1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Bai W, Wang Y, Ma J, Li G, Wang Y, Yang C, Zhang Q, Li Q, Zhang J, Zhang P. Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 2025; 296:128132. [PMID: 40112660 DOI: 10.1016/j.micres.2025.128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The rise of drug-resistant Candida albicans (C. albicans) has led to an urgent need for new therapeutic strategies. Histone deacetylases (HDACs) inhibition has been shown to limit fungal virulence while enhancing the efficacy of antifungal drugs against Candida. However, HDACs are highly conserved from yeast to humans, which has hindered the application of these inhibitors in the antifungal therapy. The aim of this study is to identify a suitable antifungal target and develop specific inhibitors targeting C. albicans HDACs. Based on sequence alignments, the HDAC Hos1 in C. albicans was proposed as a target for further investigation. We evaluated the impact of Hos1 on C. albicans pathogenicity using a murine model of disseminated candidiasis. Results showed that Hos1 null mutant caused less damage to mouse tissues. Additionally, we demonstrated that the reduced virulence was due to inhibition of cell wall O-mannan biosynthesis and altered metabolic flexibility, leading to decreased adaptability of C. albicans. Increased sensitivity of C. albicans to antifungal drugs was attributed to abnormal accumulation of ergosterol in the cell membrane. Furthermore, we identified Hos1 inhibitors from the ZINC database using molecular docking. These inhibitors exhibited highly specific inhibition of the deacetylation activity of C. albicans Hos1. Importantly, the inhibitors not only reduced colonization and invasion by C. albicans in vivo but also synergized with polyene drugs to combat C. albicans by causing abnormal accumulation of ergosterol. Our findings provide detailed insights into antifungal targets and a useful foundation for the discovery of antifungal drugs specifically targeting Candida.
Collapse
Affiliation(s)
- Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Zonglian College, Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Yang Y, He H, Liu B, Li Z, Sun J, Zhao Z, Yang Y. Protein lysine acetylation regulates oral microorganisms. Front Cell Infect Microbiol 2025; 15:1594947. [PMID: 40444154 PMCID: PMC12119520 DOI: 10.3389/fcimb.2025.1594947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Post-translational modifications (PTMs) are integral to the regulation of protein function, stability, and cellular processes. Lysine acetylation, a widespread PTM, has been extensively characterized for its role in eukaryotic cellular functions, particularly in metabolism, gene expression, and disease progression. However, its involvement in oral microbiota remains inadequately explored. This review examines the emerging significance of lysine acetylation in modulating oral microbial communities. The oral cavity, characterized by its unique anatomical and environmental conditions, serves as a dynamic habitat where microbiota interact with host factors such as diet, immune response, pH, and the level of oxygen. Lysine acetylation enables bacterial adaptation to these fluctuating conditions, influencing microbial metabolism, virulence, and stress responses. For example, acetylation of lactate dehydrogenase in Streptococcus mutans reduces its acidogenicity and aciduricity, which decreases its cariogenic potential. In diverse environmental conditions, including hypoxic or anaerobic environments, acetylation regulates energy utilization pathways and enzyme activities, supporting bacterial survival and adaptation. Additionally, acetylation controls the production of extracellular polysaccharides (EPS), which are essential for biofilm formation and bacterial colonization. The acetylation of virulence factors can modulate the pathogenic potential of oral bacteria, either enhancing or inhibiting their activity depending on the specific context and regulatory mechanisms involved. This review also explores the interactions between acetylation and other PTMs, highlighting their synergistic or antagonistic effects on protein function. A deeper understanding of lysine acetylation mechanisms in oral microbiota could provide valuable insights into microbial adaptation and pathogenesis, revealing potential therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Yuanchao Yang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, China
| | - Bingshi Liu
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Zhuoyue Li
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Jiaman Sun
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| | - Zhili Zhao
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha, China
| |
Collapse
|
4
|
Wei H, Zheng H, Wang S, Yang Y, Zhao R, Gu A, Hu R, Lan F, Wen W. Targeting redox-sensitive MBD2-NuRD condensate in cancer cells. Nat Cell Biol 2025; 27:801-816. [PMID: 40307576 DOI: 10.1038/s41556-025-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Transcriptional silencing of hypermethylated tumour suppressor genes is a hallmark of tumorigenesis but the underlying mechanism remains enigmatic. Here we show that methyl-CpG-binding domain protein 2 (MBD2) forms nuclear condensate in diverse cancer cells, where it assembles and navigates the chromatin remodeller NuRD complex to these gene loci for transcriptional suppression, thus fuelling tumour growth. Disturbance of MBD2 condensate reduces the level of NuRD complex-specific proteins, destabilizes heterochromatin foci, facilitates chromatin relaxation and consequently impedes tumour progression. We demonstrate that MBD2 condensate is redox sensitive, mediated by C359. Pro-oxidative interventions disperse MBD2-NuRD condensate, thereby alleviating the transcriptional repression of tumour suppressor genes. Our findings illuminate a hitherto unappreciated function of MBD2 condensate in sustaining a repressive chromatin state essential for cancer cell proliferation and suggest an oxidative stress targeting approach for malignancies with excessive MBD2 condensate.
