1
|
Castilla-Llorente C, Bonnin A, Lansiaux P, Tudesq JJ, Beuvon C, Fabreguettes JR, Pers YM, Pugnet G, Maria ATJ, Puyade M, Urbain F, Terriou L, Poindron V, Jachiet M, Cacciatore C, Lescoat A, Prata PH, Munia I, Madelaine I, Thieblemont C, Tarte K, Yakoub-Agha I, Magro L, Farge D, Marjanovic Z. [Prerequisite and organisation of health-care pathways for Cell and Gene therapies, using Mesenchymal Stromal Cells (MSC) or Chimeric Antigen Receptor (CAR) T cells, in patients with autoimmune systemic diseases]. Bull Cancer 2025; 112:S36-S53. [PMID: 39242251 DOI: 10.1016/j.bulcan.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 09/09/2024]
Abstract
First-line treatments of autoimmune systemic diseases (ARD) are based on the use of various types of immunosuppressive or immunomodulatory drugs, either alone or in association, according to standardized reference protocols. Prolonged use of these drugs in severe or refractory ARD is associated with high morbidity and increased mortality. Innovative cell therapies represent a new promising approach for patients with ARDs, with the recent clinical use of: a) mesenchymal stromal cells (MSCs), based on their immunomodulatory, antifibrotic and pro-angiogenic properties and b) Chimeric Antigen Receptors (CAR) T cell therapies T lymphocytes, where genetically modified expression of a chimeric antigen receptor (CAR-T cells). Therapeutic use of MSC or CAR-T cells, remains indications of exception in patients with severe ARDs resistant to prior standard therapies with new prerequisite and organisation of health-care pathways as compared to traditional drugs, not only for the Cell and Gene Therapy (CGT) product definition and delivery process, but also for the patient clinical management before and after administration of the CGT product. The aim of this workshop under the auspices of the French Speaking Society of Bone Marrow and Cell transplantation (SFGM-TC) working group on autoimmune diseases (MATHEC) is to describe: a) the prerequisite for French hospitals to set-up the specific health-care pathways for MSC or CART therapy in ARDs patients, in accordance with regulatory and safety needs to perform academic or industry sponsored clinical trials, and b) the care-pathway for ARD patients treated with CGT, highlighting the importance of working in tandem between the ARD and the CAR-T cell specialist all along the indication, procedures and follow-up of ARDs. Patient safety considerations are central to guidance on patient selection to be validated collectively at the multidisciplinary team meeting (MDTM) based on recent (less than 3 months) thorough patient evaluation. MSC and CAR-T procedural aspects and follow-up are then carried out within appropriately experienced and SFGM-TC accredited centres in close collaboration with the ADs specialist.
Collapse
Affiliation(s)
| | - Agnès Bonnin
- Service d'hématologie clinique et thérapie cellulaire, hôpital Saint-Antoine, AP-HP, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - Pauline Lansiaux
- Unité de médecine interne (UF04) : CRMR MATHEC, maladies auto-immunes et thérapie cellulaire, Centre de référence des maladies auto-immunes systémiques rares d'Île-de-France, AP-HP, hôpital St-Louis, 75010 Paris, France; URP3518, IRSL, recherche clinique en hématologie, immunologie et transplantation, université Paris Cité, 75010 Paris, France
| | - Jean-Jacques Tudesq
- Service d'hématologie clinique, CHU de Montpellier, université de Montpellier, 80, avenue Augustin-Fliche, 34295 Montpellier, France
| | - Clément Beuvon
- Service de médecine interne et maladies infectieuses, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - Jean-Roch Fabreguettes
- Agence générale des équipements et produits de santé (AGEPS), Assistance publique-Hôpitaux de Paris (AP-HP), 75005 Paris, France
| | - Yves-Marie Pers
- Inserm UMR 1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, 34298 Montpellier, France; Inserm, Clinical immunology and osteoarticular diseases Therapeutic Unit, Lapeyronie University Hospital, CHU Montpellier, IRMB, University of Montpellier, Montpellier, France
| | - Grégory Pugnet
- Service de médecine interne et immunologie clinique, CHU de Toulouse Rangueil, 2, rue Viguerie, 31059 Toulouse, France
| | - Alexandre Thibault Jacques Maria
- Médecine interne et immuno-oncologie (MedI20), CHU de Montpellier, hôpital Saint-Eloi, université de Montpellier, Institute for Regenerative Medicine and Biotherapy (IRMB), 80, avenue Augustin-Fliche, 34295 Montpellier, France
| | - Mathieu Puyade
- Service de médecine interne et maladies infectieuses, CIC-1402, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France; Université de Poitiers, 9, rue de la Milétrie, 86000 Poitiers, France
| | - Fanny Urbain
- Service de médecine interne 2, Sorbonne Université, Assistance publique-Hôpitaux de Paris (AP-HP), groupement hospitalier Pitié-Salpêtrière, Centre de référence pour le lupus, le syndrome des anti-phospholipides et autres maladies auto-immunes rares, Paris, France
| | - Louis Terriou
- Département de médecine interne et immunologie clinique, CHU de Lille, 59000 Lille, France; Centre de référence des maladies auto-immunes et auto-inflammatoires rares (CERAINO), 59000 Lille, France
| | - Vincent Poindron
- Service d'immunologie clinique et médecine interne, centre de références des maladies auto-immunes et systémiques rares (CNR RESO), hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - Marie Jachiet
- Service de dermatologie, hôpital Saint-Louis, Assistance publique-Hôpitaux de Paris, université Paris Cité, Paris, France
| | - Carlotta Cacciatore
- Unité de médecine interne (UF04) : CRMR MATHEC, maladies auto-immunes et thérapie cellulaire, Centre de référence des maladies auto-immunes systémiques rares d'Île-de-France, AP-HP, hôpital St-Louis, 75010 Paris, France; URP3518, IRSL, recherche clinique en hématologie, immunologie et transplantation, université Paris Cité, 75010 Paris, France
| | - Alain Lescoat
- Department of Internal Medicine & Clinical Immunology, Rennes University Hospital, 35000 Rennes, France
| | | | - Ingrid Munia
- Unité de médecine interne (UF04) : CRMR MATHEC, maladies auto-immunes et thérapie cellulaire, Centre de référence des maladies auto-immunes systémiques rares d'Île-de-France, AP-HP, hôpital St-Louis, 75010 Paris, France; URP3518, IRSL, recherche clinique en hématologie, immunologie et transplantation, université Paris Cité, 75010 Paris, France
| | - Isabelle Madelaine
- Pharmacie, hôpital Saint-Louis, AP-HP, Paris, France; Société française de pharmacie oncologique (SFPO), Paris, France
| | | | - Karin Tarte
- Équipe labellisée Ligue, UMR_ S 1236, Inserm, Université de Rennes, EFS Bretagne, Rennes, France
| | | | - Leonardo Magro
- Unité d'allogreffe, maladies du sang, CHRU, 59000 Lille, France
| | - Dominique Farge
- Service d'hématologie clinique et thérapie cellulaire, hôpital Saint-Antoine, AP-HP, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France; URP3518, IRSL, recherche clinique en hématologie, immunologie et transplantation, université Paris Cité, 75010 Paris, France; Department of Medicine, McGill University, H3A 1A1 Montreal, Canada
| | - Zora Marjanovic
- Service d'hématologie clinique et thérapie cellulaire, hôpital Saint-Antoine, AP-HP, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France.
| |
Collapse
|
2
|
Yuan Z, Zhang Y, He X, Wang X, Wang X, Ren S, Su J, Shen J, Li X, Xiao Z. Engineering mesenchymal stem cells for premature ovarian failure: overcoming challenges and innovating therapeutic strategies. Theranostics 2024; 14:6487-6515. [PMID: 39479455 PMCID: PMC11519806 DOI: 10.7150/thno.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of infertility in women, causing significant psychological and physical distress. Current therapeutic options are limited, necessitating the exploration of new treatments. Mesenchymal stem cells (MSCs), known for their remarkable homing and regenerative properties, have emerged as a promising intervention for POF. However, their clinical efficacy has been inconsistent. This paper aims to address these challenges by examining the cellular heterogeneity within MSC populations, which is crucial for identifying and selecting specific functional subpopulations for clinical applications. Understanding this heterogeneity can enhance therapeutic efficacy and ensure treatment stability. Additionally, this review comprehensively examines the literature on the effectiveness, safety, and ethical considerations of MSCs for ovarian regeneration, with a focus on preclinical and clinical trials. We also discuss potential strategies involving genetically and tissue-engineered MSCs. By integrating insights from these studies, we propose new directions for the design of targeted MSC treatments for POF and related disorders, potentially improving outcomes, addressing safety concerns, and expanding therapeutic options while ensuring ethical compliance.
