1
|
Gnatowski P, Ansariaghmiuni M, Piłat E, Poostchi M, Kucińska-Lipka J, Yazdi MK, Ryl J, Ashrafizadeh M, Mottaghitalab F, Farokhi M, Saeb MR, Bączek T, Chen C, Lu Q. Hydrogel membranes in organ-on-a-chip devices: A review. Colloids Surf B Biointerfaces 2025; 251:114591. [PMID: 40054047 DOI: 10.1016/j.colsurfb.2025.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025]
Abstract
Organ-on-a-chip (OoC) devices represent advanced in vitro models enabling to mimic the human tissue architecture function and physiology, providing a promising alternative to the traditional animal testing methods. These devices combine the microfluidics with soft materials, specifically hydrogel membranes (HMs) for mimicking the extracellular matrix (ECM) and biological barriers, such as the blood-brain barrier (BBB). Hydrogels are ideal biomaterials for OoC systems because of their tunable properties, biocompatibility, biodegradability, and microscale self-assembly. The integration of HMs with OoC devices provides an effective way to develop dynamic, biologically relevant environments for supporting living cells targeted at drug discovery, disease modeling, and personalized medicine. Recent advancements in fabrication technologies such as additive manufacturing (3D printing), photolithography, and bioprinting have additionally advanced development of such systems. This review aims to outline the role of HMs in OoC platforms, highlighting their material properties, self-assembly behavior, and also challenges associated with their fabrication. Additionally, we visualize and discuss the latest progress made in utilizing HMs for applications in tissue engineering, drug development, and biosensing, with a focus on their interface dynamics and structural self-organization. The future perspective on OoC technology has also been patterned in order to provide a broader image on integration of OoC and HMs with personalized medicine and advanced drug delivery systems.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland
| | - Maryam Ansariaghmiuni
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Chu Chen
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qi Lu
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Juguilon C, Khosravi R, Radisic M, Wu JC. In Vitro Modeling of Interorgan Crosstalk: Multi-Organ-on-a-Chip for Studying Cardiovascular-Kidney-Metabolic Syndrome. Circ Res 2025; 136:1476-1493. [PMID: 40403116 DOI: 10.1161/circresaha.125.325497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Cardiovascular-kidney-metabolic syndrome is a progressive disorder driven by perturbed interorgan crosstalk among adipose, liver, kidney, and heart, leading to multiorgan dysfunction. Capturing the complexity of human cardiovascular-kidney-metabolic syndrome pathophysiology using conventional models has been challenging. Multi-organ-on-a-chip platforms offer a versatile means to study underlying interorgan signaling at different stages of cardiovascular-kidney-metabolic syndrome and bolster clinical translation.
Collapse
Affiliation(s)
- Cody Juguilon
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Division of Cardiovascular Medicine, Department of Medicine (C.J., J.C.W.), Stanford University, Stanford, CA
| | - Ramak Khosravi
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (R.K., M.R.)
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC (R.K.)
| | - Milica Radisic
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada (R.K., M.R.)
- Institute of Biomedical Engineering (M.R.)
- University of Toronto, Ontario, Canada (M.R.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute (C.J., J.C.W.), Stanford University, Stanford, CA
- Division of Cardiovascular Medicine, Department of Medicine (C.J., J.C.W.), Stanford University, Stanford, CA
- Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
3
|
Pawar R, Sankapall A, Samal M, Sadaphal V, Mohiudin S, Sangale M. Recent developments in 3D printing pharmaceutical, bioprinting and implant for tissue engineering formulations. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-48. [PMID: 40402634 DOI: 10.1080/09205063.2025.2505350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
This review article explores how 3D printing has the diversity in the drug development and the delivery of personalized medicine. The paradigm shift is from conventional methods to tailormade dosages and exploring the intricate interplay of drug selection, polymer compatibility alongwith technological advancements within the pharmaceutical arena. 3D printing is positioned as a crucial tool for catering to the specific requirements of patient-focused fields like pediatrics and geriatrics, ranging from addressing individual needs to improving dosage precision. By harnessing genetic profiles, physiological nuances, and disease conditions, this technology enables the creation of bespoke medications with unique drug loading and release profiles. In developing the newer implants the 3D printing has to be developed alongwith consideration of biological aspects as well as technical aspects. It has to be aligned with multifunctional aspects to cater one optimized product. Furthermore, this paper elucidates the regulatory considerations and industrial implications surrounding 3D printing in pharmaceuticals. Emphasizing compliance with current Good Manufacturing Practices (CGMP) and its potential for streamlined production in regulated markets, the paper underscores the transformative power of 3D printing in reshaping clinical practice and optimizing patient outcomes.
Collapse
Affiliation(s)
- Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Ankeeta Sankapall
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mayur Samal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Vaishnavi Sadaphal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Sabeeha Mohiudin
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mangesh Sangale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| |
Collapse
|
4
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Li Y, Huang D, Zhang Y, Xiao Y, Zhang X. Microfluidic-assisted engineering of hydrogels with microscale complexity. Acta Biomater 2025:S1742-7061(25)00350-2. [PMID: 40349902 DOI: 10.1016/j.actbio.2025.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have emerged as a promising 3D cell culture scaffold owing to their structural similarity to the extracellular matrix (ECM) and their tunable physicochemical properties. Recent advances in microfluidic technology have enabled the fabrication of hydrogels into precisely controlled microspheres and microfibers, which serve as modular units for scalable 3D tissue assembly. Furthermore, advances in 3D bioprinting have allowed facile and precise spatial engineering of these hydrogel-based structures into complex architectures. When integrated with microfluidics, these systems facilitate microscale heterogeneity, dynamic shear flow, and gradient generation-critical features for advancing organoids and organ-on-a-chip systems. In this review, we will discuss (1) microfluidic strategies for the preparation of hydrogel microspheres and microfibers, (2) the integration of microfluidics with 3D bioprinting technologies, and (3) their transformative applications in organoids and organ-on-a-chip systems. STATEMENT OF SIGNIFICANCE: Microfluidic-assisted preparation and assembly of hydrogel microspheres and microfibers have enabled unprecedented precision in size, morphology and compositional control. The diverse configurations of these hydrogel modules offer the opportunities to generate 3D constructs with microscale complexity-recapitulating critical features of native tissues such as compartmentalized microenvironments, cellular gradients, and vascular networks. In this review, we discuss the fundamental microfluidic principles governing the generation of hydrogel microspheres (0D) and microfibers (1D), their hierarchical assembly into 3D constructs, and their integration with 3D bioprinting platforms to generate and culture organoids and organ-on-a-chip systems. The synergistic integration of microfluidics and bioprinting overcomes longstanding limitations of conventional 3D culture, such as static microenvironments and poor spatial resolution. Advances in microfluidic design offer tunable hydrogel biophysical and biochemical properties that regulate cell behaviors dynamically. Looking forward, the growing mastery of these principles paves the way for next-generation organoids and organ-on-a-chip systems with improved cellular heterogeneity, integrated vasculature, and multicellular crosstalk, closing the gap between in vitro models and human pathophysiology.