Collapse
Affiliation(s)
- Heyang Wei
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongdan Zheng
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siqing Wang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Yang
- Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ronggui Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Lan
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Dai W, Yu Q, Ma R, Zheng Z, Hong L, Qi Y, He F, Wang M, Ge F, Yu X, Li S. PKA plays a conserved role in regulating gene expression and metabolic adaptation by phosphorylating Rpd3/HDAC1. Nat Commun 2025; 16:4030. [PMID: 40301306 PMCID: PMC12041213 DOI: 10.1038/s41467-025-59064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Cells need to reprogram their metabolism to adapt to extracellular nutrient changes. The yeast histone acetyltransferase SAGA (Spt-Ada-Gcn5-acetyltransferase) has been reported to acetylate its subunit Ada3 and form homo-dimers to enhance its ability to acetylate nucleosomes and facilitate metabolic gene transcription. How cells transduce extracellular nutrient changes to SAGA structure and function changes remains unclear. Here, we found that SAGA is deacetylated by Rpd3L complex and uncover how its deacetylase activity is repressed by nutrient sensor protein kinase A (PKA). When sucrose is used as the sole carbon source, PKA catalytic subunit Tpk2 is activated, which phosphorylates Rpd3L catalytic subunit Rpd3 to inhibit its ability to deacetylate Ada3. Moreover, Tpk2 phosphorylates Rpd3L subunit Ash1, which specifically reduces the interaction between Rpd3L and SAGA. By phosphorylating both Rpd3 and Ash1, Tpk2 inhibits Rpd3L-mediated Ada3 deacetylation, which promotes SAGA dimerization, nucleosome acetylation and transcription of genes involved in sucrose utilization and tricarboxylate (TCA) cycle, resulting in metabolic shift from glycolysis to TCA cycle. Most importantly, PKA phosphorylates HDAC1, the Rpd3 homolog in mammals to repress its deacetylase activity, promote TCA cycle gene transcription and facilitate cell growth. Our work hence reveals a conserved role of PKA in regulating Rpd3/HDAC1 and metabolic adaptation.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lingling Hong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yuqing Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Fei He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Min Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Life Sciences, Hubei University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Liu N, Li JX, Yuan DY, Su YN, Zhang P, Wang Q, Su XM, Li L, Li H, Chen S, He XJ. Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis. EMBO J 2025:10.1038/s44318-025-00445-w. [PMID: 40295864 DOI: 10.1038/s44318-025-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jia-Xin Li
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qi Wang
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haitao Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Pires GS, Tolomeu HV, Rodrigues DA, Lima LM, Fraga CAM, Pinheiro PDSM. Drug Discovery for Histone Deacetylase Inhibition: Past, Present and Future of Zinc-Binding Groups. Pharmaceuticals (Basel) 2025; 18:577. [PMID: 40284012 PMCID: PMC12030391 DOI: 10.3390/ph18040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Histone deacetylases (HDACs) are key regulators of gene expression, influencing chromatin remodeling and playing a crucial role in various physiological and pathological processes. Aberrant HDAC activity has been linked to cancer, neurodegenerative disorders, and inflammatory diseases, making these enzymes attractive therapeutic targets. HDAC inhibitors (HDACis) have gained significant attention, particularly those containing zinc-binding groups (ZBGs), which interact directly with the catalytic zinc ion in the enzyme's active site. The structural diversity of ZBGs profoundly impacts the potency, selectivity, and pharmacokinetics of HDACis. While hydroxamic acids remain the most widely used ZBGs, their limitations, such as metabolic instability and off-target effects, have driven the development of alternative scaffolds, including ortho-aminoanilides, mercaptoacetamides, alkylhydrazides, oxadiazoles, and more. This review explores the structural and mechanistic aspects of different ZBGs, their interactions with HDAC isoforms, and their influence on inhibitor selectivity. Advances in structure-based drug design have allowed the fine-tuning of HDACi pharmacophores, leading to more selective and efficacious compounds with improved drug-like properties. Understanding the nuances of ZBG interactions is essential for the rational design of next-generation HDACis, with potential applications in oncology, neuroprotection, and immunotherapy.
Collapse
Affiliation(s)
- Gustavo Salgado Pires
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
| | - Daniel Alencar Rodrigues
- School of Pharmacy and Biomolecular Sciences (PBS), Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland;
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (G.S.P.); (H.V.T.); (L.M.L.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal (PPGFQM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
8
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
9
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
10
|
Lai R, Li H. Deacetylation mechanism of histone deacetylase 8: insights from QM/MM MP2 calculations. Phys Chem Chem Phys 2025; 27:7120-7138. [PMID: 40109193 DOI: 10.1039/d5cp00002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the catalytic mechanism of histone deacetylases can greatly benefit the development of targeted therapies that are safe and effective. Combined quantum mechanical and molecular mechanical (QM/MM) Møller-Plesset second-order perturbation theory (MP2) geometry optimizations are performed to investigate the catalytic mechanism of the deacetylation reaction of a tetrapeptide catalyzed by human Histone Deacetylase 8. A three-step catalytic mechanism is identified: the first step is the formation of a negatively charged tetrahedral intermediate via nucleophilic addition of the activated water to the amide C atom and a proton transfer from the water to His143; the second step is the formation of a neutral tetrahedral intermediate with an elongated amide C-N bond via a proton transfer from His143 to the amide N atom. The third step is the complete cleavage of the amide C-N bond, accompanied by a proton transfer from the newly formed carboxylic group of the neutral tetrahedral intermediate to His142. These three steps have similar computed energy barriers, with the second step having the highest calculated activation free energy of 19.6 kcal mol-1. When there is no potassium ion at site 1, the calculated activation free energy is 17.7 kcal mol-1. Both values are in good agreement with an experimental value of 17.5 kcal mol-1. Their difference implies that there would be a 25-fold increase in the enzyme's activity, in line with experiments. The solvent hydrogen-deuterium kinetic isotope effect was computed to be ∼3.8 for the second step in both cases. It is also found that the energy barriers are significantly and systematically higher on the QM/MM B3LYP and QM/MM B3LYP-D3 potential energy surfaces. In particular, the QM/MM B3LYP and B3LYP-D3 methods fail to predict the neutral tetrahedral intermediate and a meaningful transition state for the third step, leading to a two-step mechanism. With a sufficiently large basis set such as aug-cc-pVDZ, QM/MM M05-2X, M06-2X, M06, and MN15 methods can give results much closer to the QM/MM MP2 method. However, when a smaller basis set such as 6-31G* is used, these methods can lead to errors as large as 10 kcal mol-1 on the reaction pathway. These results highlight the importance of using accurate QM methods in the computational study of enzyme catalysis.
