1
|
Li Y, Jiang B, Wu Z, Ma Z, Qiu L, Cui W, Zhao Y, Yan J, Ma D, Wu X, Liang S, Wang S, Zhao Y, Wang M, Hu M. Engineering fibroblast with reprogramming and spheronization for bone defect repair. Bioact Mater 2025; 50:414-431. [PMID: 40309255 PMCID: PMC12041790 DOI: 10.1016/j.bioactmat.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Bone diseases profoundly affect patients, particularly the elderly, leading to severe health complications and disabilities. Osteoblasts play a crucial role in bone formation and are ideal candidates for treating bone diseases and engineering living materials. However, the stem and progenitor cells that give rise to osteoblasts, as well as osteoblasts themselves, exhibit dysfunction with aging. Although chemical reprogramming of fibroblasts into osteoblasts has been achieved, effective cell-based therapies or living materials have not been established in clinical practice. Here, we present a method to engineer fibroblasts through small molecule reprogramming and spheronization, achieving functional osteoblastic materials across all age groups. By primarily targeting the WNT signaling pathway and modularizing small molecules based on their effects on stage-specific genes, we optimized the temporal regulation of small molecules during reprogramming, acquiring a large number of healthy induced osteoblasts (iOBs). These iOBs with traits of functional native osteoblasts are ideal for forming transplantable tissue spheroids. As innovative living materials, the iOB spheroids (iOB-Sps) have demonstrated improved survival, significant self-bone formation, reduced ROS levels in the defect microenvironment, and accelerated endogenous osteogenesis and angiogenesis in vivo, promoting effective healing of bone defects. These material-free iOB-Sps function as self-scaffolding building blocks for biofunctional constructs, offering a promising avenue for clinical autologous bone defect repair, especially for the elderly.
Collapse
Affiliation(s)
- Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Bin Jiang
- R&D Division, Eureka Biotech Inc., Philadelphia, PA, United States
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Wen Cui
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
- Guangzhou Dayi Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, 511400, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Jinghe Yan
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Daiping Ma
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Xingfei Wu
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
- Guangzhou Dayi Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, 511400, China
| | - Shu Liang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Sitao Wang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Yanqun Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Mengting Wang
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| |
Collapse
|
2
|
Nagase K, Kuramochi H, Grainger DW, Takahashi H. Functional aligned mesenchymal stem cell sheets fabricated using micropatterned thermo-responsive cell culture surfaces. Mater Today Bio 2025; 32:101657. [PMID: 40166377 PMCID: PMC11957804 DOI: 10.1016/j.mtbio.2025.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently applied for cell transplantation and regenerative therapy because they secrete diverse therapeutic cytokines that prompt immuno-stimulatory and tissue repair processes. Furthermore, cultured MSC sheets exhibit enhanced cytokine secretion compared to their MSC suspensions, and represent a durable, versatile format for tissue engineering as singular, multi-layered, or multi-cell type sandwiched, transplantable constructs. Tissue engineered implants with various cellular orientations have been reported. In this study, patterned, temperature-responsive culture surfaces were used to prepare oriented MSC sheets. Patterned culture surfaces were fabricated by grafting polyacrylamide (PAAm) onto commercial poly(N-isopropylacrylamide) (PNIPAAm)-modified plastic via photopolymerization using a stripe-patterned photomask. Patterned surfaces were characterized using x-ray photoelectron spectroscopy, fluorescently labelled fibronectin and albumin adsorption assays, wetting (contact angle) measurements, atomic force microscopy, and scanning electron microscopy. Striped grafted patterns of PAAm were fabricated on the PNIPAAm-coated culture substrates, and PAAm polymerized within the PNIPAAm overlayer. Cell-aligned MSC sheets were then produced from MSC culture on this patterned surface, secreting higher amounts of therapeutic cytokines (vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β) than non-aligned MSC control sheets. In addition, aligned MSC sheets maintained enhanced cell multi-potent differentiation capabilities. New, aligned MSC sheets might exhibit improved functional properties for cell sheet transplant therapies.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hasumi Kuramochi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - David W. Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
3
|
Zhao Y, Ye C, Wang H, Chen C, Lu Y, Yang C, Xu T, Zhou Y, Wu Z, Song X, Zhu Z, Yang Z, Chen X. Loading tea polyphenols enhances the repair of human umbilical cord mesenchymal stem cell sheet after spinal cord injury. Stem Cell Res Ther 2025; 16:264. [PMID: 40437527 PMCID: PMC12121034 DOI: 10.1186/s13287-025-04376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating central nervous system disorder that remains a global health challenge. SCI-induced oxidative stress in the postinjury microenvironment limits tissue repair by provoking the excessive production of reactive oxygen species (ROS). Tea polyphenols (TP), as a natural plant polyphenol, could effectively reduce ROS. In recent years, stem cell-based therapy combined with cell sheet technology has been widely used in the treatment of SCI. Therefore, we constructed human umbilical cord mesenchymal stem cell sheet loaded with TP (CS-TP) and evaluated their therapeutic effects and mechanisms both in vitro and in vivo in SCI rats. METHODS Human umbilical cord mesenchymal stem cell sheet (CS) were prepared by temperature-responsive cell culture method and successfully loaded with TP. The protective effect of CS and CS-TP on cells against oxidative stress was tested by Live/Dead cell staining and CCK-8 assay. CS and CS-TP were co-cultured with PC12 cells and human umbilical vein endothelial cells (HUVECs), respectively, and their effects on reducing ROS production were evaluated using flow cytometry and ROS fluorescence assays. Immune fluorescence (IF) and Western blot analysis of the mechanism by which CS-TP affects PC12 cells and HUVECs in vitro. Wound healing assay, transwell Chamber invasion experiment and tube formation assay were performed to evaluate the effects of CS and CS-TP on the biological behaviors of HUVECs. (Basso-Beattie-Bresnahan) BBB scores and gait analysis were performed to assess the recovery of motor function in rats. Molecular modeling is used to study the affinity between the main active ingredient epigallocatechin gallate (EGCG) in TP and target proteins. Western blot analyzes the mechanism of action of CS and CS-TP in SCI animals and the expression levels of antioxidant proteins. Tissue IF staining was used to evaluate angiogenesis, neuron regeneration and axonal extension. RESULTS Compared with CS, CS-TP could effectively reduce cellular ROS production and increase cell viability under high oxidative stress conditions and significantly enhance its biological activity. In vitro, CS-TP can significantly activate the Keap-1/Nrf2/HO-1 pathway, thereby affecting PC12 cells and HUVECs. After transplantation in SCI rats, CS-TP also activates the Keap-1/Nrf2/HO-1 pathway, influencing the repair of SCI and upregulating the expression of SOD1 and SOD2. CS-TP can more effectively promote angiogenesis, neuronal regeneration, and axonal extension in injured spinal cords, greatly improving the motor function of the rats. CONCLUSION CS-TP not only significantly enhances the resistance of CS to ROS, activates the Keap-1/Nrf2/HO-1 pathway, and regulates the level of antioxidant proteins in the body. Compared to CS, it can also more effectively increase the number of new blood vessels, promote neuron regeneration and axon extension, thereby more effectively repairing SCI.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Cong Ye
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Heng Wang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Lu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Changwei Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Tao Xu
- Medical School of Nantong University, Nantong, China
| | - Yuchen Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhengchao Wu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xianrui Song
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhenyang Zhu
- Medical School of Nantong University, Nantong, China