Collapse
Affiliation(s)
- Yuehong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuting Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Lapin B, Vandensteen J, Gropplero G, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. Acta Biomater 2025; 197:326-338. [PMID: 40089130 DOI: 10.1016/j.actbio.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1-/- tubule dilation. We investigated cell behavior for a flow shear stress of 1 dyn/cm², combined or not with a 10-mbar intraluminal pressure. Our results showed two distinct mechanisms leading to tubular dilation. For Pkd1-/- PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation of 1.5-2-fold in 5 days, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation was associated with a squamous cell morphology but not with overproliferation and was highly sensitive to extracellular matrix properties, with suppression of the dilation when switching extracellular matrix composition from 6 to 9 mg/ml collagen. Contrary to PCT, mIMCD-3 tube dilation was highly sensitive to the nature of hydrodynamic constraint. Surprisingly, flow alone suppressed Pkd1-/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models. STATEMENT OF SIGNIFICANCE: In autosomal dominant polycystic kidney disease, the development of numerous renal cysts leads to renal failure, with no curative therapy available. The initial stage of cyst formation, local tubule dilation, remains poorly understood. Although mechanical cues may be decisive, there is a lack of biomimetic systems recapitulating them. Here, an innovative kidney-on-a-chip was designed to decouple different hydrodynamic cues. We observed disease-specific tube dilation, driven by distinct mechanisms based or not on proliferation, in proximal tubule or collecting duct cell lines. Strikingly in the latter case, dilation, highly dependent on mechanical conditions, was suppressed by flow but restored by luminal pressure. Our model highlights the role of mechanical constraints in ADPKD and the importance of pressure control in renal models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département 'Croissance et Signalisation', INSERM UMR1151, CNRS UMR 8253, Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département 'Croissance et Signalisation', INSERM UMR1151, CNRS UMR 8253, Paris, France; Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France.
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Paris 75005, France.
| |
Collapse
|
7
|
Lechtenberg M, Chéneau C, Riquin K, Koenig L, Mota C, Halary F, Dehne EM. A perfused iPSC-derived proximal tubule model for predicting drug-induced kidney injury. Toxicol In Vitro 2025; 105:106038. [PMID: 40020762 DOI: 10.1016/j.tiv.2025.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The kidney is frequently exposed to high levels of drugs and their metabolites, which can injure the kidney and the proximal tubule (PT) in particular. In order to detect nephrotoxicity early during drug development, relevant in vitro models are essential. Here, we introduce a robust and versatile cell culture insert-based iPSC-derived PT model, which can be maintained in a microphysiological system for at least ten days. We demonstrate the model's ability to predict drug-induced PT injury using polymyxin B, cyclosporin A, and cisplatin, and observe that perfusion distinctly impacts our model's response to xenobiotics. We observe that the upregulation of metallothioneins that is described in vivo after treatment with these drugs is reliably detected in dynamic, but not static in vitro PT models. Finally, we use our model to alleviate polymyxin-induced nephrotoxicity by supplementing the antioxidant curcumin. Together, these findings illustrate that our perfused iPSC-derived PT model is versatile and well-suited for in vitro studies investigating nephrotoxicity and its prevention. Reliable and user-friendly in vitro models like this enable the early detection of nephrotoxic potential, thereby minimizing adverse effects and reducing drug attrition.
Collapse
Affiliation(s)
| | - Coraline Chéneau
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Kevin Riquin
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Franck Halary
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | | |
Collapse
|
8
|
Bouwens D, Kabgani N, Bergerbit C, Kim H, Ziegler S, Ijaz S, Abdallah A, Haraszti T, Maryam S, Omidinia-Anarkoli A, De Laporte L, Hayat S, Jansen J, Kramann R. A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis. Biomaterials 2025; 316:123009. [PMID: 39705928 DOI: 10.1016/j.biomaterials.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis. We have generated novel human PDGFRβ+ pericytes, CD10+ epithelial and CD31+ endothelial cell lines and compared their transcriptomic signature to their in vivo counterpart using bulk RNA sequencing in comparison to human kidney single cell RNA-sequencing datasets. This comparison indicated that the novel cell lines still expressed kidney cell specific genes and shared many features with their native cell-state. PDGFRβ+ pericytes showed three-lineage differentiation capacity and differentiated towards myofibroblasts following TGFβ treatment. We utilized a fibrinogen/gelatin-based hydrogel as bioink and confirmed a good survival rate of all cell types within the bioink after printing. We then combined all three cells in a bioprinted model using separately printed compartments for tubule epithelium, and interstitial endothelium and pericytes. We confirmed that this 3D printed model allows to recapitulate key disease driving epithelial-mesenchymal crosstalk mechanisms of kidney fibrosis since injury of epithelial cells prior to bioprinting resulted in myofibroblast differentiation and fibrosis driven by pericytes after bioprinting. The bioprinted model was also scalable up to a 96-well format.