Collapse
Affiliation(s)
- Rui Lai
- College of Chemistry, Jilin University, Changchun, 130021, China.
| | - Hui Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
11
|
Schäker-Hübner L, Toledano-Pinedo M, Eimermacher S, Krasniqi V, Porro-Pérez A, Tan K, Horn G, Stegen P, Elsinghorst PW, Wille T, Pietsch M, Gütschow M, Marco-Contelles J, Hansen FK. Contilisant-Belinostat Hybrids: Polyfunctionalized Indole Derivatives as Multineurotarget Drugs for the Potential Treatment of Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:831-840. [PMID: 40109740 PMCID: PMC11915037 DOI: 10.1021/acsptsci.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
In this work, we designed, synthesized, and evaluated two types of multineurotargeting compounds using a pharmacophore merging strategy, aiming to develop potential treatments for Alzheimer's disease. We combined belinostat, an FDA-approved unselective histone deacetylase (HDAC) inhibitor, with the 5-substituted indole core of contilisant, known for its antioxidant and neuroprotective properties as well as its potent inhibitory activity against monoamine oxidases (MAOs), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Among these, compounds 8c (HDAC1, IC50 = 0.019 μM; HDAC6, IC50 = 0.040 μM; AChE, IC50 = 20.06 μM; BChE, IC50 = 17.10 μM; MAO-B, IC50 = 2.14 μM), and 9c (HDAC1, IC50 = 0.126 μM; HDAC6, IC50 = 0.020 μM; AChE, IC50 = 2.73 μM; BChE, IC50 = 4.03 μM; MAO-B, IC50 = 1.18 μM) emerged as the most promising candidates. These compounds warrant further investigation as potential treatments for Alzheimer's disease due to their unique inhibition profiles and favorable mode of inhibition.
Collapse
Affiliation(s)
- Linda Schäker-Hübner
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mireia Toledano-Pinedo
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Sophia Eimermacher
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
| | - Vesa Krasniqi
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
| | - Alicia Porro-Pérez
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Kathrin Tan
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, München D-80937, Germany
| | - Philipp Stegen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Paul W Elsinghorst
- Bundeswehr Medical Academy, Neuherbergstraße 11, München D-80937, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, München D-80937, Germany
| | - Markus Pietsch
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, Leverkusen D-51379, Germany
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, Cologne D-50931, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - José Marco-Contelles
- Institute of General Organic Chemistry (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Finn K Hansen
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
12
|
Mousavi N, Zhou E, Razavi A, Ebrahimi E, Varela-Castillo P, Yang XJ. P3 site-directed mutagenesis: An efficient method based on primer pairs with 3'-overhangs. J Biol Chem 2025; 301:108219. [PMID: 39863101 PMCID: PMC11910099 DOI: 10.1016/j.jbc.2025.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the ideal efficiency of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations. An alternative and innovative strategy is to utilize primer pairs with 3'-overhangs, but this approach has not been fully developed. As the first step toward reaching the efficiency of 100%, we have optimized this approach systematically (such as use of newly designed short primers, test of different Pfu DNA polymerases, and modification of PCR parameters) and evaluated the resulting method extensively with >100 mutations on 12 mammalian expression vectors, ranging from 7.0 to 13.4 kb in size and encoding ten epigenetic regulators linked to cancer and neurodevelopmental disorders. We have also tested the new method with two expression vectors for the SARS-CoV-2 spike protein. Compared to the QuickChange method, the success rate has increased substantially, with an average efficiency of ∼50%, with some at or close to 100%, and requiring much less time for engineering various mutations. Therefore, we have developed a new site-directed mutagenesis method for efficient and economical generation of various mutations. Notably, the method failed with a human KAT2B expression plasmid that possesses extremely GC-rich sequences. Thus, this study also sheds light on how to improve the method for developing ideal mutagenesis methods with the efficiency of ∼100% for a wide spectrum of plasmids.
Collapse
Affiliation(s)
- Negar Mousavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ethan Zhou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Arezousadat Razavi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Elham Ebrahimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Remans K, Sehr P, Steimbach RR, Gunkel N, Miller AK. TR-FRET assay for profiling HDAC10 inhibitors and PROTACs. Methods Enzymol 2025; 715:41-63. [PMID: 40382152 DOI: 10.1016/bs.mie.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Quantitative biochemical characterization of the binding/inhibitory properties of investigative substances against their protein targets and anti-targets is a necessary step in modern drug discovery campaigns. The histone deacetylase family of proteins comprises eleven Zn2+ dependent enzymes, members of which are regularly investigated as therapeutic drug targets. The binding of histone deacetylases by small molecule inhibitors or PROTACs is typically measured in enzymatic assays that use acylated lysine-containing peptides as substrates. Histone deacetylase 10, however, is unique within the family in that it recognizes acetylated small molecule polyamines, as opposed to peptides, as substrates. We have therefore adapted a TR-FRET ligand displacement assay for histone deacetylase 10, which does not rely on enzymatic turnover of a substrate. In this chapter, we describe the preparation of the three different assay components: a small molecule dye conjugate "tracer", a TwinStrep-GST-HDAC10 fusion protein, and Eu3+-labelled Strep-TactinXT®. Lastly, we describe how to combine these reagents and perform dose-response measurements of investigational HDAC10-binding molecules to produce IC50 values.