Collapse
Affiliation(s)
- Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
- Luzhou People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Beauregard MA, Bedford GC, Brenner DA, Sanchez Solis LD, Nishiguchi T, Abhimanyu, Longlax SC, Mahata B, Veiseh O, Wenzel PL, DiNardo AR, Hilton IB, Diehl MR. Persistent tailoring of MSC activation through genetic priming. Mol Ther Methods Clin Dev 2024; 32:101316. [PMID: 39282077 PMCID: PMC11396059 DOI: 10.1016/j.omtm.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.
Collapse
Affiliation(s)
| | - Guy C. Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael R. Diehl
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Castilla-Casadiego DA, Morton LD, Loh DH, Pineda-Hernandez A, Chavda AP, Garcia F, Rosales AM. Peptoid-Cross-Linked Hydrogel Stiffness Modulates Human Mesenchymal Stromal Cell Immunoregulatory Potential in the Presence of Interferon-Gamma. Macromol Biosci 2024; 24:e2400111. [PMID: 38567626 PMCID: PMC11250919 DOI: 10.1002/mabi.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross-linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein-1, macrophage colony-stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN-γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN-γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN-γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN-γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN-γ.
Collapse
Affiliation(s)
| | - Logan D. Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Darren H. Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ajay P. Chavda
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Francis Garcia
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrianne M. Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Robb KP, Galipeau J, Shi Y, Schuster M, Martin I, Viswanathan S. Failure to launch commercially-approved mesenchymal stromal cell therapies: what's the path forward? Proceedings of the International Society for Cell & Gene Therapy (ISCT) Annual Meeting Roundtable held in May 2023, Palais des Congrès de Paris, Organized by the ISCT MSC Scientific Committee. Cytotherapy 2024; 26:413-417. [PMID: 37804284 DOI: 10.1016/j.jcyt.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 10/09/2023]
Abstract
Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.
Collapse
Affiliation(s)
- Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin in Madison, Madison, Wisconsin, USA; University of Wisconsin Carbone Comprehensive Cancer, University of Wisconsin in Madison, Madison, Wisconsin, USA
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; The Third Affiliated Hospital of Soochow University, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou Jiangsu, China
| | | | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Kyriakou S, Acosta S, El Maachi I, Rütten S, Jockenhoevel S. A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant. Polymers (Basel) 2023; 15:4332. [PMID: 37960012 PMCID: PMC10649717 DOI: 10.3390/polym15214332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA) construct which contains iPSC-CMs (induced pluripotent stem cell cardiomyocytes), HUVSMCs (human umbilical vein smooth muscle cells), and HUVECs (human umbilical vein endothelial cells) embedded in fibrin gel. The electrospun tube diameter was calculated, as well as the DEX release for 50 days for 2 different DEX concentrations. Furthermore, we investigated the influence of the polymer composition and concentration on the function of the fibrin gels by imaging and quantification of CD31, alpha-smooth muscle actin (αSMA), collagen I (col I), sarcomeric alpha actinin (SAA), and Connexin 43 (Cx43). We evaluated the cytotoxicity and cell proliferation of HUVECs and HUVSMCs cultivated in PLA and PLGA polymeric sheets. The immunohistochemistry results showed efficient iPSC-CM marker expression, while the HUVEC toxicity was higher than the respective HUVSMC value. In total, our study emphasizes the combination of fibrin gel and electrospinning in a functionalized construct, which includes three cell types and provides useful insights of the DEX release and cytotoxicity in a tissue engineering perspective.
Collapse
Affiliation(s)
- Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Sergio Acosta
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Ikram El Maachi
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Stephan Rütten
- Electron Microscopy Facility, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
- AMIBM—Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
7
|
Schrodt MV, Behan-Bush RM, Liszewski JN, Humpal-Pash ME, Boland LK, Scroggins SM, Santillan DA, Ankrum JA. Efferocytosis of viable versus heat-inactivated MSC induces human monocytes to distinct immunosuppressive phenotypes. Stem Cell Res Ther 2023; 14:206. [PMID: 37592321 PMCID: PMC10433682 DOI: 10.1186/s13287-023-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Immunomodulation by mesenchymal stromal cells (MSCs) can occur through trophic factor mechanisms, however, intravenously infused MSCs are rapidly cleared from the body yet a potent immunotherapeutic response is still observed. Recent work suggests that monocytes contribute to the clearance of MSCs via efferocytosis, the body's natural mechanism for clearing dead and dying cells in a non-inflammatory manner. This begs the questions of how variations in MSC quality affect monocyte phenotype and if viable MSCs are even needed to elicit an immunosuppressive response. METHODS Herein, we sought to dissect MSC's trophic mechanism from their efferocytic mechanisms and determine if the viability of MSCs prior to efferocytosis influences the resultant phenotype of monocytes. We cultured viable or heat-inactivated human umbilical cord MSCs with human peripheral blood mononuclear cells for 24 h and observed changes in monocyte surface marker expression and secretion profile. To isolate the effect of efferocytosis from MSC trophic factors, we used cell separation techniques to remove non-efferocytosed MSCs before challenging monocytes to suppress T-cells or respond to inflammatory stimuli. For all experiments, viable and heat-inactivated efferocytic-licensing of monocytes were compared to non-efferocytic-licensing control. RESULTS We found that monocytes efferocytose viable and heat-inactivated MSCs equally, but only viable MSC-licensed monocytes suppress activated T-cells and suppression occurred even after depletion of residual MSCs. This provides direct evidence that monocytes that efferocytose viable MSCs are immunosuppressive. Further characterization of monocytes after efferocytosis showed that uptake of viable-but not heat inactivated-MSC resulted in monocytes secreting IL-10 and producing kynurenine. When monocytes were challenged with LPS, IL-2, and IFN-γ to simulate sepsis, monocytes that had efferocytosed viable MSC had higher levels of IDO while monocytes that efferocytosed heat inactivated-MSCs produced the lowest levels of TNF-α. CONCLUSION Collectively, these studies show that the quality of MSCs efferocytosed by monocytes polarize monocytes toward distinctive immunosuppressive phenotypes and highlights the need to tailor MSC therapies for specific indications.
Collapse
Affiliation(s)
- Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Riley M Behan-Bush
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Jesse N Liszewski
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Madeleine E Humpal-Pash
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA
| | - Sabrina M Scroggins
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Sciences, Center for Immunology, Center for Clinical and Translational Science, University of Minnesota School of Medicine, Duluth, MN, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52245, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52245, USA.
- , 103 S. Capitol St., 5621 SC, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Furuhata Y, Egi E, Murakami T, Kato Y. A Method for Electroporation of Cre Recombinase Protein into Intact Nicotiana tabacum Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1631. [PMID: 37111855 PMCID: PMC10145609 DOI: 10.3390/plants12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The Cre/lox recombination system has become a powerful technology for gene function analysis in a broad spectrum of cell types and organisms. In our previous report, Cre protein had been successfully delivered into intact Arabidopsis thaliana cells using electroporation. To expand the feasibility of the method of protein electroporation to other plant cells, here we attempt the protein electroporation into tobacco-derived BY-2 cells, one of the most frequently used plant cell lines for industrial production. In this study, we successfully deliver Cre protein into BY-2 cells with intact cell walls by electroporation with low toxicity. Targeted loxP sequences in the BY-2 genome are recombined significantly. These results provide useful information for genome engineering in diverse plant cells possessing various types of cell walls.