Collapse
Affiliation(s)
- Daphne Bouwens
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Nazanin Kabgani
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Cédric Bergerbit
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Ali Abdallah
- Interdisciplinary Center for Clinical Research, RWTH University Aachen, Germany
| | - Tamás Haraszti
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Laura De Laporte
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Goux Corredera I, Amato G, Moya-Rull D, Garreta E, Montserrat N. Unlocking the full potential of human pluripotent stem cell-derived kidney organoids through bioengineering. Kidney Int 2025:S0085-2538(25)00327-8. [PMID: 40280411 DOI: 10.1016/j.kint.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 04/29/2025]
Abstract
Human pluripotent stem cells hold inherent properties, allowing researchers to recapitulate key morphogenetic processes. These characteristics, coupled with bioengineering techniques, have led to the definition of early procedures to derive organ-like cell cultures, the so-called organoids. With regard to kidney organoids, challenges stand ahead, such as the need to enhance cellular composition, maturation, and function to that found in the native organ. To this end, the kidney organoid field has begun to nourish from innovative engineering approaches aiming to gain control on the externally imposed biochemical and biophysical cues. In this review, we first introduce how previous research in kidney development and human pluripotent stem cells has informed the establishment of current kidney organoid procedures. We then discuss recent engineering approaches to guide kidney organoid self-organization, differentiation, and maturation. In addition, we present current strategies to engineer vascularization and promote in vivo-like physiological microenvironments as potential solutions to increase kidney organoid lifespan and functionality. We finally emphasize how working at the cusp of cell mechanics and computational biology will set the ground for successful translational applications of kidney organoids.
Collapse
Affiliation(s)
- Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gaia Amato
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; University of Barcelona, Barcelona, Spain.
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Tayel A, Hamad A. Four-dimensional food printing: A revolutionary approach to next-generation foods. FOOD SCI TECHNOL INT 2025:10820132251336084. [PMID: 40255071 DOI: 10.1177/10820132251336084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Four-dimensional (4D) food printing is a cutting-edge technology that allows the creation of shape-shifting transformative food structures. This innovative approach to food design enables food scientists to craft edible creations that change form and texture over time, thereby providing a unique and dynamic dining experience. Beyond its novelty and aesthetic appeal, 4D food printing has practical applications that address pressing issues in the food industry. In this review, we explore the technology behind 4D food printing, food ink types, and other natural ingredients that can be programed to change shape with stimuli, and the possibilities and potential applications of 4D food printing, from tantalizing taste sensations to revolutionary solutions for food sustainability, and explore the latest research and innovations in this field. Ultimately, 4D food printing represents a new frontier in food processing and culinary arts, offering fresh canvas for creative expression, a means to address pressing food-related challenges, and a way to rethink our relationship with the food we eat.
Collapse
Affiliation(s)
- Aya Tayel
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
11
|
Vyas J, Raytthatha N, Vyas P, Prajapati BG, Uttayarat P, Singh S, Chittasupho C. Biomaterial-Based Additive Manufactured Composite/Scaffolds for Tissue Engineering and Regenerative Medicine: A Comprehensive Review. Polymers (Basel) 2025; 17:1090. [PMID: 40284355 PMCID: PMC12030672 DOI: 10.3390/polym17081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Additive manufacturing (AM), also referred to as three-dimensional printing/printed (3DP), has emerged as a transformative approach in the current design and manufacturing of various biomaterials for the restoration of damaged tissues inside the body. This advancement has greatly aided the development of customized biomedical devices including implants, prosthetics, and orthotics that are specific to the patients. In tissue engineering (TE), AM enables the fabrication of complex structures that promote desirable cellular responses in the regeneration of tissues. Since the choice of biomaterials plays a vital role in scaffold performance as well as cellular responses, meticulous material selection is essential in optimizing the functionality of scaffolds. These scaffolds often possess certain characteristics such as biodegradability, biocompatibility, biomimicry, and porous structure. To this end, polymers such as chitosan, collagen, alginate, hyaluronic acid, polyglycolic acid, polylactic acid, and polycaprolactone have been extensively investigated in the fabrication of tissue-engineered scaffolds. Furthermore, combinations of biomaterials are also utilized to further enhance the scaffolds' performance and functionality. This review discusses the principle of AM and explores recent advancements in AM technologies in the development of TE and regenerative medicine. In addition, the applications of 3DP, polymer-based scaffolds will be highlighted.
Collapse
Affiliation(s)
- Jigar Vyas
- Krishna School of Pharmacy & Research, Dr. Kiran and Pallavi Global University, Varnama, Vadodara 391240, Gujarat, India; (J.V.); (N.R.)
| | - Nensi Raytthatha
- Krishna School of Pharmacy & Research, Dr. Kiran and Pallavi Global University, Varnama, Vadodara 391240, Gujarat, India; (J.V.); (N.R.)
| | - Puja Vyas
- Sigma Institute of Pharmacy, Sigma University, Vadodara 390019, Gujarat, India;
| | - Bhupendra G. Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 3840212, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand;
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Xu X, Qiu Y, Chen CY, Carton M, Campbell PMR, Chowdhury AM, Bandyopadhyay BC, Bentley WE, Smith BR, Sochol RD. 3D nanoprinting of PDMS microvessels with tailored tortuosity and microporosity via direct laser writing. LAB ON A CHIP 2025; 25:1947-1958. [PMID: 40104860 PMCID: PMC11921864 DOI: 10.1039/d4lc01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Microvessels (e.g., capillaries) are ubiquitous throughout human anatomy, yet recreating their three-dimensional (3D) microfluidic and architectural sophistication at biologically accurate length scales has remained a critical challenge. To overcome this barrier, here we report a hybrid additive manufacturing-or "3D printing"-strategy in which "Two-Photon Direct Laser Writing (DLW)" is used to nanoprint microvessels of arbitrary design directly atop "Liquid-Crystal Display (LCD)" 3D-printed microfluidic chips. Fabrication results indicated effective production of 100 μm-diameter 3D polydimethylsiloxane (PDMS) microfluidic vessels with 5 μm-thick walls-featuring arrays of pre-designed 5 μm-diameter micropores-as well as three discrete spiralled, intertwined microvessels. Experimental results with MDA-MB-231 epithelial breast cancer cells revealed the ability for the 3D PDMS microvessels to support cell culture. In combination, these results suggest that the presented strategy for 3D nanoprinting PDMS microvessels with custom-designed architectures and microporosity offers a promising pathway to enable new classes of "organ-on-a-chip (OOC)" systems for wide-ranging biomedical applications.