Collapse
Affiliation(s)
- Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Heidelberg, Germany
| | - Peter Sehr
- European Molecular Biology Laboratory (EMBL), Chemical Biology Core Facility, Heidelberg, Germany
| | - Raphael R Steimbach
- German Cancer Research Center (DKFZ), Cancer Drug Development Group, Heidelberg, Germany
| | - Nikolas Gunkel
- German Cancer Research Center (DKFZ), Cancer Drug Development Group, Heidelberg, Germany
| | - Aubry K Miller
- German Cancer Research Center (DKFZ), Cancer Drug Development Group, Heidelberg, Germany.
| |
Collapse
|
14
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Seifert-Gorzycki J, Muñoz D, Lizarraga A, Iriarte L, Coceres V, Strobl-Mazzulla PH, de Miguel N. Targeting histone acetylation to overcome drug resistance in the parasite Trichomonas vaginalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631743. [PMID: 39829914 PMCID: PMC11741363 DOI: 10.1101/2025.01.07.631743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Trichomoniasis, caused by the parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted infection. Current treatment relies exclusively on 5-nitroimidazole drugs, with metronidazole (MTZ) as the primary option. However, the increasing prevalence of MTZ-resistant strains poses a significant challenge, particularly in the current absence of alternative therapies. Several studies have revealed that the development of metronidazole resistance in T. vaginalis is linked to genomic and transcriptional alterations. Given the role of epigenetic regulation in controlling gene expression, we investigated whether targeting histone deacetylase (HDAC) enzymes could influence drug resistance. Treatment of an MTZ-resistant strain (B7268) with the HDAC inhibitor, trichostatin A (TSA), in combination with MTZ enhanced drug sensitivity and induced significant genome-wide transcriptional changes, as revealed by RNA-seq analysis. To identify drug-related genes epigenetically silenced in the resistant strain but highly active in a sensitive strain, we compared the expression levels of the genes affected by TSA and MTZ treatment with their baseline expression profiles in both resistant and sensitive strains. This analysis identified 130 candidate genes differentially expressed in the sensitive strain NYH209, less expressed in the resistant B7268 strain, that exhibited significant expression changes upon TSA and MTZ treatment. Functional validation involved transfecting the B7268 strain with plasmids encoding four individual candidate genes: a thioredoxin reductase (TrxR), a cysteine synthase (CS), and two genes containing Myb domains (Myb5 and Myb6). Overexpression of three of these genes resulted in a marked reduction in MTZ resistance, demonstrating their role in modulating drug sensitivity. Our findings identified three novel genes that modulate drug resistance in T. vaginalis. This study reveals a previously unknown epigenetic mechanism underlying drug resistance and highlights the therapeutic potential of targeting epigenetic factors, such as HDACs, to overcome resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Julieta Seifert-Gorzycki
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Daniela Muñoz
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Lucrecia Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Verónica Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H. Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| |
Collapse
|
16
|
He R, He Z, Zhang T, Liu B, Gao M, Li N, Geng Q. HDAC3 in action: Expanding roles in inflammation and inflammatory diseases. Cell Prolif 2025; 58:e13731. [PMID: 39143689 PMCID: PMC11693555 DOI: 10.1111/cpr.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhuokun He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Zhang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bohao Liu
- Department of Thoracic SurgeryJilin UniversityChangchunChina
| | - Minglang Gao
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Li
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qing Geng
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
17
|
Aparecida Dos Santos France F, Maeda DK, Rodrigues AB, Ono M, Lopes Nogueira Marchetti F, Marchetti MM, Faustino Martins AC, Gomes RDS, Rainho CA. Exploring fatty acids from royal jelly as a source of histone deacetylase inhibitors: from the hive to applications in human well-being and health. Epigenetics 2024; 19:2400423. [PMID: 39255363 PMCID: PMC11404605 DOI: 10.1080/15592294.2024.2400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Collapse
Affiliation(s)
| | - Debora Kazumi Maeda
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ana Beatriz Rodrigues
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mai Ono
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Franciele Lopes Nogueira Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos Martins Marchetti
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
18
|
Chang C, Wang H, Liu Y, Xie Y, Xue D, Zhang F. A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae. Biotechnol Lett 2024; 46:1121-1131. [PMID: 39083116 DOI: 10.1007/s10529-024-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 11/10/2024]
Abstract
Rpd3L is a highly conserved histone deacetylase complex in eukaryotic cells and participates in various cellular processes. However, the roles of the Rpd3L component in filamentous fungi remain to be delineated ultimately. In this study, we constructed two knockout mutants of Rpd3L's Rxt3 subunit and characterized their biological functions in A. oryzae. Phenotypic analysis showed that AoRxt3 played a positive role in hyphal growth and conidia formation. Deletion of Aorxt3 resulted in augmented tolerance to multiple stresses, including cell wall stress, cell membrane stress, endoplasmic reticulum stress, osmotic stress and oxidative stress. Noteworthily, we found that Aorxt3-deleting mutants showed a higher kojic acid production than the control strain. However, the loss of Aorxt3 led to a significant decrease in amylase synthesis. Our findings lay the foundation for further exploring the role of other Rpd3L subunits and provide a new strategy to improve kojic acid production in A. oryzae.
