu N, Li Y, Wang Q. Heptamethine Cyanine–Based Application for Cancer Theranostics. Front Pharmacol 2022; 12:764654. [PMID: 35222006 PMCID: PMC8874131 DOI: 10.3389/fphar.2021.764654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/09/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer is the most common life-threatening malignant disease. The future of personalized cancer treatments relies on the development of functional agents that have tumor-targeted anticancer activities and can be detected in tumors through imaging. Cyanines, especially heptamethine cyanine (Cy7), have prospective application because of their excellent tumor-targeting capacity, high quantum yield, low tissue autofluorescence, long absorption wavelength, and low background interference. In this review, the application of Cy7 and its derivatives in tumors is comprehensively explored. Cy7 is enormously acknowledged in the field of non-invasive therapy that can “detect” and “kill” tumor cells via near-infrared fluorescence (NIRF) imaging, photothermal therapy (PTT), and photodynamic therapy (PDT). Furthermore, Cy7 is more available and has excellent properties in cancer theranostics by the presence of multifunctional nanoparticles via fulfilling multimodal imaging and combination therapy simultaneously. This review provides a comprehensive scope of Cy7’s application for cancer NIRF imaging, phototherapy, nanoprobe-based combination therapy in recent years. A deeper understanding of the application of imaging and treatment underlying Cy7 in cancer may provide new strategies for drug development based on cyanine. Thus, the review will lead the way to new types with optical properties and practical transformation to clinical practice.
Collapse
Affiliation(s)
- Lei Zhang
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
| | - Hang Jia
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Xuqian Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yaxin Zou
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Jiayi Sun
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Shuangshuang Jia
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
| | - Nan Liu
- Obstetrics Department, Kaifeng Maternity Hospital, Kaifeng, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
- *Correspondence: Qun Wang, ; Yanzhang Li,
| | - Qun Wang
- School of Basic Medical Sciences, Laboratory for Nanomedicine, Henan University, Kaifeng, China
- *Correspondence: Qun Wang, ; Yanzhang Li,
| |
Collapse
|
14
|
Hu Y, Yin SY, Li Z, Qi W, Chen Y, Li J. A novel AIEgen photosensitizer with an elevated intersystem crossing rate for tumor precise imaging and therapy. Chem Commun (Camb) 2022; 58:13143-13146. [DOI: 10.1039/d2cc05313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ultraefficient AIEgen photosensitizer (TPE-4QL+) was synthesized based on an alternative elevated intersystem crossing rate for the precise imaging and therapy of tumors.
Collapse
Affiliation(s)
- Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenchen Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
15
|
Yang YZ, Xu ZY, Li NB, Luo HQ. Ultrasensitive fluorescent probe for visual biosensing of esterase activity in living cells and its imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120094. [PMID: 34175764 DOI: 10.1016/j.saa.2021.120094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Esterase activity is often used as an index to evaluate the health status of cells and plays an important role in cell metabolism and apoptosis. Herein, we develop two fluorescent probes for visual biosensing of esterase activity and imaging in living cells. In vitro, after the introduction of esterase, enzymolysis destroys the ester bond of the probe, causing the fluorescent color of probe changes from yellow to red, thus realizing the visual strategy for determination of esterase activity, with high sensitivity and selectivity. Especially, probe VA, 2-(4-acetoxystyryl)-3-ethyl-1,1-dimethyl- 1H-benzo[e]indol-3-ium, exhibits higher sensitivity with a lower detection limit (up to 7.15 × 10-6 U/mL). In the cell experiment, the fluorescent probe VA also shows good biocompatibility and high spatial resolution, and is successfully applied to the intracellular fluorescent imaging and biosensing of esterase in living cells. More importantly, the probe VA can judge the unhealthy state of H2O2-induced HeLa cells using dual-fluorescence signals. The results confirm that the fluorescence method is a reliable tool for detecting endogenous esterase in living biological system.
Collapse
Affiliation(s)
- Yu Zhu Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
16
|
Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021; 6:4301-4318. [PMID: 33997507 PMCID: PMC8105601 DOI: 10.1016/j.bioactmat.2021.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, reactive species-based cancer therapies have attracted tremendous attention due to their simplicity, controllability, and effectiveness. Herein, we overviewed the state-of-art advance for photo-controlled generation of highly reactive radical species with nanomaterials for cancer therapy. First, we summarized the most widely explored reactive species, such as singlet oxygen, superoxide radical anion (O2 ●-), nitric oxide (●NO), carbon monoxide, alkyl radicals, and their corresponding secondary reactive species generated by interaction with other biological molecules. Then, we discussed the generating mechanisms of these highly reactive species stimulated by light irradiation, followed by their anticancer effect, and the synergetic principles with other therapeutic modalities. This review might unveil the advantages of reactive species-based therapeutic methodology and encourage the pre-clinical exploration of reactive species-mediated cancer treatments.