Collapse
Affiliation(s)
- Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Department of Chemical Engineering and Material Science, Michigan State University, East Lan-sing, MI, 48824, USA
| | - Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Molly Carton
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Paige M R Campbell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - A Muhaymin Chowdhury
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | | | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Department of Chemical Engineering and Material Science, Michigan State University, East Lan-sing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
13
|
Addario G, Moroni L, Mota C. Kidney Fibrosis In Vitro and In Vivo Models: Path Toward Physiologically Relevant Humanized Models. Adv Healthc Mater 2025; 14:e2403230. [PMID: 39906010 PMCID: PMC11973949 DOI: 10.1002/adhm.202403230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Chronic kidney disease (CKD) affects over 10% of the global population and is a leading cause of mortality. Kidney fibrosis, a key endpoint of CKD, disrupts nephron tubule anatomy and filtration function, and disease pathomechanisms are not fully understood. Kidney fibrosis is currently investigated with in vivo models, that gradually support the identification of possible mechanisms of fibrosis, but with limited translational research, as they do not fully recapitulate human kidney physiology, metabolism, and molecular pathways. In vitro 2D cell culture models are currently used, as a starting point in disease modeling and pharmacology, however, they lack the 3D kidney architecture complexity and functions. The failure of several therapies and drugs in clinical trials highlights the urgent need for advanced 3D in vitro models. This review discusses the urinary system's anatomy, associated diseases, and diagnostic methods, including biomarker analysis and tissue biopsy. It evaluates 2D and in vivo models, highlighting their limitations. The review explores the state-of-the-art 3D-humanized in vitro models, such as 3D cell aggregates, on-chip models, biofabrication techniques, and hybrid models, which aim to mimic kidney morphogenesis and functions. These advanced models hold promise for translating new therapies and drugs for kidney fibrosis into clinics.
Collapse
Affiliation(s)
- Gabriele Addario
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Carlos Mota
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| |
Collapse
|
14
|
Zhang F, Jozani KA, Chakravarty A, Lin D, Hollinger A, Rajasekar S, Zhang B. Immune-Infiltrated Cancer Spheroid Model with Vascular Recirculation Reveals Temporally Dependent and Tissue-Specific Macrophage Recruitment. Adv Healthc Mater 2025; 14:e2402946. [PMID: 39962817 PMCID: PMC11973944 DOI: 10.1002/adhm.202402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/20/2025] [Indexed: 04/08/2025]
Abstract
Immune cell infiltration in tumors has been reported to influence tumor progression and clinical outcomes. Considerable efforts have been made to understand interactions between tumors and the immune system. However, current models are either not comprehensive or limited to short-term studies. Recognizing thedynamic and long-term nature of tumor-immune interactions, an immune-infiltrated cancer spheroid model is developed by continuously perfusing and recirculating immune cells with gravity-driven flow through a tubular blood vessel adjacent to a cancer spheroid. Fibroblasts and pericytes are embedded in the gel matrix to support endothelial cells and enhance the vascular barrier. With continuous monocyte recirculation, monocyte adhesion, transendothelium migration, differentiation, and macrophage recruitment into breast carcinoma and hepatoma spheroids is successfully demonstrated over a week. The macrophage recruitment process is temporally dependent and tissue-specific, leading to the formation of cancer-macrophage heterospheroids. Elevated secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), which regulates monocyte recruitment and macrophage activation, is observed in the breast carcinoma model. Increased levels of Interleukin 6 (IL-6) and Interleukin 8 (IL-8) are detected, indicating a pro-inflammatory environment associated with tumor progression and metastasis. This platform provides a valuable framework for investigating immune cell infiltration and differentiation within the tumor microenvironment, supporting the advancement of cancer immunotherapies.
Collapse
Affiliation(s)
- Feng Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Kimia Asadi Jozani
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Anushree Chakravarty
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Dawn Lin
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Andrew Hollinger
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Shravanthi Rajasekar
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
| | - Boyang Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioL8S 4L8Canada
- The Centre for Discovery in Cancer ResearchMcMaster University1280 Main Street WestHamiltonOntarioL8S 4M1Canada
| |
Collapse
|
15
|
Kiranmai G, Chameettachal S, Sriya Y, Duin S, Lode A, Gelinsky M, Akkineni AR, Pati F. Recent trends in the development of in vitro3D kidney models. Biofabrication 2025; 17:022010. [PMID: 39993331 DOI: 10.1088/1758-5090/adb999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimeticin vitromodels using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimeticin vitrokidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Yeleswarapu Sriya
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
16
|
Nguyen TD, Nguyen TQ, Vo VT, Nguyen TH. Advances in three-dimensional printing of hydrogel formulations for vascularized tissue and organ regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-43. [PMID: 39899080 DOI: 10.1080/09205063.2024.2449294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| |
Collapse
|
17
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2025; 14:e2400496. [PMID: 38850170 PMCID: PMC11834377 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Ciências Biomédicas Abel SalazarUniversidade do Porto – ICBASRua Jorge de Viterbo Ferreira 228Porto4050–313Portugal
| | - Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Escola Superior de SaúdeInstituto Politécnico do PortoRua Dr. António Bernardino de Almeida 400Porto4200‐072Portugal
| | - Bruno Sarmento
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Universitário de Ciências da Saúde – IUCS‐CESPURua Central de Gandra, 1317Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| |
Collapse
|
18
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2025; 14:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
19
|
G Valverde M, Stampa Zamorano C, Kožinec D, Benito Zarza L, van Genderen AM, Janssen R, Castilho M, Hrynevich A, Vermonden T, Malda J, de Ruijter M, Masereeuw R, Mihăilă SM. Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule. Adv Healthc Mater 2025; 14:e2401800. [PMID: 39511873 DOI: 10.1002/adhm.202401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/18/2024] [Indexed: 11/15/2024]
Abstract
A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.