Collapse
Affiliation(s)
- Chaofeng Chang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Herui Wang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yiling Liu
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Yiting Xie
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Dingxiang Xue
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Feng Zhang
- Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
19
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Yang Y, Luo N, Gong Z, Zhou W, Ku Y, Chen Y. Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon 2024; 10:e38426. [PMID: 39559217 PMCID: PMC11570253 DOI: 10.1016/j.heliyon.2024.e38426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Histone lysine modifications were well-established epigenetic markers, with many types identified and extensively studied. The discovery of histone lysine lactylation had revealed a new form of epigenetic modification. The intensification of this modification was associated with glycolysis and elevated intracellular lactate levels, both of which were closely linked to cellular metabolism. Histone lactylation plays a crucial role in multiple cellular homeostasis, including immune regulation and cancer progression, thereby significantly influencing cell fate. Lactylation can modify both histone and non-histone proteins. This paper provided a comprehensive review of the typical epigenetic effects and lactylation on classical transcription-related lysine sites and summarized the known enzymes involved in histone lactylation and delactylation. Additionally, some discoveries of histone lactylation in tumor biology were also discussed, and some prospects for this field were put forward.
Collapse
Affiliation(s)
- Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Zhipeng Gong
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yin Ku
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| |
Collapse
|
21
|
Ryu HY. Histone Modification Pathways Suppressing Cryptic Transcription. EPIGENOMES 2024; 8:42. [PMID: 39584965 PMCID: PMC11586988 DOI: 10.3390/epigenomes8040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Cryptic transcription refers to the unintended expression of non-canonical sites within the genome, producing aberrant RNA and proteins that may disrupt cellular functions. In this opinion piece, I will explore the role of histone modifications in modulating cryptic transcription and its implications for gene expression and cellular integrity, particularly with a focus on H3K36 and H3K4 methylation marks. H3K36 tri-methylation plays a crucial role in maintaining chromatin integrity by facilitating the recruitment of the Rpd3S histone deacetylase (HDAC) complex, which helps restore closed chromatin states following transcription and prevents cryptic initiation within gene bodies. In parallel, crosstalk between H3K4 di-methylation and histone ubiquitylation and sumoylation is critical for recruiting the Set3 HDAC complex, which maintains low histone acetylation levels in gene bodies and further suppresses cryptic transcription. Therefore, by elucidating these regulatory mechanisms, this opinion highlights the intricate interplay of histone modifications in preserving transcriptional fidelity and suggests potential pathways for future research to develop novel therapies for age-related disorders and other diseases associated with dysregulated gene expression.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; ; Tel.: +82-53-950-6352
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
23
|
Yang L, Wei Q, Chen X, Yang Y, Huang Q, Wang B, Ma X. Identification of HDAC10 as a candidate oncogene in clear cell renal carcinoma that facilitates tumor proliferation and metastasis. Diagn Pathol 2024; 19:120. [PMID: 39237939 PMCID: PMC11378624 DOI: 10.1186/s13000-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) remains one of the most lethal urological malignancies even though a great number of improvements in diagnosis and management have achieved over the past few decades. Accumulated evidence revealed that histone deacetylases (HDACs) play vital role in cell proliferation, differentiation and apoptosis. Nevertheless, the biological functions of histone deacetylation modification related genes in ccRCC remains poorly understood. METHOD Bulk transcriptomic data and clinical information of ccRCC patients were obtained from the TCGA database and collected from the Chinese PLA General Hospital. A total of 36 histone deacetylation genes were selected and studied in our research. Univariate cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, random forest (RF) analysis, and protein-protein interaction (PPI) network analysis were applied to identify key genes affecting the prognosis of ccRCC. The 'oncoPredict' algorithm was utilized for drug-sensitive analysis. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the potential biological function. The ssGSEA algorithm was used for tumor immune microenvironment analysis. The expression levels of HDAC10 were validated by RT-PCR and immunohistochemistry (IHC). 5-ethynyl-2'-deoxyuridine (EdU assay), CCK-8 assay, cell transwell migration and invasion assay and colony formation assay were performed to detect the proliferation and invasion ability of ccRCC cells. A nomogram incorporating HDAC10 and clinicopathological characteristics was established to predict the prognosis of ccRCC patients. RESULT Two machine learning algorithms and PPI analysis identified four histone deacetylation genes that have a significant association with the prognosis of ccRCC, with HDAC10 being the key gene among them. HDAC10 is highly expressed in ccRCC and its high expression is associated with poor prognosis for ccRCC patients. Pathway enrichment and the experiments of EdU staining, CCK-8 assay, cell transwell migration and invasion assay and colony formation assay demonstrated that HDAC10 mediated the proliferation and metastasis of ccRCC cells and involved in reshaping the tumor microenvironment (TME) of ccRCC. A clinically reliable prognostic predictive model was established by incorporating HDAC10 and other clinicopathological characteristics ( https://nomogramhdac10.shinyapps.io/HDAC10_Nomogram/ ). CONCLUSION Our study found the increased expression of HDAC10 was closely associated with poor prognosis of ccRCC patients. HDAC10 showed a pro-tumorigenic effect on ccRCC and promote the proliferation and metastasis of ccRCC, which may provide new light on targeted therapy for ccRCC.
Collapse
Affiliation(s)
- Luojia Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qin Wei
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200125, China
| | - Xinran Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
24
|
Huang B, Peng X, Zhai X, Hu J, Chen J, Yang S, Huang Q, Deng E, Li H, Barakat TS, Chen J, Pei D, Fan X, Chambers I, Zhang M. Inhibition of HDAC activity directly reprograms murine embryonic stem cells to trophoblast stem cells. Dev Cell 2024; 59:2101-2117.e8. [PMID: 38823394 DOI: 10.1016/j.devcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.
Collapse
Affiliation(s)
- Boyan Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Xing Peng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Xuzhao Zhai
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Hu
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Junyu Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; School of Life Science, South China Normal University, Guangzhou 510005, China
| | - Suming Yang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Qingpei Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Enze Deng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Huanhuan Li
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China
| | - Xiaoying Fan
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China.