Collapse
Affiliation(s)
- Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
17
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 772] [Impact Index Per Article: 193.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Dong Y, Cao W, Cao J. Treatment of rheumatoid arthritis by phototherapy: advances and perspectives. NANOSCALE 2021; 13:14591-14608. [PMID: 34473167 DOI: 10.1039/d1nr03623h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that is prevalent worldwide and seriously threatens human health. Though traditional drug therapy can alleviate RA symptoms and slow progression, high dosage and frequent administration would cause unfavorable side effects. Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has demonstrated distinctive potential in RA treatment. Under light irradiation, phototherapy can convert light into heat, or generate ROS, to promote necrosis or apoptosis of RA inflammatory cells, thus reducing the concentration of related inflammatory factors and relieving the symptoms of RA. In this review, we will summarize the development in the application of phototherapy in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yunxia Dong
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Wei Cao
- Department of Orthopaedics, The People's Hospital of Feixian, Linyi, 273400, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
19
|
Bilici K, Cetin S, Celikbas E, Yagci Acar H, Kolemen S. Recent Advances in Cyanine-Based Phototherapy Agents. Front Chem 2021; 9:707876. [PMID: 34249874 PMCID: PMC8263920 DOI: 10.3389/fchem.2021.707876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 01/28/2023] Open
Abstract
Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), are very promising treatment modalities for cancer since they provide locality and turn-on mechanism for toxicity, both of which are critical in reducing off-site toxicity. Irradiation of photosensitive agents demonstrated successful therapeutic outcomes; however, each approach has its limitations and needs to be improved for clinical success. The combination of PTT and PDT may work in a synergistic way to overcome the limitations of each method and indeed improve the treatment efficacy. The development of single photosensitive agents capable of inducing both PDT and PTT is, therefore, extremely advantageous and highly desired. Cyanine dyes are shown to have such potential, hence have been very popular in the recent years. Luminescence of cyanine dyes renders them as phototheranostic molecules, reporting the localization of the photosensitive agent prior to irradiation to induce phototoxicity, hence allowing image-guided phototherapy. In this review, we mainly focus on the cyanine dye-based phototherapy of different cancer cells, concentrating on the advancements achieved in the last ten years.
Collapse
Affiliation(s)
- Kubra Bilici
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Sultan Cetin
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Eda Celikbas
- Department of Chemistry, Koc University, Istanbul, Turkey
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Istanbul, Turkey,Surface Science and Technology Center (KUYTAM), Koc University, Istanbul, Turkey,Graduate School of Materials Science and Engineering, Koc University, Istanbul, Turkey,*Correspondence: Havva Yagci Acar, ; Safacan Kolemen,
| | - Safacan Kolemen
- Department of Chemistry, Koc University, Istanbul, Turkey,Surface Science and Technology Center (KUYTAM), Koc University, Istanbul, Turkey,Boron and Advanced Materials Application and Research Center, Koc University, Istanbul, Turkey,TUPRAS Energy Center (KUTEM), Koc University, Istanbul, Turkey,*Correspondence: Havva Yagci Acar, ; Safacan Kolemen,
| |
Collapse
|
20
|
Tu Y, Zhou Y, Zhang D, Yang J, Li X, Ji K, Wu X, Liu R, Zhang Q. Light-Induced Reactive Oxygen Species (ROS) Generator for Tumor Therapy through an ROS Burst in Mitochondria and AKT-Inactivation-Induced Apoptosis. ACS APPLIED BIO MATERIALS 2021; 4:5222-5230. [PMID: 35007004 DOI: 10.1021/acsabm.1c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondria are identified as a valuable target for cancer therapy owing to their primary function in energy supply and cellular signal regulation. Mitochondria in tumor cells are depicted by excess reactive oxygen species (ROS), which lead to numerous detrimental results. Hence, mitochondria-targeting ROS-associated therapy is an optional therapeutic strategy for cancer. In this contribution, a light-induced ROS generator (TBTP) is developed for evaluation of the efficacy of mitochondria-targeting ROS-associated therapy and investigation of the mechanism underlying mitochondrial-injure-mediated therapy of tumors. TBTP serves as an efficient ROS generator with low cytotoxicity, favorable biocompatibility, excellent photostability, mitochondria-targeted properties, and NIR emission. In vivo and in vitro experiments reveal that TBTP exhibits effective anticancer potential. ROS generated from TBTP could destroy the integrity of mitochondria, downregulate ATP, decrease the mitochondrial membrane potential, secrete Cyt-c into cytoplasm, activate Caspase-3/9, and induce cell apoptosis. Moreover, RNA-seq analysis highlights that an ROS burst in mitochondria can kill tumor cells via inhibition of the AKT pathway. All these results prove that mitochondrial-targeted ROS-associated therapy hold great potential in cancer therapy.