Collapse
Affiliation(s)
- Marta G Valverde
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Claudia Stampa Zamorano
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Dora Kožinec
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Laura Benito Zarza
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Anne Metje van Genderen
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Robine Janssen
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, 5612, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, 513, The Netherlands
| | - Andrei Hrynevich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Tina Vermonden
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, CG 3584, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Mylene de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 100, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Div. Pharmacology, Utrecht University, Utrecht, 13102, The Netherlands
| |
Collapse
|
20
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
21
|
Veser C, Carlier A, Dubois V, Mihăilă SM, Swapnasrita S. Embracing sex-specific differences in engineered kidney models for enhanced biological understanding of kidney function. Biol Sex Differ 2024; 15:99. [PMID: 39623463 PMCID: PMC11613810 DOI: 10.1186/s13293-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
In vitro models serve as indispensable tools for advancing our understanding of biological processes, elucidating disease mechanisms, and establishing screening platforms for drug discovery. Kidneys play an instrumental role in the transport and elimination of drugs and toxins. Nevertheless, despite the well-documented inter-individual variability in kidney function and the multifaceted nature of renal diseases-spanning from their origin, trigger and which segment of the kidney is affected-to presentation, progression and prognosis, few studies take into consideration the variable of sex. Notably, the inherent disparities between female and male biology warrants a more comprehensive representation within in vitro models of the kidney. The omission of sex as a fundamental biological variable carries the substantial risk of overlooking sex-specific mechanisms implicated in health and disease, along with potential differences in drug responsiveness and toxicity profiles between sexes. This review emphasizes the importance of incorporating cellular, biological and functional sex-specific features of renal activity in health and disease in in vitro models. For that, we thoroughly document renal sex-specific features and propose a strategic experimental framework to integrate sex-based differences into human kidney in vitro models by outlining critical design criteria to elucidate sex-based features at cellular and tissue levels. The goal is to enhance the accuracy of models to unravel renal mechanisms, and improve our understanding of their impact on drug efficacy and safety profiles, paving the way for a more comprehensive understanding of patient-specific treatment modalities.
Collapse
Affiliation(s)
- Charlotte Veser
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Silvia M Mihăilă
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Li F, XinHuang, Wang R, Li Y, Wu L, Qiao X, Zhong Y, Gong G, Huang W. Collagen-based materials in male genitourinary diseases and tissue regeneration. COLLAGEN AND LEATHER 2024; 6:36. [DOI: 10.1186/s42825-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
AbstractMale genitourinary dysfunction causes serious physical or mental distress, such as infertility and psychological harm, which leads to impaired quality of life. Current conventional treatments involving drug therapy, surgical repair, and tissue grafting have a limited effect on recovering the function and fertility of the genitourinary organs. To address these limitations, various biomaterials have been explored, with collagen-based materials increasingly gaining attention for reconstructing the male genitourinary system due to their superior biocompatibility, biodegradability, low antigenicity, biomimetic 3D matrix characteristics, hemostatic efficacy, and tissue regeneration capabilities. This review covers the recent biomedical applications of collagen-based materials including treatment of erectile dysfunction, premature ejaculation, penile girth enlargement, prostate cancer, Peyronie's disease, chronic kidney disease, etc. Although there are relatively few clinical trials, the promising results of the existing studies on animal models reveal a bright future for collagen-based materials in the treatment of male genitourinary diseases.
Graphic Abstract
Collapse
|
23
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
24
|
Pun S, Prakash A, Demaree D, Krummel DP, Sciumè G, Sengupta S, Barrile R. Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma. Adv Healthc Mater 2024; 13:e2401876. [PMID: 39101329 PMCID: PMC11616263 DOI: 10.1002/adhm.202401876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
| | - Anusha Prakash
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- AbbvieWorcesterMassachusetts01605USA
| | - Dalee Demaree
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Thermo Fisher ScientificWalthamMassachusetts02451USA
| | - Daniel Pomeranz Krummel
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
| | - Giuseppe Sciumè
- Institute of Mechanics and Engineering‐12 MUniversity of BordeauxBordeaux33607France
| | - Soma Sengupta
- Department of NeurologyUniversity of CincinnatiCincinnatiOH45219USA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNC27599USA
- Department of NeurologyUniversity of North CarolinaChapel HillNC27599‐7025USA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNC27599‐7295USA
| | - Riccardo Barrile
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOH45221USA
- Center for Stem Cells and Organoid Medicine (CuSTOM)Cincinnati Children's Hospital Medical CenterCincinnatiOH45229USA
| |
Collapse
|
25
|
Saud B, Guha K, Iannacci J, Selishchev S, Sengupta P, Dutta A. Design and simulation of a microfluidics-based artificial glomerular ultrafiltration unit to reduce cell-induced fouling. Artif Organs 2024; 48:1404-1417. [PMID: 39078122 DOI: 10.1111/aor.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The microfluidic-based Glomerulus-on-Chips (GoC) are mostly cell based, that is, 3D cell culture techniques are used to culture glomerular cells in order to mimic glomerular ultrafiltration. These chips require high maintenance to keep cell viability intact. There have been some approaches to build non-cell-based GoCs but many of these approaches have the drawback of membrane fouling. This article presents a structural design and simulation study of a dialysate free microfluidic channel for replicating the function of the human glomerular filtration barrier. The key advancement of the current work is addressing the fouling issue by combining a pre-filter to eliminate cellular components and performing filtration on the blood plasma. METHODS The Laminar Flow Mixture Model in COMSOL Multiphysics 5.6 has been utilized to simulate the behavior of blood flow in the microchannels. The geometrical effect of microchannels on the separation of the filtrate was investigated. The velocity at the inlet of the microchannel and pore size of the filtration membrane are varied to see the change in outflow and filtration fraction. RESULTS The efficiency of the device is calculated in terms of the filtration fraction (FF%) formed. Simulation results show that the filtrate obtained is ~20% of the plasma flow rate in the channel, which resembles the glomerular filtration fraction. CONCLUSION Given that it is not dependent on the functionality of grown cells, the proposed device is anticipated to have a longer lifespan due to its non-cell-based design. The device's cost can be reduced by avoiding cell cultivation inside of it. It can be integrated as a glomerular functional unit with other units of kidney model to build a fully developed artificial kidney.
Collapse
Affiliation(s)
- Bhagyashree Saud
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Jacopo Iannacci
- Center for Sensors and Devices (SD), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Sergei Selishchev
- National Research University of Electronic Technology (MIET), Moscow, Russia
| | | | - Arindam Dutta
- RG Stone Urology & Laparoscopic Hospital, Kolkata, India
| |
Collapse
|
26
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
27
|
Zhong C, Tang Z, Yu X, Wang L, Ren C, Qin L, Zhou P. Advances in the Construction and Application of Bone-on-a-Chip Based on Microfluidic Technologies. J Biomed Mater Res B Appl Biomater 2024; 112:e35502. [PMID: 39555794 DOI: 10.1002/jbm.b.35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Bone-on-a-chip (BOC) models that based on microfluidic technology have widely applied to understand bone physiology and the pathogenesis of related diseases. In this review, we provide an overview of bone biology and related diseases, explain the advantages and applications of microfluidic technology in the construction of BOC models, and summarize their progress in physiology, pathology, and drug development. Finally, we discussed the problems to be solved and the future directions of microfluidic technology and BOC platforms, so as to provide a reference for researchers to design better BOC models.