| | - Zongze Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Chen C, Zhong W, Zheng H, Zhao W, Wang Y, Shen B. Current state of heart failure treatment: are mesenchymal stem cells and their exosomes a future therapy? Front Cardiovasc Med 2025; 12:1518036. [PMID: 40357434 PMCID: PMC12066684 DOI: 10.3389/fcvm.2025.1518036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Heart failure (HF) represents the terminal stage of cardiovascular disease and remains a leading cause of mortality. Epidemiological studies indicate a high prevalence and mortality rate of HF globally. Current treatment options primarily include pharmacological and non-pharmacological approaches. With the development of mesenchymal stem cell (MSC) transplantation technology, increasing research has shown that stem cell therapy and exosomes derived from these cells hold promise for repairing damaged myocardium and improving cardiac function, becoming a hot topic in clinical treatment for HF. However, this approach also presents certain limitations. This review summarizes the mechanisms of HF, current treatment strategies, and the latest progress in the application of MSCs and their exosomes in HF therapy.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Bayarsaikhan D, Bayarsaikhan G, Lee J, Okano T, Kim K, Lee B. Development of iPSC-derived FIX-secreting hepatocyte sheet as a novel treatment tool for hemophilia B treatment. Stem Cell Res Ther 2025; 16:88. [PMID: 39988667 PMCID: PMC11849234 DOI: 10.1186/s13287-025-04195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Hemophilia B is an inherited disorder caused by a mutation in the FIX gene, which results in insufficient blood clotting factor IX (FIX) production from hepatocytes. Currently, there are no treatments for hemophilia B patients. The patients should be continuously administrated with clotting factor concentrates 2-3 times a month to prevent bleeding. Therefore, this study aimed to develop an engineered FIX-secreting hepatocyte sheet that can release FIX for an extended period. Within this study, the engineered FIX-secreting hepatocyte sheet was developed by integrating two core technologies, including a gene editing platform to generate FIX-secreting cells and cell sheet technology to improve cell delivery efficacy. METHODS The human FIX gene was inserted into the APOC3 site of iPSCs by CRISPR/Cas9, which secretes the target protein after differentiation into hepatocytes. FIX-secreting hepatocyte sheets were obtained by temperature-responsive polymer grafted cell culture dishes (TRCD). Immunohistochemical and functional tests were performed for hepatocyte-like cells differentiated from FIX KI-iPSCs and wild-type iPSCs (WT-iPSCs). After validating the functional activity and secretion of FIX protein, the engineered hepatocyte-like cell sheets were transplanted to NOD/SCID mice for the in vivo experiments. RESULTS The insertion of the human FIX gene into the APOC3 site demonstrated a significant increase in FIX secretion in hepatocyte-like cells differentiated from FIX KI-iPSCs compared with those obtained from WT-iPSCs. Among the iPSCs to hepatocyte differentiation stages, the hepatic endoderm stage was most suitable for seeding the cells on TRCD and generating cell sheets by temperature changes from 37oC to room temperature when the hepatocyte-like cells have reached maturity. The engineered FIX-secreting cell sheets showed intensive expression of the FIX proteins without losing hepatocyte morphology for 20 days. Furthermore, an in vivo study showed that engineered FIX-secreting cell sheets retained their FIX secretion functions for two weeks, whereas single-cell injected traditionally were barely detected in the experimental animals. CONCLUSIONS The engineered FIX-secreting cell sheets fabricated from functionally improved iPSCs with practical cell delivery tools could be a promising tool for clinically treating Hemophilia B.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Jaesuk Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South, East, Salt Lake City, UT, 2000, 84112, USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South, East, Salt Lake City, UT, 2000, 84112, USA.
- Department of Biomedical Engineering, Jungwon University University, 85 Munmu-ro, Goesan- eup, Goesan-gun, 28023, Chuncheongbuk-do, Republic of Korea.
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
6
|
Kim OH, Kang H, Chang ES, Lim Y, Seo YJ, Lee HJ. Extended protective effects of three dimensional cultured human mesenchymal stromal cells in a neuroinflammation model. World J Stem Cells 2025; 17:101485. [PMID: 39866897 PMCID: PMC11752454 DOI: 10.4252/wjsc.v17.i1.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture. AIM To enhance the efficiency and therapeutic efficacy of MSCs, an in vivo-like 3D culture condition was applied. METHODS MSCs were cultured on polystyrene (2D) or in a gellan gum-based 3D system. In vitro, prostaglandin-endoperoxide synthase 2, indoleamine-2,3-dioxygenase, heme oxygenase 1, and prostaglandin E synthase gene expression was quantified by quantitative real-time polymerase chain reaction. MSCs were incubated with lipopolysaccharide (LPS)-treated mouse splenocytes, and prostaglandin E2 and tumor necrosis factor-alpha levels were measured by enzyme linked immunosorbent assay. In vivo, LPS was injected into the lateral ventricle of mouse brain, and MSCs were administered intravenously the next day. Animals were sacrificed and analyzed on days 2 and 6. RESULTS Gellan gum polymer-based 3D culture significantly increased expression of octamer-binding transcription factor 4 and Nanog homeobox stemness markers in human MSCs compared to 2D culture. This 3D environment also heightened expression of cyclooxygenase-2 and heme-oxygenase 1, enzymes known for immunomodulatory functions, including production of prostaglandins and heme degradation, respectively. MSCs in 3D culture secreted more prostaglandin E2 and effectively suppressed tumor necrosis factor-alpha release from LPS-stimulated splenocytes and surpassed the efficiency of MSCs cultured in 2D. In a murine neuroinflammation model, intravenous injection of 3D-cultured MSCs significantly reduced ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein expression, mitigating chronic inflammation more effectively than 2D-cultured MSCs. CONCLUSION The microenvironment established in 3D culture serves as an in vivo mimetic, enhancing the immunomodulatory function of MSCs. This suggests that engineered MSCs hold significant promise a potent tool for cell therapy.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, South Korea
| | - Eun Seo Chang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, South Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
7
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
8
|
Ji X, Wang L, Zhong Y, Xu Q, Yan J, Pan D, Xu Y, Chen C, Wang J, Wang G, Yang M, Li T, Tang L, Wang X. Impact of mesenchymal stem cell size and adhesion modulation on in vivo distribution: insights from quantitative PET imaging. Stem Cell Res Ther 2024; 15:456. [PMID: 39609885 PMCID: PMC11606219 DOI: 10.1186/s13287-024-04078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Successful engraftment and localization of mesenchymal stem cells (MSCs) within target tissues are critical factors influencing their therapeutic efficacy for tissue repair and regeneration. However, the relative contributions of biophysical factors like cell size and adhesion capacity in regulating MSC distribution in vivo remain incompletely understood. METHODS Cell adhesion peptides and hanging drop method were used to modify the adhesive capacity and size of MSCs. To quantitatively track the real-time biodistribution of transplanted MSCs with defined size and adhesion profiles in living mice and rats, the non-invasive positron emission tomography (PET) imaging was applied. RESULTS Surface modification with integrin binding peptides like RGD, GFOGER, and HAVDI reduced MSC adhesion capacity in vitro by up to 43.5% without altering cell size, but did not significantly decrease lung entrapment in vivo. In contrast, culturing MSCs as 3D spheroids for 48 h reduced their cell diameter by 34.6% and markedly enhanced their ability to pass through the lungs and migrate to other organs like the liver after intravenous administration. This size-dependent effect on MSC distribution was more pronounced in rats compared to mice, likely due to differences in pulmonary microvessel diameters between species. CONCLUSION Our findings reveal that cell size is a predominant biophysical regulator of MSC localization in vivo compared to adhesion capacity, providing crucial insights to guide optimization of MSC delivery strategies for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Xin Ji
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, P.R. China
| | - Lizhen Wang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Yudan Zhong
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Qian Xu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Junjie Yan
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Yuping Xu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd., Nanjing, 211100, P.R. China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Min Yang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China
| | - Tiannv Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, P.R. China
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, P.R. China.
| | - Xinyu Wang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P.R. China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, P.R. China.