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland.
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
25
|
Mumford CC, Tanizawa H, Wiles ET, McNaught KJ, Jamieson K, Tsukamoto K, Selker EU. The RPD3L deacetylation complex is required for facultative heterochromatin repression in Neurospora crassa. Proc Natl Acad Sci U S A 2024; 121:e2404770121. [PMID: 39074265 PMCID: PMC11317574 DOI: 10.1073/pnas.2404770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Repression of facultative heterochromatin is essential for developmental processes in numerous organisms. Methylation of histone H3 lysine 27 (H3K27) by Polycomb repressive complex 2 is a prominent feature of facultative heterochromatin in both fungi and higher eukaryotes. Although this methylation is frequently associated with silencing, the detailed mechanism of repression remains incompletely understood. We utilized a forward genetics approach to identify genes required to maintain silencing at facultative heterochromatin genes in Neurospora crassa and identified three previously uncharacterized genes that are important for silencing: sds3 (NCU01599), rlp1 (RPD3L protein 1; NCU09007), and rlp2 (RPD3L protein 2; NCU02898). We found that SDS3, RLP1, and RLP2 associate with N. crassa homologs of the Saccharomyces cerevisiae Rpd3L complex and are required for repression of a subset of H3K27-methylated genes. Deletion of these genes does not lead to loss of H3K27 methylation but increases acetylation of histone H3 lysine 14 at up-regulated genes, suggesting that RPD3L-driven deacetylation is a factor required for silencing of facultative heterochromatin in N. crassa, and perhaps in other organisms.
Collapse
Affiliation(s)
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | | | - Kevin J. McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Kenta Tsukamoto
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| |
Collapse
|
26
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
27
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
29
|
Lu Y, Sun J, Wang L, Wang M, Wu Y, Getachew A, Matthews RC, Li H, Peng WG, Zhang J, Lu R, Zhou Y. ELM2-SANT Domain-Containing Scaffolding Protein 1 Regulates Differentiation and Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells. J Am Heart Assoc 2024; 13:e034816. [PMID: 38904247 PMCID: PMC11255699 DOI: 10.1161/jaha.124.034816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1. METHODS AND RESULTS We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes. CONCLUSIONS In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.
Collapse
Affiliation(s)
- Yu‐An Lu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jiacheng Sun
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Lu Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Meimei Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Yalin Wu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Rachel C. Matthews
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Hui Li
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - William Gao Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jianyi Zhang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
- Department of Medicine, Division of Cardiovascular Disease, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamAL
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
30
|
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol 2024; 15:1405569. [PMID: 38983721 PMCID: PMC11232433 DOI: 10.3389/fphys.2024.1405569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Histone deacetylases (HDAC) catalyze the removal of acetylation modifications on histones and non-histone proteins, which regulates gene expression and other cellular processes. HDAC inhibitors (HDACi), approved anti-cancer agents, emerge as a potential new therapy for heart diseases. Cardioprotective effects of HDACi are observed in many preclinical animal models of heart diseases. Genetic mouse models have been developed to understand the role of each HDAC in cardiac functions. Some of the findings are controversial. Here, we provide an overview of how HDACi and HDAC impact cardiac functions under physiological or pathological conditions. We focus on in vivo studies of zinc-dependent classical HDACs, emphasizing disease conditions involving cardiac hypertrophy, myocardial infarction (MI), ischemic reperfusion (I/R) injury, and heart failure. In particular, we review how non-biased omics studies can help our understanding of the mechanisms underlying the cardiac effects of HDACi and HDAC.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sichong Qian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
31
|
Huang L, Guo H. Acetylation modification in the regulation of macroautophagy. ADVANCED BIOTECHNOLOGY 2024; 2:19. [PMID: 39883319 PMCID: PMC11740868 DOI: 10.1007/s44307-024-00027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 01/31/2025]
Abstract
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs). Among these PTMs, acetylation modification has emerged as a focal point in yeast and animal studies. It plays a pivotal role in autophagy by directly targeting core components within the central machinery of autophagy, including autophagy initiation, nucleation, phagophore expansion, and autophagosome maturation. Additionally, acetylation modulates autophagy at the transcriptional level by modifying histones and transcription factors. Despite its well-established significance in yeast and mammals, the role of acetylation in plant autophagy remains largely unexplored, and the precise regulatory mechanisms remain enigmatic. In this comprehensive review, we summarize the current understanding of the function and underlying mechanisms of acetylation in regulating autophagy across yeast, mammals, and plants. We particularly highlight recent advances in deciphering the impact of acetylation on plant autophagy. These insights not only provide valuable guidance but also inspire further scientific inquiries into the intricate role of acetylation in plant autophagy.
Collapse
Affiliation(s)
- Li Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
32
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
33
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
34
|
Xu M, Hou Y, Li N, Yu W, Chen L. Targeting histone deacetylases in head and neck squamous cell carcinoma: molecular mechanisms and therapeutic targets. J Transl Med 2024; 22:418. [PMID: 38702756 PMCID: PMC11067317 DOI: 10.1186/s12967-024-05169-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
The onerous health and economic burden associated with head and neck squamous cell carcinoma (HNSCC) is a global predicament. Despite the advent of novel surgical techniques and therapeutic protocols, there is an incessant need for efficacious diagnostic and therapeutic targets to monitor the invasion, metastasis and recurrence of HNSCC due to its substantial morbidity and mortality. The differential expression patterns of histone deacetylases (HDACs), a group of enzymes responsible for modifying histones and regulating gene expression, have been demonstrated in neoplastic tissues. However, there is limited knowledge regarding the role of HDACs in HNSCC. Consequently, this review aims to summarize the existing research findings and explore the potential association between HDACs and HNSCC, offering fresh perspectives on therapeutic approaches targeting HDACs that could potentially enhance the efficacy of HNSCC treatment. Additionally, the Cancer Genome Atlas (TCGA) dataset, CPTAC, HPA, OmicShare, GeneMANIA and STRING databases are utilized to provide supplementary evidence on the differential expression of HDACs, their prognostic significance and predicting functions in HNSCC patients.