Collapse
Affiliation(s)
- Chang Zhong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zihui Tang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Yu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lu Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Chenyuan Ren
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Gansu Health Vocational College, Lanzhou, China
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
28
|
Thompson LE, Joy MS. Understanding Cisplatin Pharmacokinetics and Toxicodynamics to Predict and Prevent Kidney Injury. J Pharmacol Exp Ther 2024; 391:399-414. [PMID: 39322416 PMCID: PMC11585315 DOI: 10.1124/jpet.124.002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Cisplatin is a common platinum-based chemotherapeutic that induces acute kidney injury (AKI) in about 30% of patients. Pharmacokinetic/toxicodynamic (PKTD) models of cisplatin-induced AKI have been used to understand risk factors and evaluate potential mitigation strategies. While both traditional clinical biomarkers of kidney function [e.g., serum creatinine (SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), and creatinine clearance (CrCl)] and newer subclinical biomarkers of kidney injury [e.g., urinary kidney injury molecule 1 (KIM-1), beta-2 microglobulin (B2M), neutrophil gelatinase-associated lipocalin (NGAL), calbindin, etc.] can be used to detect cisplatin-induced AKI, published PKTD models are limited to using only traditional clinical biomarkers. Previously identified risk factors for cisplatin nephrotoxicity have included dose, age, sex, race, body surface area, genetics, concomitant medications, and comorbid conditions. However, the relationships between concentrations and the pharmacokinetics (PK) of platinum and biomarkers of kidney injury have not been well elucidated. This review discusses the evaluation of cisplatin-induced nephrotoxicity in clinical studies, mouse models, and in vitro models, and examines the available human PK and toxicodynamic (TD) data. Improved understanding of the relationships between platinum PK and TD, in the presence of identified risk factors, will enable the prediction and prevention of cisplatin kidney injury. SIGNIFICANCE STATEMENT: As cisplatin treatment continues to cause AKI in a third of patients, it is critical to improve the understanding of the relationships between platinum PK and nephrotoxicity as assessed by traditional clinical and contemporary subclinical TD markers of kidney injury. Prediction and prevention of cisplatin-induced nephrotoxicity will be advanced by the evolving development of PKTD models that incorporate kidney injury biomarkers with enhanced sensitivity and include covariates that can impact risk of developing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Lauren E Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
29
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Kiranmai G, Alam A, Chameettachal S, Khandelwal M, Pati F. Engineering a Biomimetic Glomerular Filtration Barrier: Coculturing Endothelial Podocytes on Kidney ECM-Bacterial Cellulose Membrane Hybrid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52008-52022. [PMID: 39305285 DOI: 10.1021/acsami.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel avenue for advancing our understanding of kidney disease mechanisms and developing targeted therapeutics lies in overcoming the limitations of the existing in vitro models. Traditional animal models, while useful, do not fully capture the intricacies of human kidney physiology and pathophysiology. Tissue engineering offers a promising solution, yet current models often fall short in replicating the complex microarchitecture and biochemical milieu of the kidney. To address this challenge, we propose the development of a sophisticated in vitro glomerular filtration barrier (GFB) utilizing advanced biomaterials and a kidney decellularized extracellular matrix (kdECM). In our approach, we employ a bacterial cellulose membrane (BC) as a scaffold, providing a robust framework for cell growth and interaction. Coating this scaffold with kdECM hydrogel derived from caprine kidney tissue via a detergent-free decellularization method ensures the preservation of vital extracellular matrix proteins crucial for cellular compatibility and signaling. Our engineered GFB not only supports the growth of endothelial and podocyte cells but also exhibits the presence of key markers such as CD31 and nephrin, indicating successful cellular integration. Furthermore, the expression of collagen IV, an essential extracellular matrix (ECM) protein, validates the fidelity of our model in simulating cellular interactions within a kdECM matrix. Additionally, we assessed the filtration efficiency of the developed GFB model using albumin, a standard protein, to evaluate its performance under conditions that closely mimic the native physiological environment. This innovative approach, which faithfully recapitulates the native microenvironment of the glomerulus, holds immense promise for elucidating kidney disease mechanisms, conducting permeability studies, and advancing personalized therapeutic strategies. By leveraging cutting-edge biomaterials and tissue-specific coculture technology, this study can be further extended to develop GFB for the treatment of renal diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502285, India
| |
Collapse
|
32
|
Lee G, Kim SJ, Park JK. Bioprinted Multi-Composition Array Mimicking Tumor Microenvironments to Evaluate Drug Efficacy with Multivariable Analysis. Adv Healthc Mater 2024; 13:e2303716. [PMID: 38830208 DOI: 10.1002/adhm.202303716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Current organ-on-a-chip technologies confront limitations in effectively recapitulating the intricate in vivo microenvironments and accommodating diverse experimental conditions on a single device. Here, a novel approach for constructing a multi-composition tumor array on a single microfluidic device, mimicking complex transport phenomena within tumor microenvironments (TMEs) and allowing for simultaneous evaluation of drug efficacy across 12 distinct conditions is presented. The TME array formed by bioprinting on a microfluidic substrate consists of 36 individual TME models, each characterized by one of three different compositions and tested under four varying drug concentrations. Notably, the TME model exhibits precise compartmentalization, fostering the development of self-organized vascular endothelial barriers surrounding breast cancer spheroids affecting substance transport. Multivariable screening and analysis of diverse conditions, including model complexity, replicates, and drug concentrations, within a single microfluidic platform, highlight the synergistic potential of integrating bioprinting with microfluidics to evaluate drug responses across diverse TME conditions comprehensively.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Nanocentury, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
33
|
Figueroa-Milla AE, DeMaria W, Wells D, Jeon O, Alsberg E, Rolle MW. Vascular tissues bioprinted with smooth muscle cell-only bioinks in support baths mimic features of native coronary arteries. Biofabrication 2024; 16:045033. [PMID: 39121893 DOI: 10.1088/1758-5090/ad6d8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210μm) to 30 G (159μm) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability. Printing with 30 G tips resulted in decreased mean wall thickness (318.6μm) without compromising mean cell viability (94.8%). Histological analysis of cell-only smooth muscle tissues cultured for 14 d in OMA support baths exhibited decreased wall thickness using 30 G dispensing tips, which correlated with increased collagen deposition and alignment. In addition, a TUNEL assay indicated a decrease in cell death in tissues printed with thinner (30 G) dispensing tips. Mechanical testing demonstrated that tissues printed with a 30 G dispensing tip exhibit an increase in ultimate tensile strength compared to those printed with a 27 G dispensing tip. Overall, these findings highlight the importance of precise control over bioprinting parameters to generate mechanically robust tissues when using cell-only bioinks dispensed and cultured within hydrogel support baths. The ability to control print dimensions using cell-only bioinks may enable bioprinting of more complex soft tissue geometries to generatein vitrotissue models.