Collapse
|
9
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
10
|
McCoy SS, Parker M, Gurevic I, Das R, Pennati A, Galipeau J. Ruxolitinib inhibits IFNγ-stimulated Sjögren's salivary gland MSC HLA-DR expression and chemokine-dependent T cell migration. Rheumatology (Oxford) 2022; 61:4207-4218. [PMID: 35218354 PMCID: PMC9536796 DOI: 10.1093/rheumatology/keac111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Sjögren's disease (SjD) is a systemic autoimmune disease characterized by focal lymphocytic infiltrate of salivary glands (SGs) and high SG IFNγ, both of which are associated with elevated lymphoma risk. IFNγ is also biologically relevant to mesenchymal stromal cells (MSCs), a SG resident cell with unique niche regenerative and immunoregulatory capacities. In contrast to the role of IFNγ in SjD, IFNγ promotes an anti-inflammatory MSC phenotype in other diseases. The objective of this study was to define the immunobiology of IFNγ-exposed SG-MSCs with and without the JAK1 & 2 inhibitor, ruxolitinib. METHODS SG-MSCs were isolated from SjD and controls human subjects. SG-MSCs were treated with 10 ng/ml IFNγ +/- 1000 nM ruxolitinib. Experimental methods included flow cytometry, RNA-sequencing, chemokine array, ELISA and transwell chemotaxis experiments. RESULTS We found that IFNγ promoted expression of SG-MSC immunomodulatory markers, including HLA-DR, and this expression was inhibited by ruxolitinib. We confirmed the differential expression of CXCL9, CXCL10, CXCL11, CCL2 and CCL7, initially identified with RNA sequencing. SG-MSCs promoted CD4+ T cell chemotaxis when pre-stimulated with IFNγ. Ruxolitinib blocks chemotaxis through inhibition of SG-MSC production of CXCL9, CXCL10 and CXCL11. CONCLUSIONS These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.
Collapse
Affiliation(s)
- Sara S McCoy
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Maxwell Parker
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Ilya Gurevic
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Rahul Das
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Salimiyan S, Mohammadi M, Aliakbari S, Kazemi R, Amini AA, Rahmani MR. Hydrocortisone Long-term Treatment Effect on Immunomodulatory Properties of Human Adipose-Derived Mesenchymal Stromal/Stem Cells. J Interferon Cytokine Res 2022; 42:72-81. [PMID: 35171704 DOI: 10.1089/jir.2021.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cortisol is secreted in prolonged stress and has therapeutic effects in inflammatory diseases. Considering the immunomodulatory effects of mesenchymal stem cells, here we investigated the effect of hydrocortisone (HC) long-term treatment on immunomodulatory properties of human adipose-derived mesenchymal stromal/stem cells (ASCs). Isolated ASCs from healthy subjects were treated with different HC concentrations for 14 days. The effect of HC-treated ASCs on the proliferative response of peripheral blood mononuclear cells (PBMCs) was evaluated in ASCs/2-way mixed leukocyte reaction coculture using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-assay. HC-treated ASCs were further divided into interferon gamma (IFN-γ) stimulated and unstimulated groups. Transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-6 levels were measured in culture supernatants by enzyme-linked immunosorbent assay. Relative expression of cyclooxygenase-2 (COX-2), hepatocyte growth factor, indoleamine dioxygenase, and programmed death-ligand 1 genes was assessed by real-time PCR. Levels of TGF-β1 and COX-2 expression were elevated in unstimulated ASCs, while exposure to high concentration of HC significantly increased TGF-β1 levels and reduced COX-2 expression. Unstimulated HC-5-μM-treated ASCs increased PBMC proliferation ratio on day 2 of coculture compared to the control group (P = 0.05). In IFN-γ stimulated condition, pretreatment with HC-5 μM resulted in a significantly increased IL-6 and significantly decreased COX-2 expression compared to the HC untreated control group. In conclusion, our results showed various alterations of ASC immunomodulatory related features as a result of long-term exposure of different concentrations of HC. It seems that HC at low concentration pushed the balance toward extended immune response in ASCs, while this observation wasn't persistent in ASCs treated with higher concentrations of HC.
Collapse
Affiliation(s)
- Samira Salimiyan
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Aliakbari
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Romina Kazemi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ali Amini
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
12
|
Schrodt MV, Ankrum JA. Chemomechanically antifibrotic stromal cells. Nat Biomed Eng 2022; 6:6-7. [PMID: 35064245 DOI: 10.1038/s41551-021-00840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA. .,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA.
| |
Collapse
|
13
|
Rawat S, Dadhwal V, Mohanty S. Dexamethasone priming enhances stemness and immunomodulatory property of tissue-specific human mesenchymal stem cells. BMC DEVELOPMENTAL BIOLOGY 2021; 21:16. [PMID: 34736395 PMCID: PMC8567134 DOI: 10.1186/s12861-021-00246-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/19/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human Mesenchymal Stem Cells (hMSCs) represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials. Belonging to a glucocorticoid family, Dexamethasone (Dex) is a powerful anti-inflammatory compound that is widely used as therapy in autoimmune disease conditions or allogeneic transplantation. However, minimal immunomodulatory effect of hMSCs may limit their therapeutic uses. Moreover, the effect of glucocorticoids on the immunomodulatory molecules or other regenerative properties of tissue-specific hMSCs remains unknown. METHOD Herein, we evaluated the in vitro effect of Dex at various dose concentrations and time intervals, 1000 ng/ml, 2000 ng/ml, 3000 ng/ml and 24 h, 48 h respectively, on the basic characteristics and immunomodulatory properties of Bone marrow derived MSC (BM-MSCs), Adipose tissue derived MSCs (AD-MSCs), Dental Pulp derived MSC (DP-MSCs) and Umbilical cord derived MSCs (UC-MSCs). RESULTS The present study indicated that the concentration of Dex did not ramify the cellular morphology nor showed cytotoxicity as well as conserved the basic characteristics of tissue specific hMSCs including cell proliferation and surface marker profiling. However, quite interestingly it was observed that the stemness markers (Oct-4, Sox-2, Nanog and Klf-4) showed a significant upregulation in DP-MSCs and AD-MSCs followed by UC-MSCs and BM-MSCs. Additionally, immunomodulatory molecules, Prostaglandin E-2 (PGE-2), Indoleamine- 2,3-dioxygenase (IDO) and Human Leukocyte Antigen-G (HLA-G) were seen to be upregulated in a dose-dependent manner. Moreover, there was a differential response of tissue specific hMSCs after pre-conditioning with Dex during mixed lymphocyte reaction, wherein UC-MSCs and DP-MSCs showed enhanced immunosuppression as compared to AD-MSCs and BM-MSCs, thereby proving to be a better candidate for therapeutic applications in immune-related diseases. CONCLUSION Dex preconditioning improved the hMSCs immunomodulatory property and may have reduced the challenge associated with minimal potency and strengthen their therapeutic efficacy. Preconditioning of tissue specific hMSCs with dexamethasone biomanufacturers the enhanced potential hMSCs with better stemness and immunomodulatory properties for future therapeutics.