| |
Collapse
|
9
|
Chang FC, James MM, Zhou Y, Ando Y, Zareie HM, Yang J, Zhang M. Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition. Adv Biol (Weinh) 2024; 8:e2400224. [PMID: 38963310 DOI: 10.1002/adbi.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Wongin-Sangphet S, Chotiyarnwong P, Viravaidya-Pasuwat K. Reduced Cell Migration in Human Chondrocyte Sheets Increases Tissue Stiffness and Cartilage Protein Production. Tissue Eng Regen Med 2024; 21:1021-1036. [PMID: 39037474 PMCID: PMC11416440 DOI: 10.1007/s13770-024-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Chondrogenic differentiation medium (CDM) is usually used to maintain chondrogenic activity during chondrocyte sheet production. However, tissue qualities remain to be determined as to what factors improve cell functions. Moreover, the relationship between CDM and cell migration proteins has not been reported. METHOD In this study, the effect of CDM on the behavior of chondrocyte sheets was investigated. Structural analysis, mechanical testing and proteomics were performed to observe tissue qualities. The relationship between CDM and cell migration proteins were investigated using time-lapse observations and bioinformatic analysis. RESULTS During 48 h, CDM affected the chondrocyte behaviors by reducing cell migration. Compared to the basal medium, CDM impacted the contraction of monolayered chondrocyte sheets. At day 7, the contracted sheets increased tissue thickness and improved tissue stiffness. Cartilage specific proteins were also upregulated. Remarkedly, the chondrocyte sheets in CDM displayed downregulated proteins related to cell migration. Bioinformatic analysis revealed that TGFβ1 was shown to be associated with cartilage functions and cell migration. Pathway analysis of chondrocyte sheets in CDM also revealed the presence of a TGFβ pathway without activating actin production, which might be involved in synthesizing cartilage-specific proteins. Cell migration pathway showed MAPK signaling in both cultures of the chondrocyte sheets. CONCLUSION Reduced cell migration in the chondrocyte sheet affected the tissue quality. Using CDM, TGFβ1 might trigger cartilage protein production through the TGFβ pathway and be involved in cell migration via the MAPK signaling pathway. Understanding cell behaviors and their protein expression would be beneficial for developing high-quality tissue-engineered cartilage.
Collapse
Affiliation(s)
- Sopita Wongin-Sangphet
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Department of Chemical Engineering and Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| |
Collapse
|
11
|
Gasparoni LM, Alves T, França BND, Balzarini D, Albuquerque-Souza E, Pedroni ACF, Rovai EDS, Mendoza AH, Sipert CR, Holzhausen M. Cell sheet produced from periodontal ligament stem cells activated by PAR1 improves osteogenic differentiation. Braz Oral Res 2024; 38:e079. [PMID: 39258632 PMCID: PMC11376637 DOI: 10.1590/1807-3107bor-2024.vol38.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/23/2024] [Accepted: 04/02/2024] [Indexed: 09/12/2024] Open
Abstract
Periodontal regeneration is a challenge, and tissue engineering based on periodontal ligament stem cells (PDLSCs) has been shown to be a promising alternative to this process. However, the need for scaffolds has limited the therapeutic use of PDLSCs. In this context, scaffold-free tissue engineering using the cell sheet (CS) technique has been developed as an alternative approach to improve tissue regeneration. Previously, we showed that Protease-activated receptor-1 (PAR1) can regulate PDLSCs. Herein, we evaluate whether PAR1 influences osteogenesis in CSs produced from PDLSCs, without the use of scaffolds. PDLSCs were isolated and immunophenotyped. Then, CSs were obtained by supplementing the culture medium with ascorbic acid (50 µg/mL), and PAR1 was activated through its agonist peptide (100 nM). Scaffold-free 3D CSs were successfully produced from PDLSCs, and they showed higher proliferation potential than isolated PDLSCs. Also, PAR1 activation decreased senescence and improved osteogenic differentiation of CSs by increasing mineralized nodule deposition and alkaline phosphatase concentration; PAR1 also modulated osteogenic markers at the gene and protein levels. We further demonstrated that this effect was regulated by Wnt, TGF-βI, MEK, p38 MAPK, and FGF/VEGF signaling pathways in PDLSCs (p < 0.05%). Overall, PAR1 activation increased osteogenic activity in CSs, emerging as a promising scaffold-free therapeutic approach for periodontal regeneration.
Collapse
Affiliation(s)
- Letícia Miquelitto Gasparoni
- Universidade Federal de Juiz de Fora - UFJF, School of Dentistry, Department of Dental Clinic, Juiz de Fora, MG, Brazil
| | - Tomaz Alves
- University of North Carolina, Adams School of Dentistry, Division of Comprehensive Oral Health, Chapel Hill, NC, USA
| | - Bruno Nunes de França
- Universidade São Francisco - USF, School of Dentistry, Bragança Paulista, SP, Brazil
| | - Danilo Balzarini
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | | | - Ana Clara Fagundes Pedroni
- Universidade de São Paulo - USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Emanuel da Silva Rovai
- Universidade Estadual Paulista - Unesp, Institute of Science and Technology, Division of Periodontics, São José dos Campos, SP, Brazil
| | - Aldrin Huamán Mendoza
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- Universidade de São Paulo - USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Marinella Holzhausen
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Nishimaki K, Kaibuchi N, Washio K, Yamato M. Application of mesenchymal stromal cell sheets to prevent medication-related osteonecrosis of the jaw with titanium implants in rats. Odontology 2024; 112:938-949. [PMID: 38367068 DOI: 10.1007/s10266-024-00900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an intractable adverse event. Dental implants are one of the triggering factors of MRONJ, and implant therapy with low MRONJ risk is required. This study aimed to investigate a rat model of MRONJ induced by extraoral placement of titanium materials and the use of mesenchymal stromal cell (MSCs) sheets to prevent MRONJ. Eight-week-old male rats were administered zoledronate and dexamethasone thrice weekly until killing. A week after drug initiation, a titanium screw and a plate were placed on the left buccal side of the mandible. Allogeneic bone marrow-derived MSC sheets were co-grafted with the titanium plates in the MSC sheet ( +) group. Six weeks after titanium placement, the rats were killed, and their excised mandibular bones were subjected to micro-computed tomography (CT) analysis. Histological analysis was performed after the titanium implants were removed. Empty lacunae visualized on hematoxylin and eosin staining were used as evidence of bone necrosis. Bone necrosis was reduced in the MSC sheet ( +) group. Tartrate-resistant acid phosphatase (TRAP) staining revealed a decreased number of TRAP-positive cells in areas with a large number of empty lacunae in the MSC sheet (-) group. Micro-CT analyses demonstrated that the bone volume fraction (BV/TV) was not significantly different between the MSC sheet (-) and ( +) groups. We conclude that MRONJ can be triggered by a titanium placement in rats, and grafting of allogeneic MSC sheets has the potential to prevent MRONJ.
Collapse
Affiliation(s)
- Kazuhiro Nishimaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Nobuyuki Kaibuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
13
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
14
|
Li M, Yang T, Zhao J, Ma X, Cao Y, Hu X, Zhao S, Zhou L. Cell sheet formation enhances the therapeutic effects of adipose-derived stromal vascular fraction on urethral stricture. Mater Today Bio 2024; 25:101012. [PMID: 38464495 PMCID: PMC10924207 DOI: 10.1016/j.mtbio.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-β/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.
Collapse
Affiliation(s)
- Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojie Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Sheppard AJ, Delgado K, Barfield AM, Xu Q, Massey PA, Dong Y, Barton RS. Rapamycin Inhibits Senescence and Improves Immunomodulatory Function of Mesenchymal Stem Cells Through IL-8 and TGF-β Signaling. Stem Cell Rev Rep 2024; 20:816-826. [PMID: 38340274 PMCID: PMC10984889 DOI: 10.1007/s12015-024-10682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-β (TGF-β) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.