Collapse
Affiliation(s)
- Yinuo Tu
- Affiliated Caner Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China.,Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinghong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiang Li
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaiyuan Ji
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
21
|
Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021; 13:818. [PMID: 34072719 PMCID: PMC8229084 DOI: 10.3390/pharmaceutics13060818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy (PDT) is a method of cancer treatment that leads to the disintegration of cancer cells and has developed significantly in recent years. The clinically used photosensitizers are primarily porphyrin, which absorbs light in the red spectrum and their absorbance maxima are relatively short. This review presents group of compounds and their derivatives that are considered to be potential photosensitizers in PDT. Cyanine dyes are compounds that typically absorb light in the visible to near-infrared-I (NIR-I) spectrum range (750-900 nm). This meta-analysis comprises the current studies on cyanine dye derivatives, such as indocyanine green (so far used solely as a diagnostic agent), heptamethine and pentamethine dyes, squaraine dyes, merocyanines and phthalocyanines. The wide array of the cyanine derivatives arises from their structural modifications (e.g., halogenation, incorporation of metal atoms or organic structures, or synthesis of lactosomes, emulsions or conjugation). All the following modifications aim to increase solubility in aqueous media, enhance phototoxicity, and decrease photobleaching. In addition, the changes introduce new features like pH-sensitivity. The cyanine dyes involved in photodynamic reactions could be incorporated into sets of PDT agents.
Collapse
Affiliation(s)
- Natalia Lange
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
22
|
Liang C, Zhang X, Wang Z, Wang W, Yang M, Dong X. Organic/inorganic nanohybrids rejuvenate photodynamic cancer therapy. J Mater Chem B 2021; 8:4748-4763. [PMID: 32129418 DOI: 10.1039/d0tb00098a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has changed the 100-year-old paradigm of photodynamic therapy (PDT), in which organic/inorganic hybrid nanomaterials have made great contributions. In this review, we first describe the mechanisms of PDT and discuss the limitations of conventional PDT. On this basis, we summarize recent progress in organic/inorganic nanohybrids-based photodynamic agents, highlighting how these nanohybrids can be programmed to overcome challenges in photodynamic cancer therapy.
Collapse
Affiliation(s)
- Chen Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China. and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| | - Xinglin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | - Zhichao Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China. and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
23
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
24
|
Lin K, Ma Z, Li J, Tang M, Lindstrom A, Ramachandran M, Zhu S, Lin TY, Zhang L, Li Y. Single Small Molecule-Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy in Vivo. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008460. [PMID: 37441230 PMCID: PMC10338027 DOI: 10.1002/adfm.202008460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 07/15/2023]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive alternative in cancer therapy, but its therapeutic effects are limited by the nonselective subcellular localization and poor intratumoral retention of small-molecule photosensitizes. Here a fiber-forming nanophotosensitizer (PQC NF) that is composed of mitochondria targeting small molecules of amphiphilicity is reported. Harnessing the specific mitochondria targeting, the light-activated PQC NFs produce approximately 110-fold higher amount of reactive oxygen species (ROS) in cells than free photosensitizers and can dramatically induce mitochondrial disruption to trigger intense apoptosis, showing 20-50 times better in vitro anticancer potency than traditional photosensitizers. As fiber-shaped nanomaterials, PQC NFs also demonstrated a long-term retention in tumor sites, solving the challenge of rapid clearance of small-molecule photosensitizers from tumors. With these advantages, PQC NFs achieve a 100% complete cure rate in both subcutaneous and orthotopic oral cancer models with the administration of only a single dose. This type of single small molecule-assembled mitochondria targeting nanofibers offer an advantageous strategy to improve the in vivo therapeutic effects of conventional PDT.