Collapse
Affiliation(s)
- Sonali Rawat
- Stem Cell Facility, All India Institute of Medical Science, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Science, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Science, New Delhi, India.
| |
Collapse
|
14
|
Li A, Guo F, Pan Q, Chen S, Chen J, Liu HF, Pan Q. Mesenchymal Stem Cell Therapy: Hope for Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 12:728190. [PMID: 34659214 PMCID: PMC8516390 DOI: 10.3389/fimmu.2021.728190] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Although previous studies have demonstrated that SLE is related to the imbalance of cells in the immune system, including B cells, T cells, and dendritic cells, etc., the mechanisms underlying SLE pathogenesis remain unclear. Therefore, effective and low side-effect therapies for SLE are lacking. Recently, mesenchymal stem cell (MSC) therapy for autoimmune diseases, particularly SLE, has gained increasing attention. This therapy can improve the signs and symptoms of refractory SLE by promoting the proliferation of Th2 and Treg cells and inhibiting the activity of Th1, Th17, and B cells, etc. However, MSC therapy is also reported ineffective in some patients with SLE, which may be related to MSC- or patient-derived factors. Therefore, the therapeutic effects of MSCs should be further confirmed. This review summarizes the status of MSC therapy in refractory SLE treatment and potential reasons for the ineffectiveness of MSC therapy from three perspectives. We propose various MSC modification methods that may be beneficial in enhancing the immunosuppression of MSCs in SLE. However, their safety and protective effects in patients with SLE still need to be confirmed by further experimental and clinical evidence.
Collapse
Affiliation(s)
- Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Affiliation(s)
- Zachary W Wagoner
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA. .,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA. .,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Hong YT, Teo JY, Jeon H, Kong H. Shear-Resistant, Biological Tethering of Nanostimulators for Enhanced Therapeutic Cell Paracrine Factor Secretion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17276-17288. [PMID: 33830733 PMCID: PMC10440850 DOI: 10.1021/acsami.1c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesenchymal stromal cells (MSCs) secreting multiple growth factors and immunomodulatory cytokines are promising for regenerative medicine. To further enhance their secretory activity, efforts have emerged to tether nanosized carriers of secretory stimuli, named nanostimulators, to the MSC surface by forming nonchemical bonds. Despite some successes, there is a great need to improve the retention of nanostimulators during transport through a syringe needle, where high shear stress exerted on the cell surface separates them. To this end, we hypothesize that poly(lactic-co-glycolic acid)-block-hyaluronic acid (PLGA-HA) conjugated with integrin-binding RGD peptides, denoted PLGA-HA-RGD, can form nanostimulators that remain on the cell surface stably during the injection. The resulting HA-CD44 and RGD-integrin bonds would synergistically increase the adhesion strength of nanostimulators. Interestingly, nanostimulators prepared with PLGA-HA-RGD show 3- to 6-fold higher retention than those made with PLGA-HA. Therefore, the PLGA-HA-RGD nanostimulators induced MSCs to secrete 1.5-fold higher vascular endothelial growth factors and a 1.2-fold higher tissue inhibitor of matrix metalloproteinase-1 as compared to PLGA-HA nanostimulators. Consequently, MSCs tethered with PLGA-HA-RGD nanostimulators served to stimulate endothelial cell activities to form a blood vessel-like endothelial lumen with increased length and number of junctions. The nanostimulator design strategy would also be broadly applicable to regulate, protect, and home a broad array of therapeutic or immune cells by tethering carriers with bioactive molecules of interest.
Collapse
Affiliation(s)
- Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jye Yng Teo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Corbett JM, Hawthorne I, Dunbar H, Coulter I, Chonghaile MN, Flynn CM, English K. Cyclosporine A and IFNγ licencing enhances human mesenchymal stromal cell potency in a humanised mouse model of acute graft versus host disease. Stem Cell Res Ther 2021; 12:238. [PMID: 33853687 PMCID: PMC8048195 DOI: 10.1186/s13287-021-02309-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Immunosuppressive ability in human MSC donors has been shown to be variable and may be a limiting factor in MSC therapeutic efficacy in vivo. The importance of cytokine activation of mesenchymal stromal cells (MSCs) to facilitate their immunosuppressive function is well established. This study sought to further understand the interactions between MSCs and the commonly used calcineurin inhibitor cyclosporine A (CsA). The existing literature regarding approaches that use MSCs and cyclosporine are conflicting regarding the effect of CsA on MSC potency and function. Here, we clearly demonstrate that when added at the same time as MSCs, CsA negatively affects MSC suppression of T cell proliferation. However, licencing MSCs with IFNγ before addition of CsA protects MSCs from this negative effect. Notably, adding CsA to MSCs after IFNγ pre-stimulation enhances MSC production of IDO. Mechanistically, we identified that CsA reduces SOCS1 expression to facilitate enhanced IDO production in IFNγ pre-stimulated MSCs. Importantly, CsA exposure to IFNγ pre-stimulated MSC before administration, significantly enhanced the potency of MSCs in a human relevant humanised mouse model of acute Graft versus Host Disease. In summary, this study identified a novel licencing strategy to enhance MSC potency in vitro and in vivo.
Collapse
Affiliation(s)
- Jennifer M Corbett
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian Hawthorne
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ivan Coulter
- Sigmoid Pharma Ltd., Eden BioPharma Limited, NovaUCD, Belfield Innovation Park, University College Dublin, Dublin 4, Ireland
| | | | | | - Karen English
- Cellular Immunology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
18
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|
19
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 396] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
20
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Kyurkchiev D, Yoneva T, Yordanova A, Kurteva E, Vasilev G, Zdravkova Y, Sheytanov I, Rashkov R, Ivanova-Todorova E. Alterations of serum levels of plasminogen, TNF-α, and IDO in granulomatosis with polyangiitis patients. Vascular 2021; 29:874-882. [PMID: 33427113 DOI: 10.1177/1708538120986305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Granulomatosis with polyangiitis (GPA) is a representative of vasculitides associated with anti-neutrophil cytoplasmic autoantibodies. "Classical" antibodies directed against proteinase 3 are involved in the pathogenesis and are part of the GPA diagnosis at the same time. Along with them, however, antibodies against Lysosomal-Associated Membrane Protein-2 (LAMP-2) and antibodies directed against plasminogen have been described in GPA.Objectives and methodology: We performed a cross-sectional study enrolling 34 patients diagnosed with GPA. Our study was aimed at looking for correlations between serum levels of LAMP-2 and plasminogen and the clinical manifestations of the GPA. Furthermore, we examined serum levels of tumor necrosis factor-alpha (TNF-α) and its associated indoleamine-pyrrole 2,3-dioxygenase (IDO), as well as we looked for a correlation between these cytokines and the clinical manifestations of GPA. RESULTS The results showed that in GPA, serum plasminogen levels were negatively associated with renal involvement (receiver operating characteristic (ROC) area under the curve (AUC) of 0.78) (95% CI 0.53-0.91), p = 0.035, and the extent of proteinuria, Spearman's Rho = -0.4, p = 0.015. Increased levels of TNF-α and IDO correlated with disease activity, Spearman's Rho =0.62, p = 0.001 and Spearman's Rho = 0.4, p = 0.022, respectively, whereas only TNF-α was increased in severe forms of GPA with lung involvement (ROC AUC of 0.8) (95% CI 0.66-0.94), p = 0.005. CONCLUSIONS In this study, we demonstrate the alteration of soluble factors, which play an important role in the pathogenesis of GPA and their relationship with the clinical manifestations of the disease. Our main results confirm the associations of increased secretory TNF-α and some clinical manifestations, and we describe for the first time decreased serum plasminogen levels and their association with renal involvement.
Collapse
Affiliation(s)
- Dobroslav Kyurkchiev
- Laboratory of Clinical immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Tsvetelina Yoneva
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Adelina Yordanova
- Laboratory of Clinical immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Ekaterina Kurteva
- Laboratory of Clinical immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Vasilev
- Laboratory of Clinical immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Yana Zdravkova
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Sheytanov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Rasho Rashkov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- Laboratory of Clinical immunology, University Hospital St. Ivan Rilski, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
22
|
Levy O, Rothhammer V, Mascanfroni I, Tong Z, Kuai R, De Biasio M, Wang Q, Majid T, Perrault C, Yeste A, Kenison JE, Safaee H, Musabeyezu J, Heinelt M, Milton Y, Kuang H, Lan H, Siders W, Multon MC, Rothblatt J, Massadeh S, Alaamery M, Alhasan AH, Quintana FJ, Karp JM. A cell-based drug delivery platform for treating central nervous system inflammation. J Mol Med (Berl) 2021; 99:663-671. [PMID: 33398468 DOI: 10.1007/s00109-020-02003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.