Collapse
Affiliation(s)
- Aaron J Sheppard
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Kristin Delgado
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
| | | | - Qinqin Xu
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Patrick A Massey
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Yufeng Dong
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA.
| | - Richard S Barton
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
16
|
Na KH, Lee HJ, Lee JE, Park JB. Regeneration of Rabbit Calvarial Defects with Combination of Stem Cells and Enamel Matrix Derivative: A Microcomputed Tomography and Histological Evaluation Comparing Two- and Three-Dimensional Cell Constructs. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:451. [PMID: 38541178 PMCID: PMC10971790 DOI: 10.3390/medicina60030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2025]
Abstract
Background and Objectives: This study addresses the challenge of bone regeneration in calvarial defects, exploring the efficacy of stem cell-based therapies and enamel matrix derivative (EMD) in tissue engineering. It assesses the regenerative potential of two- and three-dimensional cell constructs combined with mesenchymal stem cells (MSCs) and EMD in rabbit calvarial defects. Materials and Methods: This research involved the use of bone-marrow-derived MSCs cultured in silicon elastomer-based concave microwells to form spheroids. White rabbits were grouped for different treatments, with Group 1 as control, Group 2 receiving only EMD, Group 3 getting EMD plus stem cells, and Group 4 being treated with EMD plus stem cell spheroids. Computed tomography (CT) and microcomputed tomography (micro-CT) imaging were used for structural assessment, while histological evaluations were conducted using hematoxylin and eosin, Masson's trichrome, and Picro-sirius red staining. Results: CT and micro-CT analyses revealed varying degrees of bone regeneration among the groups. Group 4, treated with three-dimensional MSC spheroids and EMD, showed the most significant improvement in bone regeneration. Histological analyses corroborated these findings, with Group 4 displaying enhanced bone formation and better collagen fiber organization. Conclusions: The study supported the biocompatibility and potential efficacy of three-dimensional MSC constructs combined with EMD in bone regeneration. Further investigations are needed to confirm these findings and optimize treatment protocols.
Collapse
Affiliation(s)
- Kyung-Hwan Na
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ji-Eun Lee
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Periodontics, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jun-Beom Park
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
17
|
Chen W, Nie M, Gan J, Xia N, Wang D, Sun L. Tailoring cell sheets for biomedical applications. SMART MEDICINE 2024; 3:e20230038. [PMID: 39188516 PMCID: PMC11235941 DOI: 10.1002/smmd.20230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 08/28/2024]
Abstract
Cell sheet technology has emerged as a novel scaffold-free approach for cell-based therapies in regenerative medicine. Techniques for harvesting cell sheets are essential to preserve the integrity of living cell sheets. This review provides an overview of fundamental technologies to fabricate cell sheets and recent advances in cell sheet-based tissue engineering. In addition to the commonly used temperature-responsive systems, we introduce alternative approaches, such as ROS-induced, magnetic-controlled, and light-induced cell sheet technologies. Moreover, we discuss the modification of the cell sheet to improve its function, including stacking, genetic modification, and vascularization. With the significant advances in cell sheet technology, cell sheets have been widely applied in various tissues and organs, including but not limited to the lung, cornea, cartilage, periodontium, heart, and liver. This review further describes both the preclinical and clinical applications of cell sheets. We believe that the progress in cell sheet technology would further propel its biomedical applications.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Nie
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Nan Xia
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Dandan Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
18
|
Calis P, Arik G, Seymen CM, Bayrak GK, Akdere OE, Yilmaz C, Saglam ASY, Gümüşderelioğlu M, Kaplanoglu GT. A new technology for the treatment of premature ovarian insufficiency: Cell sheet. Cell Tissue Res 2024; 395:117-131. [PMID: 38049591 DOI: 10.1007/s00441-023-03848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Premature ovarian insufficiency (POI) is defined as the development of hypergonadotropic hypogonadism before the age of 40 with definitive treatment being absent. In the current study, we aim to compare the efficacy of the cell sheet method with an intravenous (IV) application of adipose-derived mesenchymal stem cells (AdMSCs) to the POI with an animal model. In the current prospective study, 6-to-8-week-old Sprague Dawley rats were generated four groups: (i) a control group in which only PBS was administered; (ii) an only-POI group generated by cyclophosphamide; (iii) a POI group treated by way of IV AdMSCs; and (iv) a POI group treated by way of the cell sheet method. Twenty-eight days after an oophorectomy was performed, intracardiac blood was taken. Follicle count, immunohistochemical examination for GDF9, BMP15, and TUNEL were conducted, gene expressions of GDF9 and BMP15 were examined, and E2 was measured in the serum samples. With hematoxylin-eosin, in the third group, multi oocytes follicles were the most remarkable finding. In the fourth group, most of the follicles presented normal morphology. GDF9 involvement was similar between the first and fourth groups. BMP-15 immunoreactivity, in contrast to fourth group, was weak in all stages in the second and third groups. The current attempt represents a pioneer study in the literature in which a cell sheet method is used for the first time in a POI model. These results suggest that the cell sheet method may be a feasible and efficient method for the stem cell treatment of models with POI and could be a new treatment approach in POI.
Collapse
Affiliation(s)
- Pinar Calis
- Department of Obstetrics and Gynecology, Gazi University Faculty of Medicine, Ankara, 06100, Turkey.
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Gokcenur Arik
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Gokce Kaynak Bayrak
- Department of Biomedical Engineering, Izmir Bakircay University, Izmir, Turkey
| | - Ozge Ekin Akdere
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Canan Yilmaz
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
19
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
20
|
Nakao M, Matsui M, Kim K, Nishiyama N, Grainger DW, Okano T, Kanazawa H, Nagase K. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res Ther 2023; 14:352. [PMID: 38072920 PMCID: PMC10712142 DOI: 10.1186/s13287-023-03593-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-β1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
21
|
Anerillas LO, Wiberg M, Kingham PJ, Kelk P. Platelet lysate for expansion or osteogenic differentiation of bone marrow mesenchymal stem cells for 3D tissue constructs. Regen Ther 2023; 24:298-310. [PMID: 37588134 PMCID: PMC10425714 DOI: 10.1016/j.reth.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) for the development of tissue-engineered constructs has advanced in recent years. However, future clinically approved products require following good manufacturing practice (GMP) guidelines. This includes using alternatives to xenogeneic-derived cell culture supplements to avoid rejection of the transplants. Consequently, human platelet lysate (PLT) has been adopted as an affordable and effective alternative to foetal bovine serum (FBS) in traditional 2D cultures. However, little is known about its effect in more advanced 3D culture systems. Methods We evaluated bone marrow MSCs (BMSCs) proliferation and CD marker expression in cells expanded in FBS or PLT-supplemented media. Differentiation capacity of the BMSCs expanded in the presence of the different supplements was evaluated in 3D type I collagen hydrogels. Furthermore, the effects of the supplements on the process of differentiation were analyzed by using qPCR and histological staining. Results Cell proliferation was greater in PLT-supplemented media versus FBS. BMSCs expanded in PLT showed similar osteogenic differentiation capacity in 3D compared with FBS expanded cells. In contrast, when cells were 3D differentiated in PLT they showed lower osteogenesis versus the traditional FBS protocol. This was also the case for adipogenic differentiation, in which FBS supplementation was superior to PLT. Conclusions PLT is a superior alternative to FBS for the expansion of MSCs without compromising their subsequent differentiation capacity in 3D. However, differentiation in PLT is impaired. Thus, PLT can be used to reduce the time required to expand the necessary cell numbers for development of 3D tissue engineered MSC constructs.