Collapse
Affiliation(s)
- Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - William DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Derrick Wells
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, United States of America
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- The Roux Institute at Northeastern University, Portland, ME, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
34
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
35
|
Ino K, Konno A, Utagawa Y, Kanno T, Iwase K, Abe H, Shiku H. Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers. MICROMACHINES 2024; 15:1054. [PMID: 39203705 PMCID: PMC11356774 DOI: 10.3390/mi15081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into two-layer microfluidic devices. In addition to soft lithography, three-dimensional (3D) printing has been widely used for the direct fabrication of microfluidic devices because of its high flexibility. However, this technique has not yet been applied to the fabrication of two-layer microfluidic devices with porous electrodes. This paper proposes a novel fabrication process for this type of device. In brief, Pluronic F-127 ink was three-dimensionally printed in the form of sacrificial layers. A porous Au electrode, fabricated by sputtering Au on track-etched polyethylene terephthalate membranes, was placed between the top and bottom sacrificial layers. After covering with polydimethylsiloxane, the sacrificial layers were removed by flushing with a cold solution. To the best of our knowledge, this is the first report on the sacrificial approach-based fabrication of two-layer microfluidic devices with a porous electrode. Furthermore, the device was used for electrochemical assays of serotonin and could successfully measure concentrations up to 5 µM. In the future, this device can be used for MPS applications.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiyo Kanno
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
36
|
Nie J, Lou S, Pollet AMAO, van Vegchel M, Bouten CVC, den Toonder JMJ. A Cell Pre-Wrapping Seeding Technique for Hydrogel-Based Tubular Organ-On-A-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400970. [PMID: 38872259 PMCID: PMC11321624 DOI: 10.1002/advs.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Indexed: 06/15/2024]
Abstract
Organ-on-a-chip (OOC) models based on microfluidic technology are increasingly used to obtain mechanistic insight into (patho)physiological processes in humans, and they hold great promise for application in drug development and regenerative medicine. Despite significant progress in OOC development, several limitations of conventional microfluidic devices pose challenges. First, most microfluidic systems have rectangular cross sections and flat walls, and therefore tubular/ curved structures, like blood vessels and nephrons, are not well represented. Second, polymers used as base materials for microfluidic devices are much stiffer than in vivo extracellular matrix (ECM). Finally, in current cell seeding methods, challenges exist regarding precise control over cell seeding location, unreachable spaces due to flow resistances, and restricted dimensions/geometries. To address these limitations, an alternative cell seeding technique and a corresponding workflow is introduced to create circular cross-sectioned tubular OOC models by pre-wrapping cells around sacrificial fiber templates. As a proof of concept, a perfusable renal proximal tubule-on-a-chip is demonstrated with a diameter as small as 50 µm, cellular tubular structures with branches and curvature, and a preliminary vascular-renal tubule interaction model. The cell pre-wrapping seeding technique promises to enable the construction of diverse physiological/pathological models, providing tubular OOC systems for mechanistic investigations and drug development.
Collapse
Affiliation(s)
- Jing Nie
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sha Lou
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Andreas M. A. O. Pollet
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Manon van Vegchel
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Jaap M. J. den Toonder
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
37
|
Lacueva-Aparicio A, Martínez-Gimeno L, Torcal P, Ochoa I, Giménez I. Advanced Kidney Models In Vitro Using the Established Cell Line Renal Proximal Tubular Epithelial/Telomerase Reverse Transcriptase1 for Nephrotoxicity Assays. Biomimetics (Basel) 2024; 9:446. [PMID: 39056887 PMCID: PMC11275192 DOI: 10.3390/biomimetics9070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nephrotoxicity stands as one of the most limiting effects in the development and validation of new drugs. The kidney, among the organs evaluated in toxicity assessments, has a higher susceptibility, with nephrotoxic potential frequently evading detection until late in clinical trials. Traditional cell culture, which has been widely used for decades, does not recapitulate the structure and complexity of the native tissue, which can affect cell function, and the response to cytotoxins does not resemble what occurs in the kidney. In the current study, we aimed to address these challenges by creating in vitro kidney models that faithfully biomimic the dynamics of the renal proximal tubule, using the well-established RPTEC/TERT1 cell line. For doing so, two models were developed, one recreating tubule-like structures (2.5D model) and the other using microfluidic technology (kidney-on-a-chip). The 2.5D model allowed tubular structures to be generated in the absence of hydrogels, and the kidney-on-a-chip model allowed shear stress to be applied to the cell culture, which is a physiological stimulus in the renal tissue. After characterization of both models, different nephrotoxic compounds such as cisplatin, tacrolimus, and daunorubicin were used to study cell responses after treatment. The developed models in our study could be a valuable tool for pre-clinical nephrotoxic testing of drugs and new compounds.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
| | - Laura Martínez-Gimeno
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Pilar Torcal
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, 50018 Zaragoza, Spain;
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon Health Science Institute, 50009 Zaragoza, Spain (I.G.)