Collapse
Affiliation(s)
- Oren Levy
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Veit Rothhammer
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Mascanfroni
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhixiang Tong
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rui Kuai
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael De Biasio
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Qingping Wang
- Department of Drug Metabolism and Pharmacokinetics, Sanofi R&D, Waltham, MA, USA
| | - Tahir Majid
- Global Research Program and Portfolio Management, Sanofi-Genzyme, Cambridge, MA, USA
| | - Christelle Perrault
- Sanofi R&D, In Vitro Pharmacology, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | - Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Helia Safaee
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Juliet Musabeyezu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Martina Heinelt
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Yuka Milton
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Heidi Kuang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Haoyue Lan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - William Siders
- Genzyme R&D, Neuroimmunology Research, Framingham, MA, USA
| | - Marie-Christine Multon
- Sanofi R&D, Translational Sciences, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | | | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ali H Alhasan
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
23
|
Adipose Tissue-Derived Stromal Cells Induce a Highly Trophic Environment While Reducing Maturation of Monocyte-Derived Dendritic Cells. Stem Cells Int 2020; 2020:8868909. [PMID: 33163080 PMCID: PMC7607274 DOI: 10.1155/2020/8868909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic cell-based therapies using adipose tissue-derived stromal cells (ASCs) offer an off-the-shelf alternative to autologous therapy. An underlying assumption is that ASC can modulate the immune response of the recipient. However, in vitro models are required to explore and identify cell interactions and mechanisms of action, to ensure sufficient and sustained effects, and to document these. In this study, we shed light on the effect of ASC manufactured for clinical use on monocyte-derived dendritic cells and an inflammatory microenvironment. ASCs were isolated from healthy voluntary donors, expanded using a human platelet lysate in bioreactors, and cryopreserved as per clinical use. Monocyte-derived dendritic cells were generated by isolation of monocytes and differentiation with GM-CSF and IL-4. Dendritic cells were cocultured with different ratios of ASC and matured with LPS and IFN-γ. Dexamethasone was included as an immunosuppressive control. Dendritic cells were analyzed by flow cytometry for CD11c, CD40, CD80, CD83, CD86, PD-L1, and HLA-DR, and supernatants were analyzed for FGF2, HGF, IL-10, IL-12p70, LIF, MIF, PDGF, PlGF, and IDO. Reduced expression of maturation markers was observed on ASC-treated dendritic cells, while high levels of PD-L1 were maintained. Interestingly, the expression of CD83 was elevated. Escalating ratios of ASC did not affect the concentration of IL-10 considerably, whereas the presence of IL-12 was reduced in a dose-dependent manner. Besides offsetting the IL-12/IL-10 balance, the concentrations of IDO and MIF were elevated in cocultures. Concentrations of FGF2, HGF, LIF, and PIGF were high in ASC cocultures, whereas PDGF was depleted. In a robust coculture model, the addition of ASC to dendritic cells inhibited the dendritic maturation substantially, while inducing a less inflammatory and more tolerogenic milieu. Despite the exposure to dendritic cells and inflammatory stimuli, ASC resulted in supernatants with trophic factors relevant for regeneration. Thus, ASC can perform immunomodulation while providing a regenerative environment.
Collapse
|
24
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 420] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
25
|
Owen A, Newsome PN. Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation? Front Immunol 2020; 11:1306. [PMID: 32636850 PMCID: PMC7318292 DOI: 10.3389/fimmu.2020.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
In response to the global burden of liver disease there has been a commensurate increase in the demand for liver transplantation. However, due to a paucity of donor organs many centers have moved toward the routine use of marginal allografts, which can be associated with a greater risk of complications and poorer clinical outcomes. Mesenchymal stromal cells (MSC) are a multi-potent progenitor cell population that have been utilized to modulate aberrant immune responses in acute and chronic inflammatory conditions. MSC exert an immunomodulatory effect on innate and adaptive immune systems through the release of both paracrine soluble factors and extracellular vesicles. Through these routes MSC can switch the regulatory function of the immune system through effects on macrophages and T regulatory cells enabling a switch of phenotype from injury to restoration. A key benefit seems to be their ability to tailor their response to the inflammatory environment without compromising the host ability to fight infection. With over 200 clinical trials registered to examine MSC therapy in liver disease and an increasing number of trials of MSC therapy in solid organ transplant recipients, there is increasing consideration for their use in liver transplantation. In this review we critically appraise the potential role of MSC therapy in the context of liver transplantation, including their ability to modulate reperfusion injury, their role in the reduction of medium term complications in the biliary tree and their potential to enhance tolerance in transplanted organs.
Collapse
Affiliation(s)
- Andrew Owen
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
26
|
Boyt DT, Boland LK, Burand AJ, Brown AJ, Ankrum JA. Dose and duration of interferon γ pre-licensing interact with donor characteristics to influence the expression and function of indoleamine-2,3-dioxygenase in mesenchymal stromal cells. J R Soc Interface 2020; 17:20190815. [PMID: 32546114 DOI: 10.1098/rsif.2019.0815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human mesenchymal stromal cells (MSCs) are a leading cell therapy candidate for the treatment of immune and inflammatory diseases due to their potent regulation of immune cells. MSC expression of indoleamine-2,3-dioxygenase (IDO) upon interferon γ (IFNγ) exposure has been proposed as both a sentinel marker and key mediator of MSC immunomodulatory potency. Rather than wait for in vivo exposure to cytokines, MSCs can be pre-licensed during manufacturing to enhance IDO expression. In this study, we systematically examine the relative role that the dose of IFNγ, the duration of pre-licensing and the donor of origin play in dictating MSC production of functional IDO. We find that across three human MSC donors, MSCs increase their expression of IDO in response to both increased dose of IFNγ and duration of pre-licensing. However, with extended pre-licensing, the expression of IDO no longer predicts MSCs ability to suppress activated peripheral blood mononuclear cells. In addition, pre-licensing dose and duration are revealed to be minor modifiers of MSCs inherent potency, and thus cannot be manipulated to boost poor donors to the levels of high-performing donors. Thus, the dose and duration of pre-licensing should be tailored to optimize performance of specific donors and an emphasis on donor selection is needed to realize significant benefits of pre-licensing.
Collapse
Affiliation(s)
- Devlin T Boyt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Anthony J Burand
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| | - Alex J Brown
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Denver, CO, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Leong J, Hong YT, Wu YF, Ko E, Dvoretskiy S, Teo JY, Kim BS, Kim K, Jeon H, Boppart M, Yang YY, Kong H. Surface Tethering of Inflammation-Modulatory Nanostimulators to Stem Cells for Ischemic Muscle Repair. ACS NANO 2020; 14:5298-5313. [PMID: 32243129 PMCID: PMC8274413 DOI: 10.1021/acsnano.9b04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.