Collapse
Affiliation(s)
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section for Hand and Plastic Surgery, Umeå University, 901 87 Umeå, Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
22
|
Dunn CM, Kameishi S, Parker T, Cho YK, Song SU, Grainger DW, Okano T. Cellular Interactions in Cell Sheets Enhance Mesenchymal Stromal Cell Immunomodulatory Properties. Tissue Eng Part A 2023; 29:594-603. [PMID: 37847176 DOI: 10.1089/ten.tea.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Immune-related applications of mesenchymal stromal cells (MSCs) in cell therapy seek to exploit immunomodulatory paracrine signaling pathways to reduce inflammation. A key MSC therapeutic challenge is reducing patient outcome variabilities attributed to insufficient engraftment/retention of injected heterogenous MSCs. To address this, we propose directly transplantable human single-cell-derived clonal bone marrow MSC (hcBMSC) sheets. Cell sheet technology is a scaffold-free tissue engineering strategy enabling scalable production of highly engraftable cell constructs retaining endogenous cell-cell and cell-matrix interactions, important to cell function. cBMSCs, as unique MSC subset populations, facilitate rational selection of therapeutically relevant MSC clones from donors. Here, we combine human cBMSCs with cell sheet technology, demonstrating cell sheet fabrication as a method to significantly upregulate expression of immunomodulatory molecules interleukin (IL)-10, indoleamine 2,3-dioxygenase (IDO-1), and prostaglandin E synthase 2 (PTGES2) across GMP-grade hcBMSC lines and whole human bone marrow-derived MSCs compared to respective conventional cell suspensions. When treated with carbenoxolone, a gap junction inhibitor, cell sheets downregulate IL-10 and IDO-1 expression, implicating functional roles for intercellular sheet interactions. Beyond producing directly transferable multicellular hcBMSC constructs, cell sheet technology amplifies hcBMSC expression of immunomodulatory factors important to therapeutic action. In addition, this work demonstrates the importance of cell-cell interactions as a tissue engineering design criterion to enhance consistent MSC functions.
Collapse
Affiliation(s)
- Celia M Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
| | - Tavie Parker
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Sun U Song
- SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
- Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Malandain N, Sanz-Fraile H, Farré R, Otero J, Roig A, Laromaine A. Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers. ACS APPLIED BIO MATERIALS 2023; 6:3638-3647. [PMID: 37669535 PMCID: PMC10521014 DOI: 10.1021/acsabm.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Abstract
There is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the in vivo cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues. In this work, type I collagen is mixed with bacterial nanocellulose fibers (BCf) to develop reinforced scaffolds with mechanical properties suitable for 3D cell culture. BCf were produced from blended pellicles biosynthesized from Komagataeibacter xylinus. Then, BCf were mixed with concentrated collagen from rat-tail tendons to form composite hydrogels. Confocal laser scanning microscopy and scanning electron microscopy images confirmed the homogeneous macro- and microdistribution of both natural polymers. Porosity analysis confirmed that BCf do not disrupt the scaffold structure. Tensile strength and rheology measurements demonstrated the reinforcement action of BCf (43% increased stiffness) compared to the collagen hydrogel while maintaining the same viscoelastic response. Additionally, this reinforcement of collagen hydrogels with BCf offers the possibility to mix cells before gelation and then proceed to the culture of the 3D cell scaffolds. We obtained scaffolds with human bone marrow-derived mesenchymal stromal cells or human fibroblasts within the composite hydrogels, allowing a homogeneous 3D viable culture for at least 7 days. A smaller surface shrinkage in the reinforced hydrogels compared to type I collagen hydrogels confirmed the strengthening of the composite hydrogels. These collagen hydrogels reinforced with BCf might emerge as a promising platform for 3D in vitro organ modeling, tissue-engineering applications, and suitable to conduct fundamental mechanobiology studies.
Collapse
Affiliation(s)
- Nanthilde Malandain
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Unitat
de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències
de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Hector Sanz-Fraile
- Unitat
de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències
de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat
de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències
de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER
de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut
d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Jorge Otero
- Unitat
de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències
de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER
de Enfermedades Respiratorias, 28029 Madrid, Spain
- The
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
24
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
26
|
Wu Y, Shum HCE, Wu K, Vadgama J. From Interaction to Intervention: How Mesenchymal Stem Cells Affect and Target Triple-Negative Breast Cancer. Biomedicines 2023; 11:1182. [PMID: 37189800 PMCID: PMC10136169 DOI: 10.3390/biomedicines11041182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expressions, making targeted therapies ineffective. Mesenchymal stem cells (MSCs) have emerged as a promising approach for TNBC treatment by modulating the tumor microenvironment (TME) and interacting with cancer cells. This review aims to comprehensively overview the role of MSCs in TNBC treatment, including their mechanisms of action and application strategies. We analyze the interactions between MSC and TNBC cells, including the impact of MSCs on TNBC cell proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance, along with the signaling pathways and molecular mechanisms involved. We also explore the impact of MSCs on other components of the TME, such as immune and stromal cells, and the underlying mechanisms. The review discusses the application strategies of MSCs in TNBC treatment, including their use as cell or drug carriers and the advantages and limitations of different types and sources of MSCs in terms of safety and efficacy. Finally, we discuss the challenges and prospects of MSCs in TNBC treatment and propose potential solutions or improvement methods. Overall, this review provides valuable insights into the potential of MSCs as a novel therapeutic approach for TNBC treatment.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Kameishi S, Dunn CM, Oka M, Kim K, Cho YK, Song SU, Grainger DW, Okano T. Rapid and effective preparation of clonal bone marrow-derived mesenchymal stem/stromal cell sheets to reduce renal fibrosis. Sci Rep 2023; 13:4421. [PMID: 36932137 PMCID: PMC10023793 DOI: 10.1038/s41598-023-31437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Allogeneic "off-the-shelf" mesenchymal stem/stromal cell (MSC) therapy requires scalable, quality-controlled cell manufacturing and distribution systems to provide clinical-grade products using cryogenic cell banking. However, previous studies report impaired cell function associated with administering freeze-thawed MSCs as single cell suspensions, potentially compromising reliable therapeutic efficacy. Using long-term culture-adapted clinical-grade clonal human bone marrow MSCs (cBMSCs) in this study, we engineered cBMSC sheets in 24 h to provide rapid preparation. We then sought to determine the influence of cBMSC freeze-thawing on both in vitro production of pro-regenerative factors and in vivo ability to reduce renal fibrosis in a rat model compared to freshly harvested cBMSCs. Sheets from freeze-thawed cBMSCs sheets exhibited comparable in vitro protein production and gene expression of pro-regenerative factors [e.g., hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin 10 (IL-10)] to freshly harvested cBMSC sheets. Additionally, freeze-thawed cBMSC sheets successfully suppressed renal fibrosis in vivo in an established rat ischemia-reperfusion injury model. Despite previous studies reporting that freeze-thawed MSCs exhibit impaired cell functions compared to fresh MSC single cell suspensions, cell sheets engineered from freeze-thawed cBMSCs do not exhibit impaired cell functions, supporting critical steps toward future clinical translation of cBMSC-based kidney disease treatment.
Collapse
Affiliation(s)
- Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
| | - Celia M Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
| | | | - Sun U Song
- SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.
- Department of Molecular Pharmaceutics, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA.
- Institute for Advanced Biomedical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
28
|
Imashiro C, Morikura T, Hayama M, Ezura A, Komotori J, Miyata S, Sakaguchi K, Shimizu T. Metallic Vessel with Mesh Culture Surface Fabricated Using Three-dimensional Printing Engineers Tissue Culture Environment. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Tang H, Wang X, Zheng J, Long YZ, Xu T, Li D, Guo X, Zhang Y. Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. J Mater Chem B 2023; 11:389-402. [PMID: 36511477 DOI: 10.1039/d2tb02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell sheets combined with electrospun fibrous mats represent an attractive approach for the repair and regeneration of injured tissues. However, the conventional dense electrospun mats as supportive substrates in forming "cell sheet on fiber mat" complexes suffer from problems of limiting the cellular function and eliciting a host response upon implantation. To give full play to the role of electrospun biomimicking fibers in forming quality cell sheets, this study proposed to develop a cell-fiber integrated sheet (CFIS) featuring a spatially homogeneous distribution of cells within the fiber structure by using a low-density fibrous network for cell sheet formation. A low-density electrospun polycaprolactone (PCL) fibrous network at a density of 103.8 ± 16.3 μg cm-2 was produced by controlling the fiber deposition for a short period of 1 min and subsequently transferred onto polydimethylsiloxane rings for facilitating cell sheet formation, in which rat bone marrow-derived mesenchymal cells were used. Using a dense electrospun PCL fibrous mat (481.5 ± 7.5 μg cm-2) as the control, it was found that cells on the low-density fibrous network (L-G) exhibited improved capacities in spreading, proliferation, stemness maintenance and matrix-remodeling during the process of CFIS formation. Structurally, the CFIS constructs revealed strong integration between the cells and the fibrous network, thus providing excellent cohesion and physical integrity to enable strengthening of the formed cell sheet. By contrast, the cell sheet formed on the dense fibrous mat (D-G) showed a two-layer (biphasic) structure due to the limitation of cellular invasion. Moreover, such engineered CFIS was identified with enhanced immunomodulatory effects by promoting LPS-stimulated macrophages towards an M2 phenotype in vitro. Our results suggest that the CFIS may be used as a native tissue equivalent "cell sheet" for improving the efficacy of the tissue engineering approach for the repair and regeneration of impaired tissues.