Collapse
Affiliation(s)
- Mengchen Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiming Hou
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lei Chen
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Shandong Provincial Clinical Research Center for Oral Diseases, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
35
|
Wang C, Chu C, Guo Z, Zhan X. Structures and dynamics of Rpd3S complex bound to nucleosome. SCIENCE ADVANCES 2024; 10:eadk7678. [PMID: 38598631 PMCID: PMC11006229 DOI: 10.1126/sciadv.adk7678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
36
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
37
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
38
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
39
|
Mozzetta C, Sartorelli V, Steinkuhler C, Puri PL. HDAC inhibitors as pharmacological treatment for Duchenne muscular dystrophy: a discovery journey from bench to patients. Trends Mol Med 2024; 30:278-294. [PMID: 38408879 PMCID: PMC11095976 DOI: 10.1016/j.molmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Pier Lorenzo Puri
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
40
|
Li J, Chen X, Liu R, Liu X, Shu M. Engineering novel scaffolds for specific HDAC11 inhibitors against metabolic diseases exploiting deep learning, virtual screening, and molecular dynamics simulations. Int J Biol Macromol 2024; 262:129810. [PMID: 38340912 DOI: 10.1016/j.ijbiomac.2024.129810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
The prevalence of metabolic diseases is increasing at a frightening rate year by year. The burgeoning development of deep learning enables drug design to be more efficient, selective, and structurally novel. The critical relevance of Histone deacetylase 11 (HDAC11) to the pathogenesis of several metabolic diseases makes it a promising drug target for curbing metabolic disorders. The present study aims to design new specific HDAC11 inhibitors for the treatment of metabolic diseases. Deep learning was performed to learn the properties of existing HDAC11 inhibitors and yield a novel compound library containing 23,122 molecules. Subsequently, the compound library was screened by ADMET properties, Lipinski & Veber rules, traditional machine classification models, and molecular docking, and 10 compounds were screened as candidate HDAC11 inhibitors. The stability of the 10 new molecules was further evaluated by deploying RMSD, RMSF, MM/GBSA, free energy landscape mapping, and PCA analysis in molecular dynamics simulations. As a result, ten compounds, Cpd_17556, Cpd_2184, Cpd_8907, Cpd_7771, Cpd_14959, Cpd_7108, Cpd_12383, Cpd_13153, Cpd_14500and Cpd_21811, were characterized as good HDAC11 inhibitors and are expected to be promising drug candidates for metabolic disorders, and further in vitro, in vivo and clinical trials to demonstrate in the future.
Collapse
Affiliation(s)
- Jiali Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - XiaoDie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Xingyu Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Key Laboratory of Screening and activity evaluation of targeted drugs, Chongqing 400054, China.
| |
Collapse
|
41
|
Moreno-Yruela C, Fierz B. Revealing chromatin-specific functions of histone deacylases. Biochem Soc Trans 2024; 52:353-365. [PMID: 38189424 DOI: 10.1042/bst20230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Histone deacylases are erasers of Nε-acyl-lysine post-translational modifications and have been targeted for decades for the treatment of cancer, neurodegeneration and other disorders. Due to their relatively promiscuous activity on peptide substrates in vitro, it has been challenging to determine the individual targets and substrate identification mechanisms of each isozyme, and they have been considered redundant regulators. In recent years, biochemical and biophysical studies have incorporated the use of reconstituted nucleosomes, which has revealed a diverse and complex arsenal of recognition mechanisms by which histone deacylases may differentiate themselves in vivo. In this review, we first present the peptide-based tools that have helped characterize histone deacylases in vitro to date, and we discuss the new insights that nucleosome tools are providing into their recognition of histone substrates within chromatin. Then, we summarize the powerful semi-synthetic approaches that are moving forward the study of chromatin-associated factors, both in vitro by detailed single-molecule mechanistic studies, and in cells by live chromatin modification. We finally offer our perspective on how these new techniques would advance the study of histone deacylases. We envision that such studies will help elucidate the role of individual isozymes in disease and provide a platform for the development of the next generation of therapeutics.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Drug Design and Pharmacology (ILF), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Fukuda M, Fujita Y, Hino Y, Nakao M, Shirahige K, Yamashita T. Inhibition of HDAC8 Reduces the Proliferation of Adult Neural Stem Cells in the Subventricular Zone. Int J Mol Sci 2024; 25:2540. [PMID: 38473789 DOI: 10.3390/ijms25052540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Momoko Fukuda
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuko Hino
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Quarter A6, 171 77 Stockholm, Sweden
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
43
|
Liu XM, Yang L, Yang QB. Advanced Progress of Histone Deacetylases in Rheumatic Diseases. J Inflamm Res 2024; 17:947-955. [PMID: 38370467 PMCID: PMC10870932 DOI: 10.2147/jir.s447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.