Collapse
Affiliation(s)
- Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yu-Tong Hong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yu-Fu Wu
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jye Yng Teo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Byoung Soo Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyeongsoo Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
29
|
Burand AJ, Di L, Boland LK, Boyt DT, Schrodt MV, Santillan DA, Ankrum JA. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol 2020; 11:143. [PMID: 32158443 PMCID: PMC7052295 DOI: 10.3389/fimmu.2020.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are administered locally to treat sites of inflammation. Local delivery is known to cause MSCs to aggregate into “spheroids,” which alters gene expression and phenotype. While adherent MSCs are highly efficient in their inhibition of T cells, whether or not this property is altered upon MSC aggregation has not been thoroughly determined. In this study, we discovered that aggregation of MSCs into spheroids causes them to lose their T cell-suppressive abilities. Interestingly, adding budesonide, a topical glucocorticoid steroid, alongside spheroids partially restored MSC suppression of T cell proliferation. Through a series of inhibition and add-back studies, we determined budesonide acts synergistically with spheroid MSC-produced PGE2 to suppress T cell proliferation through the PGE2 receptors EP2 and EP4. These findings highlight critical differences between adherent and spheroid MSC interactions with human immune cells that have significant translational consequences. In addition, we uncovered a mechanism through which spheroid MSC suppression of T cells can be partly restored. By understanding the phenotypic changes that occur upon MSC aggregation and the impact of MSC drug interactions, improved immunosuppressive MSC therapies for localized delivery can be designed.
Collapse
Affiliation(s)
- Anthony J Burand
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Moghadam M, Tokhanbigli S, Baghaei K, Farivar S, Asadzadeh Aghdaei H, Zali MR. Gene expression profile of immunoregulatory cytokines secreted from bone marrow and adipose derived human mesenchymal stem cells in early and late passages. Mol Biol Rep 2020; 47:1723-1732. [PMID: 32040706 DOI: 10.1007/s11033-020-05264-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/18/2020] [Indexed: 01/01/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have therapeutic potential in a variety of diseases; however, the safety and efficacy of their use remain ambiguous. Clinical applications of MSCs are under intensive investigation due to their immunomodulatory features and lack of immune reactivity. Therefore, having a clear perspective on the exact mechanisms underlying the regulation of cytokine secretion in different microenvironments seems crucially important.In the current study, samples from human bone marrow and adipose were collected, and peripheral blood mononuclear cells (PBMCs) were isolated and cultured in conventional medium. After MSC expansion, the cells from passage 3 (P3) and passage 9 (P9) were utilized to identify MSC cell surface markers and their differentiation capacity. The P3, P5, P7, and P9 cells were used for RNA extraction to qualify the expression of the main immunomodulatory cytokines IDO, VCAM-1, TGF-β, IL-6, IL-10, and PGE2 at mRNA levels. The results indicate that VCAM-1 expression in the subcultures was reduced in bone marrow-derived MSCs. After an increase in P5, P7, and P9, IL-6 expression was reduced. In adipose-derived MSCs, the mRNA levels of IL-10 in higher passages were decreased compared with P3; other studied cytokines had no significant changes in their expression levels in either bone marrow or adipose-derived MSCs. Based on these results, it can be concluded that a suitable source for MSCs in cell therapy with stable expression of main cytokines, even in higher subcultures, appears to be adipose-derived MSCs with the exception of IL-10 secretion.
Collapse
Affiliation(s)
- Maryam Moghadam
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
32
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
33
|
Boland LK, Burand AJ, Boyt DT, Dobroski H, Di L, Liszewski JN, Schrodt MV, Frazer MK, Santillan DA, Ankrum JA. Nature vs. Nurture: Defining the Effects of Mesenchymal Stromal Cell Isolation and Culture Conditions on Resiliency to Palmitate Challenge. Front Immunol 2019; 10:1080. [PMID: 31134100 PMCID: PMC6523025 DOI: 10.3389/fimmu.2019.01080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
As MSC products move from early development to clinical translation, culture conditions shift from xeno- to xeno-free systems. However, the impact of isolation and culture-expansion methods on the long-term resiliency of MSCs within challenging transplant environments is not fully understood. Recent work in our lab has shown that palmitate, a saturated fatty acid elevated in the serum of patients with obesity, causes MSCs to convert from an immunosuppressive to an immunostimulatory state at moderate to high physiological levels. This demonstrated that metabolically-diseased environments, like obesity, alter the immunomodulatory efficacy of healthy donor MSCs. In addition, it highlighted the need to test MSC efficacy not only in ideal conditions, but within challenging metabolic environments. To determine how the choice of xeno- vs. xeno-free media during isolation and expansion would affect future immunosuppressive function, umbilical cord explants from seven donors were subdivided and cultured within xeno- (fetal bovine serum, FBS) or xeno-free (human platelet lysate, PLT) medias, creating 14 distinct MSC preparations. After isolation and primary expansion, umbilical cord MSCs (ucMSC) were evaluated according to the ISCT minimal criteria for MSCs. Following baseline characterization, ucMSC were exposed to physiological doses of palmitate and analyzed for metabolic health, apoptotic induction, and immunomodulatory potency in co-cultures with stimulated human peripheral blood mononuclear cells. The paired experimental design (each ucMSC donor grown in two distinct culture environments) allowed us to delineate the contribution of inherent (nature) vs. environmentally-driven (nurture) donor characteristics to the phenotypic response of ucMSC during palmitate exposure. Culturing MSCs in PLT-media led to more consistent growth characteristics during the isolation and expansion for all donors, resulting in faster doubling times and higher cell yields compared to FBS. Upon palmitate challenge, PLT-ucMSCs showed a higher susceptibility to palmitate-induced metabolic disturbance, but less susceptibility to palmitate-induced apoptosis. Most striking however, was that the PLT-ucMSCs resisted the conversion to an immunostimulatory phenotype better than their FBS counterparts. Interestingly, examining MSC suppression of PBMC proliferation at physiologic doses of palmitate magnified the differences between donors, highlighting the utility of evaluating MSC products in stress-based assays that reflect the challenges MSCs may encounter post-transplantation.
Collapse
Affiliation(s)
- Lauren K Boland
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Hannah Dobroski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Jesse N Liszewski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Maria K Frazer
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Center for Immunology and Immune Based Diseases, Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
34
|
Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplant 2019; 27:31-44. [PMID: 29562786 PMCID: PMC6434482 DOI: 10.1177/0963689717742819] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.
Collapse
Affiliation(s)
- Marta Magatti
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Silini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy.,2 Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
35
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
36
|
Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to Aerobic Glycolysis Sustains Immunosuppression of Human Mesenchymal Stem Cells. Stem Cells Transl Med 2018; 8:93-106. [PMID: 30272389 PMCID: PMC6312448 DOI: 10.1002/sctm.18-0070] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) promote endogenous tissue repair in part by coordinating multiple components of the host immune system in response to environmental stimuli. Recent studies have shown that hMSCs are metabolically heterogeneous and actively reconfigure metabolism to support the biochemical demands of tissue repair. However, how hMSCs regulate their energy metabolism to support their immunomodulatory properties is largely unknown. This study investigates hMSC metabolic reconfiguration during immune activation and provides evidence that the hMSC metabolic state significantly influences their immunomodulatory properties. Specifically, hMSC immune polarization by interferon‐gamma (IFN‐γ) treatment leads to remodeling of hMSC metabolic pathways toward glycolysis, which is required to sustain the secretion of immunosuppressive factors. IFN‐γ exposure also inhibited mitochondrial electron transport activity, and the accumulation of mitochondrial reactive oxygen species plays an important signaling role in this metabolic reconfiguration. The results also show that activation of the Akt/mTOR signaling pathway is required for metabolic reconfiguration during immune polarization and that interruption of these metabolic changes alters the immune response in IFN‐γ licensed hMSCs. The results demonstrate the potential of altering hMSC metabolism to enhance their immunomodulatory properties and therapeutic efficacy in various diseases. Stem Cells Translational Medicine2019;8:93–106
Collapse
Affiliation(s)
- Yijun Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida, USA
| | - Nathalie Muñoz
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
37
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Song X, Zhang Y, Zhang L, Song W, Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget 2018; 9:11572-11580. [PMID: 29545920 PMCID: PMC5837754 DOI: 10.18632/oncotarget.24098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-associated metabolic reprogramming modulates the biological functions of many immune and non-immune cells, and affects immune response types and intensities. Adenosine and indoleamine 2,3-dioxygenase (IDO) are known immunosuppressors, and adenosine is a hypoxia-associated product. We investigated the impact of hypoxia on IDO production in dendritic cells (DCs). We found that hypoxia (1% O2) enhances IDO production in DCs, and this increase was dependent on the adenosine A3 receptor (A3R), but not A2aR or A2bR. A3R blockade during hypoxia inhibited IDO production in DCs, while A2bR blockade further enhanced IDO production. Activating A2aR had no effect on IDO production. Hypoxia (1% O2) upregulated CD86, CD274, HLA-DR, and CD54, and downregulated CD40 and CD83 in DCs as compared to normoxia (21% O2). IDO inhibition in hypoxia-conditioned DCs reversed MHC-II, CD86, CD54, and CD274 upregulation, but further downregulated CD40 and CD83. Our findings offer guidance for pharmacological administration of adenosine receptor agonists or antagonists with the goal of achieving immune tolerance or controlling insulin resistance and other metabolic disorders via IDO modulation.