Collapse
Affiliation(s)
- Han Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
30
|
Chen YC, Fu YS, Tsai SW, Wu PK, Chen CM, Chen WM, Chen CF. IL-1b in the Secretomes of MSCs Seeded on Human Decellularized Allogeneic Bone Promotes Angiogenesis. Int J Mol Sci 2022; 23:15301. [PMID: 36499629 PMCID: PMC9737155 DOI: 10.3390/ijms232315301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis plays an important role in the development of bone and bone regeneration to provide the required molecules. Mesenchymal stem cells (MSCs) are pluripotent, self-renewing, and spindle-shaped cells, which can differentiate into multiple lineages such as chondrocytes, osteocytes, and adipocytes. MSCs derived from bone marrow (BMMSCs), adipose tissue (ADMSCs), and Wharton's jelly (UCMSCs) are popular in the field of tissue regeneration. MSCs have been proposed that can promote bone regeneration by enhancing vascularization. In this study, the angiogenic potential of secretomes of undifferentiated and osteo-differentiated BMMSCs, ADMSCs, and UCMSCs seeded on human decellularized allogeneic bone were compared. Human umbilical vein endothelial cells (HUVECs) were treated with MSC secretomes. Cell growth, cell migration, and angiogenesis of HUVECs were analyzed by MTT, wound healing, and tube formation assays. Angiogenic gene expression levels of MSCs were evaluated using real-time quantitative PCR. Antibody neutralization was performed to validate the candidate target. Our study demonstrates that the angiogenic gene expression profile is tissue-dependent and the angiogenic ability of secretomes is independent of the state of differentiation. We also explore that IL-1b is important for MSC angiogenic potential. Taken together, this study proves that IL-1b in the secretomes plays a vital role in angiogenesis.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shang-Wen Tsai
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Orthopaedics, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
31
|
Duman BO, Sariboyaci AE, Karaoz E. Bio-engineering of 3-D cell sheets for diabetic rats: Interaction between mesenchymal stem cells and beta cells in functional islet regeneration system. Tissue Cell 2022; 79:101919. [DOI: 10.1016/j.tice.2022.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022]
|
32
|
Stem cell sheet fabrication from human umbilical cord mesenchymal stem cell and Col-T scaffold. Stem Cell Res 2022; 65:102960. [PMID: 36399925 DOI: 10.1016/j.scr.2022.102960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Today, stem cell therapy has been shown to be a remarkable progress and an important application in the regeneration of defective tissues and organs. To deliver stem cells to the injured area, several methods have been proposed such as an intravenous infusion, direct damaged tissue injection, or stem cell sheet transplantation. In this study, we aimed to fabricate a stem cell sheet by culturing human umbilical cord mesenchymal stem cells (hUC-MSCs) on a Col-T scaffold to recover the structure and function of damaged tissues. The results showed that cells reach confluent on the scaffold surface 18 h after seeding. These stem cells were able to survive and proliferate on Col-T scaffold. The average tensile strength of the stem cell sheet was 2.65 MPa. The sheet reached the sterile standards when tested for total bacteria, Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus according to Circular number 06/2011/TT-BYT of Vietnam Ministry of Health. In addition, the stem cell sheet was non-toxic when evaluated for exposure toxicity and fluid toxicity according to iSO-10993. Importantly, 5 days after culturing on the Col-T scaffold, the seeded hUC-MSCs were still possessed all properties of MSC such as spindle-shaped, adhesive, could differentiate into mesoderm-derived cells, showed to be CD90, CD105, CD73 positive and CD45, CD34, CD11b, CD19, HLA-DR negative. In summary, our study was successful in creating a stem cell sheet from hUC-MSCs and Col-T scaffold for subsequent in vivo transplantation in the future.
Collapse
|
33
|
Smart surface-based cell sheet engineering for regenerative medicine. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells 2022; 11:cells11182840. [PMID: 36139414 PMCID: PMC9497223 DOI: 10.3390/cells11182840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a “cell sheet multilayering by centrifugation” strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The “MSC sheet multilayering by centrifugation” strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
Collapse
|
35
|
Manufacture and Quality Control of Human Umbilical Cord-Derived Mesenchymal Stem Cell Sheets for Clinical Use. Cells 2022; 11:cells11172732. [PMID: 36078137 PMCID: PMC9454431 DOI: 10.3390/cells11172732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cell (UC−MSC) sheets have attracted much attention in cell therapy. However, the culture media and coating matrix used for the preparation of UC−MSC sheets have not been safe enough to comply with current clinical drug standards. Moreover, the UC−MSC sheet preservation systems developed before did not comply with Good Manufacturing Practice (GMP) regulations. In this study, the culture medium and coating matrix were developed for UC−MSC sheet production to comply with clinical drug standards. Additionally, the GMP-compliant preservation solution and method for the UC−MSC sheet were developed. Then, quality standards of the UC−MSC sheet were formulated according to national and international regulations for drugs. Finally, the production process of UC−MSC sheets on a large scale was standardized, and three batches of trial production were conducted and tested to meet the established quality standards. This research provides the possibility for clinical trials of UC−MSC sheet products in the development stage of new drugs and lays the foundation for industrial large-scale production after the new drug is launched.
Collapse
|
36
|
Kim HY, Kwon S, Um W, Shin S, Kim CH, Park JH, Kim BS. Functional Extracellular Vesicles for Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106569. [PMID: 35322545 DOI: 10.1002/smll.202106569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The unique biological characteristics and promising clinical potential of extracellular vesicles (EVs) have galvanized EV applications for regenerative medicine. Recognized as important mediators of intercellular communication, naturally secreted EVs have the potential, as innate biotherapeutics, to promote tissue regeneration. Although EVs have emerged as novel therapeutic agents, challenges related to the clinical transition have led to further functionalization. In recent years, various engineering approaches such as preconditioning, drug loading, and surface modification have been developed to potentiate the therapeutic outcomes of EVs. Also, limitations of natural EVs have been addressed by the development of artificial EVs that offer advantages in terms of production yield and isolation methodologies. In this review, an updated overview of current techniques is provided for the functionalization of natural EVs and recent advances in artificial EVs, particularly in the scope of regenerative medicine.
Collapse
Affiliation(s)
- Han Young Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Interdisciplinary Program of Bioengineering, Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of Lymphangiogenesis by Human Mesenchymal Stem Cell Sheet. Adv Healthc Mater 2022; 11:e2200464. [PMID: 35678079 PMCID: PMC11932734 DOI: 10.1002/adhm.202200464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Preparation of human mesenchymal stem cell (hMSC) suspension for lymphedema treatment relies on conventional enzymatic digestion methods, which severely disrupts cell-cell and cell-extracellular matrix (ECM) connections, and drastically impairs cell retention and engraftment after transplantation. The objective of the present study is to evaluate the ability of hMSC-secreted ECM to augment lymphangiogenesis by using an in vitro coculturing model of hMSC sheets with lymphatic endothelial cells (LECs) and an in vivo mouse tail lymphedema model. Results demonstrate that the hMSC-secreted ECM augments the formation of lymphatic capillary-like structure by a factor of 1.2-3.6 relative to the hMSC control group, by serving as a prolymphangiogenic growth factor reservoir and facilitating cell regenerative activities. hMSC-derived ECM enhances MMP-2 mediated matrix remodeling, increases the synthesis of collagen IV and laminin, and promotes lymphatic microvessel-like structure formation. The injection of rat MSC sheet fragments into a mouse tail lymphedema model confirms the benefits of the hMSC-derived ECM by stimulating lymphangiogenesis and wound closure.