Collapse
Affiliation(s)
- Xue-Mei Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Liu Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| |
Collapse
|
44
|
Cai Q, Tian L, Xie JT, Jiang DH. Two sirtuin proteins, Hst3 and Hst4, modulate asexual development, stress tolerance, and virulence by affecting global gene expression in Beauveria bassiana. Microbiol Spectr 2024; 12:e0313723. [PMID: 38193686 PMCID: PMC10846017 DOI: 10.1128/spectrum.03137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Beauveria bassiana is a widely used entomopathogenic fungus in insect biological control applications. In this study, we investigated the role of two sirtuin homologs, BbHst3 and BbHst4, in the biological activities and pathogenicity of B. bassiana. Our results showed that deletion of BbHst3 and/or BbHst4 led to impaired sporulation, reduced (~50%) conidial production, and decreased tolerance to various stresses, including osmotic, oxidative, and cell wall-disturbing agents. Moreover, BbHst4 plays dominant roles in histone H3-K56 acetylation and DNA damage response, while BbHst3 is more responsible for maintaining cell wall integrity. Transcriptomic analyses revealed significant changes (>1,500 differentially expressed genes) in gene expression patterns in the mutant strains, particularly in genes related to secondary metabolism, detoxification, and transporters. Furthermore, the ΔBbHst3, ΔBbHst4, and ΔBbHst3ΔBbHst4 strains exhibited reduced virulence in insect bioassays, with decreased (~20%) abilities to kill insect hosts through topical application and intra-hemocoel injection. These findings highlight the crucial role of BbHst3 and BbHst4 in sporulation, DNA damage repair, cell wall integrity, and fungal infection in B. bassiana. Our study provides new insights into the regulatory mechanisms underlying the biological activities and pathogenicity of B. bassiana and emphasizes the potential of targeting sirtuins for improving the efficacy of fungal biocontrol agents.IMPORTANCESirtuins, as a class of histone deacetylases, have been shown to play important roles in various cellular processes in fungi, including asexual development, stress response, and pathogenicity. By investigating the functions of BbHst3 and BbHst4, we have uncovered their critical contributions to important phenotypes in Beauveria bassiana. Deletion of these sirtuin homologs led to reduced conidial yield, increased sensitivity to osmotic and oxidative stresses, impaired DNA damage repair processes, and decreased fungal virulence. Transcriptomic analyses showed differential expression of numerous genes involved in secondary metabolism, detoxification, transporters, and virulence-related factors, potentially uncovering new targets for manipulation and optimization of fungal biocontrol agents. Our study also emphasizes the significance of sirtuins as key regulators in fungal biology and highlights their potential as promising targets for the development of novel antifungal strategies.
Collapse
Affiliation(s)
- Qing Cai
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Tian
- Department of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jia-Tao Xie
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dao-Hong Jiang
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
46
|
Asfaha Y, Bollmann LM, Skerhut AJ, Fischer F, Horstick N, Roth D, Wecker M, Mammen C, Smits SHJ, Fluegen G, Kassack MU, Kurz T. 5-(Trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based highly selective class IIa HDAC inhibitors exhibit synergistic anticancer activity in combination with bortezomib. Eur J Med Chem 2024; 263:115907. [PMID: 37979441 DOI: 10.1016/j.ejmech.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Clinically used pan and class I HDACi cause severe side effects, whereas class IIa HDACi are less cytotoxic. Here, we present the synthesis and anticancer effects of a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based amides and alkoxyamides derived from the previously reported class IIa HDACi YAK540. The most active class IIa inhibitor 1a showed nanomolar inhibition of the class IIa enzymes 4, 5, 7 (IC50 HDAC4: 12 nM) and high selectivity (selectivity index >318 for HDAC4) over non-class IIa HDACs. Instead of a hydroxamic acid group, 1a has a trifluoromethyloxadiazolyl (TFMO) moiety as a non-chelating Zinc-binding group (ZBG). Applying the Chou-Talalay-method we found an increased synergistic cytotoxic effect of 1a in combination with bortezomib in THP1 cells. 1a in combination with bortezomib enhanced expression of p21 leading to increased caspase-induced apoptosis. Eventually, growth inhibition by 1a of the head-neck cancer cell line Cal27 was increased upon HDAC4 overexpression in Cal27 in cell culture and using the in vivo chorioallantoic membrane model. The class IIa HDACi 1a outperforms previously described HDAC class IIa inhibitor YAK540 regarding anticancer effects and may constitute a novel option compared to pan and class I HDACi in anticancer combination treatments.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lukas M Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexander J Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dennis Roth
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Maria Wecker
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christian Mammen
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Georg Fluegen
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
47
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
48
|
Jain R, Epstein JA. Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:341-364. [PMID: 38884720 DOI: 10.1007/978-3-031-44087-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan A Epstein
- Departments of Medicine and Cell and Developmental Biology, Institute for Regenerative Medicine, Epigenetics Institute and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
50
|
Ru J, Wang Y, Li Z, Wang J, Ren C, Zhang J. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. Eur J Med Chem 2023; 261:115800. [PMID: 37708798 DOI: 10.1016/j.ejmech.2023.115800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-l-lysine side chains in histones and non-histones, which are key to epigenetic regulation in humans. Targeting HDACs has emerged as a promising strategy for treating various types of cancer, including myeloma and hematologic malignancies. At present, numerous small molecule inhibitors targeting HDACs are actively being investigated in clinical trials. Despite their potential efficacy in cancer treatment, HDAC inhibitors suffer from multi-directional selectivity and preclinical resistance issues. Hence, developing novel inhibitors based on cutting-edge medicinal chemistry techniques is essential to overcome these limitations and improve clinical outcomes. This manuscript presents an extensive overview of the properties and biological functions of HDACs in cancer, provides an overview of the current state of development and limitations of clinical HDAC inhibitors, and analyzes a range of innovative medicinal chemistry techniques that are applied. These techniques include selective inhibitors, dual-target inhibitors, proteolysis targeting chimeras, and protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jinxiao Ru
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Zijia Li
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, USA
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|