Collapse
Affiliation(s)
- Xiang Song
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li Zhang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Wengang Song
- Institute of Immunology, Taishan Medical University, Tai'an 271000, China
| | - Lixin Shi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
39
|
IFN-γ and TNF-α Pre-licensing Protects Mesenchymal Stromal Cells from the Pro-inflammatory Effects of Palmitate. Mol Ther 2017; 26:860-873. [PMID: 29352647 DOI: 10.1016/j.ymthe.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stromal cell (MSC) therapy for the treatment of type 2 diabetes (T2D) and T2D complications is promising; however, the investigation of MSC function in the setting of T2D has not been thoroughly explored. In our current study, we investigated the phenotype and function of MSCs in a simulated in vitro T2D environment. We show that palmitate, but not glucose, exposure impairs MSC metabolic activity with moderate increases in apoptosis, while drastically affecting proliferation and morphology. In co-culture with peripheral blood mononuclear cells (PBMCs), we found that MSCs not only lose their normal suppressive ability in high levels of palmitate, but actively support and enhance inflammation, resulting in elevated PBMC proliferation and pro-inflammatory cytokine release. The pro-inflammatory effect of MSCs in palmitate was partially reversed via palmitate removal and fully reversed through pre-licensing MSCs with interferon-gamma and tumor necrosis factor alpha. Thus, palmitate, a specific metabolic factor enriched within the T2D environment, is a potent modulator of MSC immunosuppressive function, which may in part explain the depressed potency observed in MSCs isolated from T2D patients. Importantly, we have also identified a robust and durable pre-licensing regimen that protects MSC immunosuppressive function in the setting of T2D.
Collapse
|
40
|
Javorkova E, Vackova J, Hajkova M, Hermankova B, Zajicova A, Holan V, Krulova M. The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomed Pharmacother 2017; 97:402-411. [PMID: 29091890 DOI: 10.1016/j.biopha.2017.10.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive drugs are used to suppress graft rejection after transplantation and for the treatment of various diseases. The main limitations of their use in clinical settings are severe side effects, therefore alternative approaches are desirable. In this respect, mesenchymal stem cells (MSCs) possess a regenerative and immunomodulatory capacity that has generated considerable interest for their use in cell-based therapy. Currently, MSCs are tested in many clinical trials, including the treatment of diseases which require simultaneous immunosuppressive treatment. Since the molecular targets of immunosuppressive drugs are also present in MSCs, we investigated whether immunosuppressive drugs interact with the activity of MSCs. Human MSCs isolated from the bone marrow (BM) or adipose tissue (AT) were cultured in the presence of clinical doses of five widely used immunosuppressive drugs (cyclosporine A, mycophenolate mofetil, rapamycin, prednisone and dexamethasone), and the influence of these drugs on several factors related to the immunosuppressive properties of MSCs, including the expression of immunomodulatory enzymes, various growth factors, cytokines, chemokines, adhesion molecules and proapoptotic ligands, was assessed. Glucocorticoids, especially dexamethasone, showed the most prominent effects on both types of MSCs and suppressed the expression of the majority of the factors that were tested. A significant increase of hepatocyte growth factor production in AT-MSCs and of indoleamine 2,3-dioxygenase expression in both types of MSCs were the only exceptions. In conclusion, clinically relevant doses of inhibitors of calcineurin, mTOR and IMPDH and glucocorticoids interfere with MSC functions, but do not restrain their immunosuppressive properties. These findings should be taken into account before preparing immunosuppressive strategies combining the use of immunosuppressive drugs and MSCs.
Collapse
Affiliation(s)
- Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Julie Vackova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic.
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Barbora Hermankova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Alena Zajicova
- Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
41
|
Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 2017; 29:201-207. [PMID: 27941390 DOI: 10.1097/bor.0000000000000370] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Mesenchymal stromal/stem cells (MSCs) have potent anti-inflammatory and immunomodulatory properties, in addition to their ability to form cartilage and bone. The purpose of this review is to highlight recent developments and current knowledge gaps in our understanding of the protective effects of MSCs against inflammatory arthritis, and to discuss their clinical exploitation for the treatment of rheumatoid arthritis (RA). RECENT FINDINGS The weight of evidence for protective mechanisms of exogenously administered MSCs is on immunomodulatory effects, including inhibition of dendritic cell maturation, polarization of macrophages to an anti-inflammatory phenotype, and activation of regulatory T cells, thereby dampening inflammation and preventing joint damage. Evidence for direct effects on tissue repair is scant. Recent studies have identified MSC subsets in vivo and an important question is whether MSCs in their native tissues have similar immunoregulatory functions. Recent proof-of-concept clinical studies have shown a satisfactory safety profile of allogeneic MSC therapy in RA patients with promising trends for clinical efficacy. SUMMARY Allogeneic MSCs could be effective in RA. Larger, multicentre clinical studies are needed to provide robust evidence, and MSC treatment at early stages of RA should be explored to 'reset' the immune system.
Collapse
|
42
|
Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS, Olson SD. Prostaglandin E2 Indicates Therapeutic Efficacy of Mesenchymal Stem Cells in Experimental Traumatic Brain Injury. Stem Cells 2017; 35:1416-1430. [DOI: 10.1002/stem.2603] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel J. Kota
- Children-s Health Research Center; Sanford Research; Sioux Falls South Dakota USA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Naama Toledano-Furman
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Deepa Bhattarai
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Qingzheng Chen
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Bryan DiCarlo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Philippa Smith
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Fabio Triolo
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Pamela L. Wenzel
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Charles S. Cox
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| | - Scott D. Olson
- Department of Pediatric Surgery; University of Texas Health Science Center at Houston; Houston Texas USA
| |
Collapse
|
44
|
Burand AJ, Gramlich OW, Brown AJ, Ankrum JA. Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent. Stem Cells 2016; 35:1437-1439. [PMID: 27758056 DOI: 10.1002/stem.2528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Tailoring MSCs to fit the disease. Fresh, cryopreserved and, prelicensed cryopreserved MSC are all being explored to treat numerous diseases, but all are not suitable to treat all conditions. injury. "*" denotes preferred therapeutic strategy when both fresh MSC and cryo-MSC have shown utility in treating the disease but one is more efficacious or logistically suitable. ABBREVIATIONS CLI, critical limb ischemia; GvHD. graft versus host disease; I/R, ischemia reperfusion (I/R); OI, osteogenesis imperfecta.