Collapse
Affiliation(s)
- Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Minerals & Materials Building, 1400 Townsend Drive, Room 309, Houghton, MI, 44931, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, Emerging Technologies Building, College Station, TX, 77843, USA
| |
Collapse
|
38
|
Ogawa N, Imamura T, Minagawa T, Ogawa T, Ishizuka O. Autologous Bilayered Adipose-Derived Mesenchymal Cell-Gelatin Sheets Reconstruct Ureters in Rabbits. Tissue Eng Part A 2022; 28:855-866. [PMID: 35850515 DOI: 10.1089/ten.tea.2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Repair of ureteral defects or strictures due to disease or trauma is usually dependent upon surgery that often requires either reoperation or an alternative treatment. By taking advantage of tissue engineering and regenerative techniques, it may be possible to define new approaches to ureteral repair. In this study, we fabricated autologous bilayered adipose-derived mesenchymal cell (AMC)-gelatin sheets and transplanted them into rabbits to replace surgically excised ureteral segments. AMCs harvested from abdominal adipose tissues of female New Zealand White rabbits were cultured on collagen-coated dishes and labeled with PKH26, a red fluorescent dye, for later identification. Monolayers of the cultured PKH26-labeled AMCs were detached and applied to gelatin hydrogel sheets. Two gelatin sheets were then united with the AMC monolayers apposed together, forming a bilayered AMC-gelatin sheet. Following each partial ureterectomy, a bilayered autologous AMC-gelatin sheet was transplanted, joining the proximal and distal ends of the remaining the ureter (n=9). Control animals underwent the same procedure except that the transplant was achieved with a bilayered acellular-gelatin sheet (n=9). At 4 and 8 weeks after transplantation, the proximal regions of ureters treated with the control bilayered acellular-gelatin sheets exhibited flexures and dilations, which are not characteristic of unoperated ureters. In contrast, the bilayered AMC-gelatin sheet transplanted rabbits did not have ureteral flexures or dilations. About midway between the proximal and distal ends, both the control and experimental reconstructed ureteral walls had smooth muscle layers; however, those in the experimental reconstructed ureteral walls were significantly thicker and better organized than those in the control reconstructed ureteral walls. Some AMCs differentiated into smooth muscle marker-positive cells. The experimental ureteral walls contained smooth muscle cells derived from the PKH26-labeled AMCs and others that were derived through migration and differentiation of cells from the remaining proximal and distal ends of the original ureter. In addition, the lumina of the 8-week reconstructed ureteral tissues in experimental rabbits did not show histological strictures as seen in the control ureters. These results suggest that the bilayered AMC-gelatin sheets have the potential to replace defective tissues and/or reconstruct damaged ureters.
Collapse
Affiliation(s)
- Noriyuki Ogawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, 3-1-1, Asahi, Matsumoto, Japan, 390-8621;
| | - Tetsuya Imamura
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Tomonori Minagawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Teruyuki Ogawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Osamu Ishizuka
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| |
Collapse
|
39
|
Oliva J, Pacini S, Canals JM, Lim M. Editorial: Mesenchymal Stromal Cells: Preclinical and Clinical Challenges. Front Cell Dev Biol 2022; 10:969178. [PMID: 35923853 PMCID: PMC9339899 DOI: 10.3389/fcell.2022.969178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Joan Oliva
- Department of Clinical Research, Emmaus Life Sciences, Torrance, CA, United States
- *Correspondence: Joan Oliva,
| | | | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Creatio- Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mayasari Lim
- Fujifilm Irvine Scientific, Inc, Santa Ana, CA, United States
| |
Collapse
|
40
|
Gao S, Jin Y, Ma J, Wang J, Wang J, Shao Z, Fan T, Zhang M, Chang D. Preclinical study of human umbilical cord mesenchymal stem cell sheets for the recovery of ischemic heart tissue. Stem Cell Res Ther 2022; 13:252. [PMID: 35690871 PMCID: PMC9188245 DOI: 10.1186/s13287-022-02919-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been widely used due to their multipotency, a broad range of sources, painless collection, and compliance with standard amplification. Cell sheet technology is a tissue engineering methodology requiring scaffolds free, and it provides an effective method for cell transplantation. To improve the therapeutic efficacy, we combined hUC-MSCs with cell sheet technology to evaluate the safety and efficacy of hUC-MSC sheets in preclinical studies using appropriate animal models. METHODS hUC-MSC sheets were fabricated by hUC-MSCs from a cell bank established by a standard operation process and quality control. Cytokine secretion, immunoregulation, and angiopoiesis were evaluated in vitro. Oncogenicity and cell diffusion assays of hUC-MSC sheets were conducted to verify the safety of hUC-MSCs sheet transplantation in mice. To provide more meaningful animal experimental data for clinical trials, porcine myocardial infarction (MI) models were established by constriction of the left circumflex, and hUC-MSC sheets were transplanted onto the ischemic area of the heart tissue. Cardiac function was evaluated and compared between the experimental and MI groups. RESULTS The in vitro results showed that hUC-MSC sheets could secrete multiple cellular factors, including VEGF, HGF, IL-6, and IL-8. Peripheral blood mononuclear cells had a lower proliferation rate and lower TNF-α secretion when co-cultured with hUC-MSC sheets. TH1 cells had a smaller proportion after activation. In vivo safety results showed that the hUC-MSCs sheet had no oncogenicity and was mainly distributed on the surface of the ischemic myocardial tissue. Echocardiography showed that hUC-MSC sheets effectively improved the left ventricular ejection fraction (LVEF), and the LVEF significantly changed (42.25 ± 1.23% vs. 66.9 ± 1.10%) in the hUC-MSC transplantation group compared with the MI group (42.52 ± 0.65% vs. 39.55 ± 1.97%) at 9 weeks. The infarct ratio of the hUC-MSCs sheet transplantation groups was also significantly reduced (14.2 ± 4.53% vs. 4.00 ± 2.00%) compared with that of the MI group. CONCLUSION Allogeneic source and cell bank established by the standard operation process and quality control make hUC-MSCs sheet possible to treat MI by off-the-shelf drug with universal quality instead of individualized medical technology.
Collapse
Affiliation(s)
- Shuang Gao
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Yongqiang Jin
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Jianlin Ma
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Juan Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co., Ltd., No. 9 JiuXianQiao North Road, Beijing, 100015, China
| | - Zehua Shao
- Heart Center of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Taibing Fan
- Children Heart Center, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Road, Zhengzhou, 450018, China
| | - Mingkui Zhang
- Heart Center, First Hospital of Tsinghua University, No. 6 JiuXianQiao 1st Road, Beijing, 10016, China
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Honggo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
41
|
Ochiai J, Villanueva L, Niihara H, Niihara Y, Oliva J. Posology and Serum-/Xeno-Free Engineered Adipose Stromal Cells Cell Sheets. Front Cell Dev Biol 2022; 10:873603. [PMID: 35557946 PMCID: PMC9086846 DOI: 10.3389/fcell.2022.873603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Well-characterized adipose stem cells and chemically defined culture media are important factors that control the production of the cell sheet, used in translational medicine. In this study, we have developed and engineered multilayer adipose stem cell cell sheets (ASCCSs) using chemically defined/serum-free culture media: undifferentiated or differentiated into osteoblasts and chondrocytes. In addition, using the cell sheet transmittance, we estimated the number of cells per cell sheet. Undifferentiated ASCCSs were engineered in 10 days, using serum-free/xeno-free culture media. They were CD29+, CD73+, CD90+, CD105+, HLA-A+, and HLA-DR-. ASCCSs differentiated into chondrocytes and osteoblasts were also engineered using chemically defined and animal-free culture media, in only 14 days. The addition of an ROCK inhibitor improved the chondrocyte cell sheet engineering. The decrease in the cell sheet transmittance rate was higher for the osteoblast cell sheets due to the intracellular Ca2+ accumulation. The estimation of cell number per cell sheet was carried out with the transmittance, which will provide important information for cell sheet posology. In conclusion, three types of ASCCSs were engineered using serum-free, xeno-free culture media, expressing their specific markers. Their transmittance measurement allowed estimating the number of cells per cell sheet, with a non-invasive methodology.