Collapse
Affiliation(s)
- Kai Lin
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- Department of Urology and Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Jin Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Aaron Lindstrom
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Shaoming Zhu
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Tzu-Yin Lin
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lanwei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
25
|
Zou Y, Long S, Xiong T, Zhao X, Sun W, Du J, Fan J, Peng X. Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS CENTRAL SCIENCE 2021; 7:327-334. [PMID: 33655070 PMCID: PMC7908039 DOI: 10.1021/acscentsci.0c01551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Photosensitizers (PSs) inevitably release a large amount of energy in the form of fluorescence during photodynamic therapy (PDT). However, under the premise of satisfying fluorescence imaging, a large amount of energy is lost, which limits the efficiency of tumor therapy. Accordingly, in this study, we developed a new strategy (BDP-CR) using the single-molecule Förster resonance energy transfer (smFRET) mechanism to transfer part of the fluorescent energy into heat for combined PDT and photothermal therapy (PTT) featuring the "1 + 1 > 2" amplification effect. Under the 671 nm light irradiation, BDP-CR can produce singlet oxygen (1O2) for PDT based on the BDP moiety and also generate hyperthermia to achieve the PTT effect by exciting CR based on the smFRET effect, which effectively kills cancer cells both in vitro and in vivo. This strategy exhibits a broad absorption peak with strong light-harvesting ability, which improves photon utilization for treatment while realizing fluorescence imaging. Of note, owing to the smFRET effect, we achieve a combination treatment outcome at relatively low concentrations and light doses. Thus, we believe that this design concept will provide a new strategy for single-molecule FRET photosensitizers in combination therapy of cancer with potential clinical application prospects.
Collapse
Affiliation(s)
- Yang Zou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Tao Xiong
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Xueze Zhao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
- E-mail:
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| |
Collapse
|
26
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Cui X, Lu G, Dong S, Li S, Xiao Y, Zhang J, Liu Y, Meng X, Li F, Lee CS. Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. MATERIALS HORIZONS 2021; 8:571-576. [PMID: 34821273 DOI: 10.1039/d0mh01312a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the first demonstration using a stable π-radical as a versatile photosensitizer for hypoxia-overcoming photodynamic therapy. After self-assembling the radical molecules into radical nanoparticles (NPs), the NPs show good water dispersibility, good biocompatibility, broad near-infrared (NIR) absorption and emission at ∼800 nm. Significantly, the radical NPs remain stable in various biological mediums, after 100 days exposure to the ambient environment, and even after long-term laser irradiation, which is superior to many reported radical-based materials. More importantly, upon 635 nm laser irradiation, sufficient superoxide radical (O2-˙) generation and in vitro cytotoxicity were observed addressing the most important hurdle for successful PDT in the oxygen-deficient tumor microenvironment. In addition, the radical NPs are also demonstrated to have effective in vivo PDT efficacy, and excellent biosafety.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Chemistry Institution Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Address 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
29
|
Yao L, Li H, Tu K, Zhang L, Cheng Z, Zhu X. Construction of NIR Light Controlled Micelles with Photothermal Conversion Property: Poly(poly(ethylene glycol)methyl ether methacrylate) (PPEGMA) as Hydrophilic Block and Ketocyanine Dye as NIR Photothermal Conversion Agent. Polymers (Basel) 2020; 12:E1181. [PMID: 32455766 PMCID: PMC7284342 DOI: 10.3390/polym12051181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Polymeric nanomaterials made from amphiphilic block copolymers are increasingly used in the treatment of tumor tissues. In this work, we firstly synthesized the amphiphilic block copolymer PBnMA-b-P(BAPMA-co-PEGMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization using benzyl methacrylate (BnMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA), and 3-((tert-butoxycarbonyl)amino)propyl methacrylate (BAPMA) as the monomers. Subsequently, PBnMA-b-P(APMA-co-PEGMA)@NIR 800 with photothermal conversion property was obtained by deprotection of the tert-butoxycarbonyl (BOC) groups of PBAPMA chains with trifluoroacetic acid (TFA) and post-modification with carboxyl functionalized ketocyanine dye (NIR 800), and it could self-assemble into micelles in CH3OH/water mixed solvent. The NIR photothermal conversion property of the post-modified micelles were investigated. Under irradiation with NIR light (λmax = 810 nm, 0.028 W/cm2) for 1 h, the temperature of the modified micelles aqueous solution increased to 53 °C from 20 °C, which showed the excellent NIR photothermal conversion property.
Collapse
Affiliation(s)
| | | | | | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (L.Y.); (H.L.); (K.T.); (X.Z.)
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (L.Y.); (H.L.); (K.T.); (X.Z.)
| | | |
Collapse
|
30
|
Xiong W, Wang L, Chen X, Tang H, Cao D, Zhang G, Chen W. Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. J Mater Chem B 2020; 8:5234-5244. [DOI: 10.1039/d0tb00888e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient photodynamic therapy of cancer cell ablation and bacterial inactivation by two AIEgens was reported.
Collapse
Affiliation(s)
- Wei Xiong
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Lingyun Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Xiaoli Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Hao Tang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Derong Cao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Wei Chen
- Department of Physics
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
31
|
Kong Q, Ma B, Yu T, Hu C, Li G, Jiang Q, Wang Y. A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj00822b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, photodynamic therapy (PDT) has become an effective method for cancer therapy.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|