Collapse
Affiliation(s)
- Anthony J Burand
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| | - Alex J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - James A Ankrum
- Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
45
|
The effects of culture conditions on the functionality of efficiently obtained mesenchymal stromal cells from human cord blood. Cytotherapy 2016; 18:423-37. [PMID: 26857232 DOI: 10.1016/j.jcyt.2015.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/02/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Cord blood (CB) is an attractive source of mesenchymal stromal cells (MSCs) because of its abundant availability and ease of collection. However, the success rate of generating CB-MSCs is low. In this study, our aim was to demonstrate the efficiency of our previously described method to obtain MSCs from CB and further characterize them and to study the effects of different culture conditions on MSCs. METHODS CB-MSC cultures were established in low oxygen (3%) conditions on fibronectin in 10% fetal bovine serum containing culture medium supplemented with combinations of growth factors. Cells were characterized for their adipogenic, osteogenic and chondrogenic differentiation capacity; phenotype; and HOX gene expression profile. The functionality of the cells cultured in different media was tested in vitro with angiogenesis and T-cell proliferation assays. RESULTS We demonstrate 87% efficacy in generating MSCs from CB. The established cells had typical MSC characteristics with reduced adipogenic differentiation potential and a unique HOX gene fingerprint. Growth factor-rich medium and a 3% oxygen condition enhanced cell proliferation; however, the growth factor-rich medium had a negative effect on the expression of CD90. Dexamethasone-containing medium improved the capacity of the cells to suppress T-cell proliferation, whereas the cells grown without dexamethasone were more able to support angiogenesis. CONCLUSIONS Our results demonstrate that the composition of expansion medium is critical for the functionality of MSCs and should always be appropriately defined for each purpose.
Collapse
|
46
|
Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem Cells Int 2016; 2016:3924858. [PMID: 27822228 PMCID: PMC5086389 DOI: 10.1155/2016/3924858] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted the attention of researchers and clinicians for their ability to differentiate into a number of cell types, participate in tissue regeneration, and repair the damaged tissues by producing various growth factors and cytokines, as well as their unique immunoprivilege in alloreactive hosts. The immunomodulatory functions of exogenous MSCs have been widely investigated in immune-mediated inflammatory diseases and transplantation research. However, a harsh environment at the site of tissue injury/inflammation with insufficient oxygen supply, abundance of reactive oxygen species, and presence of other harmful molecules that damage the adoptively transferred cells collectively lead to low survival and engraftment of the transferred cells. Preconditioning of MSCs ex vivo by hypoxia, inflammatory stimulus, or other factors/conditions prior to their use in therapy is an adaptive strategy that prepares MSCs to survive in the harsh environment and to enhance their regulatory function of the local immune responses. This review focuses on a number of approaches in preconditioning human MSCs with the goal of augmenting their capacity to regulate both innate and adaptive immune responses.
Collapse
|
47
|
Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WCW. Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem Cells Int 2016; 2016:3924858. [PMID: 27822228 PMCID: PMC5086389 DOI: 10.1155/2016/3924858 10.1155/2016/3924858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 03/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted the attention of researchers and clinicians for their ability to differentiate into a number of cell types, participate in tissue regeneration, and repair the damaged tissues by producing various growth factors and cytokines, as well as their unique immunoprivilege in alloreactive hosts. The immunomodulatory functions of exogenous MSCs have been widely investigated in immune-mediated inflammatory diseases and transplantation research. However, a harsh environment at the site of tissue injury/inflammation with insufficient oxygen supply, abundance of reactive oxygen species, and presence of other harmful molecules that damage the adoptively transferred cells collectively lead to low survival and engraftment of the transferred cells. Preconditioning of MSCs ex vivo by hypoxia, inflammatory stimulus, or other factors/conditions prior to their use in therapy is an adaptive strategy that prepares MSCs to survive in the harsh environment and to enhance their regulatory function of the local immune responses. This review focuses on a number of approaches in preconditioning human MSCs with the goal of augmenting their capacity to regulate both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Arman Saparov
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Talgat Nurgozhin
- Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William C. W. Chen
- Research Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Luo J, Yuan Y, Sarkar D. Controlling Angiogenic Response of Endothelial Cells via Intracellular Microparticle Depot containing Growth Factors. ACS Biomater Sci Eng 2016; 2:1436-1441. [PMID: 33440581 DOI: 10.1021/acsbiomaterials.6b00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling of endothelial cell and its microenvironment is crucial to promote angiogenic response during tissue regeneration. However, current strategies are limited to genetic cellular engineering or matrix-based methods which are complex and highly variable. To overcome this, we engineer endothelial cells by intracellular loading of growth factor containing microparticles. These microparticle depots control the host cells and its microenvironment through intracellular and extracellular release of growth factors. Specifically, human endothelial cells engineered with vascular endothelial growth factor loaded poly lactic-co-glycolic acid (PLGA) microparticle show enhanced angiogenic response through extended endothelial network and sprouting. Enhancement of angiogenic response is attributed to autocrine and paracrine-endocrine like signaling from the growth factors.
Collapse
Affiliation(s)
- Jing Luo
- Department of Biomedical Engineering and ‡Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yuan Yuan
- Department of Biomedical Engineering and Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Debanjan Sarkar
- Department of Biomedical Engineering and Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
49
|
Zimmermann JA, Hettiaratchi MH, McDevitt TC. Enhanced Immunosuppression of T Cells by Sustained Presentation of Bioactive Interferon-γ Within Three-Dimensional Mesenchymal Stem Cell Constructs. Stem Cells Transl Med 2016; 6:223-237. [PMID: 28170190 PMCID: PMC5442746 DOI: 10.5966/sctm.2016-0044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The immunomodulatory activity of mesenchymal stem/stromal cells (MSCs) to suppress innate and adaptive immune responses offers a potent cell therapy for modulating inflammation and promoting tissue regeneration. However, the inflammatory cytokine milieu plays a critical role in stimulating MSC immunomodulatory activity. In particular, interferon‐γ (IFN‐γ)‐induced expression of indoleamine 2,3‐dioxygenase (IDO) is primarily responsible for MSC suppression of T‐cell proliferation and activation. Although pretreatment with IFN‐γ is commonly used to prime MSCs for immunomodulatory activity prior to transplantation, the transient effects of pretreatment may limit the potential of MSCs to potently modulate immune responses. Therefore, the objective of this study was to investigate whether microparticle‐mediated presentation of bioactive IFN‐γ within three‐dimensional spheroidal MSC aggregates could precisely regulate and induce sustained immunomodulatory activity. Delivery of IFN‐γ via heparin‐microparticles within MSC aggregates induced sustained IDO expression during 1 week of culture, whereas IDO expression by IFN‐γ‐pretreated MSC spheroids rapidly decreased during 2 days. Furthermore, sustained IDO expression induced by IFN‐γ‐loaded microparticles resulted in an increased and sustained suppression of T‐cell activation and proliferation in MSC cocultures with CD3/CD28‐activated peripheral blood mononuclear cells. The increased suppression of T cells by MSC spheroids containing IFN‐γ‐loaded microparticles was dependent on induction of IDO and supported by affecting monocyte secretion from pro‐ to anti‐inflammatory cytokines. Altogether, microparticle delivery of IFN‐γ within MSC spheroids provides a potent means of enhancing and sustaining immunomodulatory activity to control MSC immunomodulation after transplantation and thereby improve the efficacy of MSC‐based therapies aimed at treating inflammatory and immune diseases. Stem Cells Translational Medicine2017;6:223–237
Collapse
Affiliation(s)
- Joshua A. Zimmermann
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Marian H. Hettiaratchi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
50
|
Yang Z, Concannon J, Ng KS, Seyb K, Mortensen LJ, Ranganath S, Gu F, Levy O, Tong Z, Martyn K, Zhao W, Lin CP, Glicksman MA, Karp JM. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci Rep 2016; 6:30263. [PMID: 27457881 PMCID: PMC4960598 DOI: 10.1038/srep30263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.
Collapse
Affiliation(s)
- Zijiang Yang
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US.,Advanced Industrial Technology Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Kelvin S Ng
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Luke J Mortensen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, and College of Engineering, University of Georgia, Athens, GA, US
| | - Sudhir Ranganath
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Fangqi Gu
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Oren Levy
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Zhixiang Tong
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Keir Martyn
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center and Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, US
| | - Charles P Lin
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US
| | - Marcie A Glicksman
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Jeffrey M Karp
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| |
Collapse
|