Collapse
Affiliation(s)
- Jun Ochiai
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| | | | - Hope Niihara
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| | | | - Joan Oliva
- Emmaus Life Sciences, Inc., Torrance, CA, United States
| |
Collapse
|
42
|
Tawfeek GAE, Eseily HA. A novel function of collagen/PCL nanofiber interaction with MSCs in osteoarthritis is potentiation its immunomodulatory effect through increased ICAM expression. Transpl Immunol 2022; 73:101625. [DOI: 10.1016/j.trim.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
|
43
|
A morphological study of adipose-derived stem cell sheets created with temperature-responsive culture dishes using scanning electron microscopy. Med Mol Morphol 2022; 55:187-198. [PMID: 35449367 DOI: 10.1007/s00795-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Adipose-derived stem cell (ADSC) sheets have potential to be effective in various therapies. In this study, we first demonstrated that a cell sheet composed of human ADSCs could be created using a new temperature-responsive culture dish from the DIC Corporation. The dish can cause detachment of adherent cells due to temperature changes, but a few morphological analyses have evaluated the presence or absence of damage on the detached surface of cell sheet. To characterize our ADSC sheet, we tried to observe the surface of ADSC sheets with scanning electron microscope (SEM) using the ionic liquid, which enables the rapid preparation of samples. No damage was found on the surface of the ADSC sheets on the side that had been in contact with the surface of the culture dishes. In addition, when the transcriptomes of the harvested cell sheets were compared with those of monolayer cultures, no up-regulation of cell death related genes were detected. These results propose that the detachment from temperature-responsive culture dish causes no serious damage on the prepared ADSC sheet. It is also suggested that the SEM with ionic liquids is a useful and rapid method for the analysis of ADSC sheets for therapy.
Collapse
|
44
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
45
|
Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice. Int J Mol Sci 2022; 23:ijms23073417. [PMID: 35408778 PMCID: PMC8998959 DOI: 10.3390/ijms23073417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.
Collapse
|
46
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
47
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
48
|
Characterization and functional analysis of the adipose tissue-derived stromal vascular fraction of pediatric patients with osteogenesis imperfecta. Sci Rep 2022; 12:2414. [PMID: 35165317 PMCID: PMC8844034 DOI: 10.1038/s41598-022-06063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractPediatric patients with Osteogenesis Imperfecta (OI), a heritable connective tissue disorder, frequently suffer from long bone deformations. Surgical correction often results in bone non-unions, necessitating revision surgery with autogenous bone grafting using bone-marrow-derived stem cells (BM-SC) to regenerate bone. BM-SC harvest is generally invasive and limited in supply; thus, adipose tissue's stromal vascular fraction (SVF) has been introduced as an alternative stem cell reservoir. To elucidate if OI patients' surgical site dissected adipose tissue could be used as autologous bone graft in future, we investigated whether the underlying genetic condition alters SVF's cell populations and in vitro differentiation capacity. After optimizing SVF isolation, we demonstrate successful isolation of SVF of pediatric OI patients and non-OI controls. The number of viable cells was comparable between OI and controls, with about 450,000 per gram tissue. Age, sex, type of OI, disease-causing collagen mutation, or anatomical site of harvest did not affect cell outcome. Further, SVF-containing cell populations were similar between OI and controls, and all isolated SVF's demonstrated chondrogenic, adipogenic, and osteogenic differentiation capacity in vitro. These results indicate that SVF from pediatric OI patients could be used as a source of stem cells for autologous stem cell therapy in OI.
Collapse
|
49
|
Three-Dimensional Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Promotes Matrix Metallopeptidase 13 (MMP13) Expression in Type I Collagen Hydrogels. Int J Mol Sci 2021; 22:ijms222413594. [PMID: 34948393 PMCID: PMC8706974 DOI: 10.3390/ijms222413594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Autologous bone transplantation is the principal method for reconstruction of large bone defects. This technique has limitations, such as donor site availability, amount of bone needed and morbidity. An alternative to this technique is tissue engineering with bone marrow-derived mesenchymal stem cells (BMSCs). In this study, our aim was to elucidate the benefits of culturing BMSCs in 3D compared with the traditional 2D culture. In an initial screening, we combined BMSCs with four different biogels: unmodified type I collagen (Col I), type I collagen methacrylate (ColMa), an alginate and cellulose-based bioink (CELLINK) and a gelatin-based bioink containing xanthan gum (GelXA-bone). Col I was the best for structural integrity and maintenance of cell morphology. Osteogenic, adipogenic, and chondrogenic differentiations of the BMSCs in 2D versus 3D type I collagen gels were investigated. While the traditional pellet culture for chondrogenesis was superior to our tested 3D culture, Col I hydrogels (i.e., 3D) favored adipogenic and osteogenic differentiation. Further focus of this study on osteogenesis were conducted by comparing 2D and 3D differentiated BMSCs with Osteoimage® (stains hydroxyapatite), von Kossa (stains anionic portion of phosphates, carbonates, and other salts) and Alizarin Red (stains Ca2+ deposits). Multivariate gene analysis with various covariates showed low variability among donors, successful osteogenic differentiation, and the identification of one gene (matrix metallopeptidase 13, MMP13) significantly differentially expressed in 2D vs. 3D cultures. MMP13 protein expression was confirmed with immunohistochemistry. In conclusion, this study shows evidence for the suitability of type I collagen gels for 3D osteogenic differentiation of BMSCs, which might improve the production of tissue-engineered constructs for treatment of bone defects.
Collapse
|
50
|
Guo X, Wang J, Zou W, Wei W, Guan X, Liu J. Exploring microenvironment strategies to delay mesenchymal stem cell senescence. Stem Cells Dev 2021; 31:38-52. [PMID: 34913751 DOI: 10.1089/scd.2021.0254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as an important candidate for cell therapy and tissue regeneration. However, some limitations in translational research and therapies still exist, such as insufficient cell supply, inadequate differentiation potential, and decreased immune capacity, all of which result from replicative senescence during long-term in vitro culture. In vitro, stem cells lack a protective microenvironment owing to the absence of physical and biochemical cues compared with the in vivo niche, which provides dynamic physicochemical and biological cues. This difference results in accelerated aging after long-term in vitro culture. Therefore, it remains a great challenge to delay replicative senescence in culture. Constructing a microenvironment to delay replicative senescence of MSCs by maintaining their phenotypes, properties, and functions is a feasible strategy to solve this problem and has made measurable progress both in preclinical studies and clinical trials. Here, we review the current knowledge on the characteristics of senescent MSCs, explore the molecular mechanisms of MSCs senescence, describe the niche of MSCs, and discuss some current microenvironment strategies to delay MSCs replicative senescence that can broaden their range of therapeutic applications.
Collapse
Affiliation(s)
- Xunhui Guo
- First Affiliated Hospital of Dalian Medical University, 74710, Stem Cell Clinical Research Center, Dalian, China;
| | - Jiayi Wang
- First Affiliated Hospital of Dalian Medical University, 74710, Stem Cell Clinical Research Center, Dalian, Dalian, China;
| | - Wei Zou
- Liaoning Normal University, 66523, College of Life Sciences, Dalian, China;
| | - Wenjuan Wei
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| | - Xin Guan
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| | - Jing Liu
- First Affiliated Hospital of Dalian Medical University, 74710, Dalian, China, 116011;
| |
Collapse
|