- Institute for Health Sciences of Aragon (IACS), 50009 Zaragoza, Spain
- Aragón Health Research Institute (IISAragón), 50009 Zaragoza, Spain
- School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
38
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Kroll KT, Homan KA, Uzel SGM, Mata MM, Wolf KJ, Rubins JE, Lewis JA. A perfusable, vascularized kidney organoid-on-chip model. Biofabrication 2024; 16:045003. [PMID: 38906132 DOI: 10.1088/1758-5090/ad5ac0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 06/23/2024]
Abstract
The ability to controllably perfuse kidney organoids would better recapitulate the native tissue microenvironment for applications ranging from drug testing to therapeutic use. Here, we report a perfusable, vascularized kidney organoid on chip model composed of two individually addressable channels embedded in an extracellular matrix (ECM). The channels are respectively seeded with kidney organoids and human umbilical vein endothelial cells that form a confluent endothelium (macrovessel). During perfusion, endogenous endothelial cells present within the kidney organoids migrate through the ECM towards the macrovessel, where they form lumen-on-lumen anastomoses that are supported by stromal-like cells. Once micro-macrovessel integration is achieved, we introduced fluorescently labeled dextran of varying molecular weight and red blood cells into the macrovessel, which are transported through the microvascular network to the glomerular epithelia within the kidney organoids. Our approach for achieving controlled organoid perfusion opens new avenues for generating other perfused human tissues.
Collapse
Affiliation(s)
- Katharina T Kroll
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
- Complex in vitro Systems, Safety Assessment, Genentech Inc, South San Francisco, CA, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech Inc, South San Francisco, CA, United States of America
| | - Sebastien G M Uzel
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Mariana M Mata
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Kayla J Wolf
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Jonathan E Rubins
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
| | - Jennifer A Lewis
- Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, United States of America
- Harvard Stem Cell Institute, Cambridge, MA, United States of America
| |
Collapse
|
40
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
41
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
42
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
43
|
Lapin B, Gropplero G, Vandensteen J, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599137. [PMID: 38948811 PMCID: PMC11212944 DOI: 10.1101/2024.06.18.599137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
- Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| |
Collapse
|
44
|
Hansen SH. TruD technology for the study of epi- and endothelial tubes in vitro. PLoS One 2024; 19:e0301099. [PMID: 38728291 PMCID: PMC11086873 DOI: 10.1371/journal.pone.0301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Beyond the smallest organisms, animals rely on tubes to transport cells, oxygen, nutrients, waste products, and a great variety of secretions. The cardiovascular system, lungs, gastrointestinal and genitourinary tracts, as well as major exocrine glands, are all composed of tubes. Paradoxically, despite their ubiquitous importance, most existing devices designed to study tubes are relatively complex to manufacture and/or utilize. The present work describes a simple method for generating tubes in vitro using nothing more than a low-cost 3D printer along with general lab supplies. The technology is termed "TruD", an acronym for true dimensional. Using this technology, it is readily feasible to cast tubes embedded in ECM with easy access to the lumen. The design is modular to permit more complex tube arrangements and to sustain flow. Importantly, by virtue of its simplicity, TruD technology enables typical molecular cell biology experiments where multiple conditions are assayed in replicate.
Collapse
Affiliation(s)
- Steen H. Hansen
- Department of Pediatrics, Division of Gastroenterology, GI Cell Biology Laboratory, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Tian H, Wu J, Hu Y, Chen X, Cai X, Wen Y, Chen H, Huang J, Wang S. Recent advances on enhancing 3D printing quality of protein-based inks: A review. Compr Rev Food Sci Food Saf 2024; 23:e13349. [PMID: 38638060 DOI: 10.1111/1541-4337.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.
Collapse
Affiliation(s)
- Han Tian
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiajie Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanyu Hu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- Qingyuan Innovation Laboratory, Quanzhou, China
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Yaxin Wen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huimin Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd., Xiamen, China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
46
|
Addario G, Eussen D, Djudjaj S, Boor P, Moroni L, Mota C. 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromol Biosci 2024; 24:e2300440. [PMID: 37997523 DOI: 10.1002/mabi.202300440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.
Collapse
Affiliation(s)
- Gabriele Addario
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Daphne Eussen
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Division of Nephrology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
47
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
48
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
49
|
Shukla M, Malik S, Pandya A. Lab on chip for testing of repurposed drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:71-90. [PMID: 38789187 DOI: 10.1016/bs.pmbts.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The lab-on-chip technique broadly comprises of microfluidics and aims to progress multidimensionally by changing the outlook of medicine and pharmaceuticals as it finds it roots in miniaturization. Moreover, microfluidics facilitates precise physiological simulation and possesses biological system-mimicking capabilities for drug development and repurposing. Thus, organs on chip could pave a revolutionary pathway in the field of drug development and repurposing by reducing animal testing and improving drug repurposing.
Collapse
Affiliation(s)
- Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Saloni Malik
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India; Department of Nanoengineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
50
|
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-on-a-chip and beyond. Front Bioeng Biotechnol 2024; 12:1373386. [PMID: 38605984 PMCID: PMC11007038 DOI: 10.3389/fbioe.2024.1373386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Organs-on-a-chip (OoC) is a microengineered three-dimensional cell culture system developed for decades. Utilizing microfluidic technology, OoC cultivates cells on perfusable channels to construct in vitro organ models, enabling the simulation of organ-level functions under physiological and pathophysiological conditions. The superior simulation capabilities compared to traditional animal experiments and two-dimensional cell cultures, making OoC a valuable tool for in vitro research. Recently, the application of OoC has extended to the field of nephrology, where it replicates various functional units, including glomerulus-on-a-chip, proximal tubule-on-a-chip, distal tubule-on-a-chip, collecting duct-on-a-chip, and even the entire nephron-on-a-chip to precisely emulate the structure and function of nephrons. Moreover, researchers have integrated kidney models into multi-organ systems, establishing human body-on-a-chip platforms. In this review, the diverse functional kidney units-on-a-chip and their versatile applications are outlined, such as drug nephrotoxicity screening, renal development studies, and investigations into the pathophysiological mechanisms of kidney diseases. The inherent advantages and current limitations of these OoC models are also examined. Finally, the synergy of kidney-on-a-chip with other emerging biomedical technologies are explored, such as bioengineered kidney and bioprinting, and a new insight for chip-based renal replacement therapy in the future are prospected.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- *Correspondence: Fang-Fang He, ; Chun Zhang,
| |
Collapse
|