1
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Wang H, Liu R, Yu Y, Xue H, Shen R, Zhang Y, Ding J. Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns. Biomaterials 2025; 317:123013. [PMID: 39733514 DOI: 10.1016/j.biomaterials.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way. Cell elongation was modulated via microwell aspect ratios (ARs), and nuclear deformation was generated through a micropillar array in the microwell. Human non-small cell lung cancer cells (A549) were cultured on the quasi-three dimensional micropatterned surfaces, and transforming growth factor-β1 (TGF-β1) was added to induce EMT. We found that chimeric micropatterns upregulated EMT with an increase of cellular AR and nuclear indentation under given TGF-β1. The subsequent assessment of the contractility and oriented assembly of microfilaments elucidated the key role of mechanotransduction in cell elongation and EMT, as proved by myosin inhibition, while it was obstructed by micropillars in the chimeric micropattern. Hence, the micropillar array possessed a nonmonotonic influence, enhancing the EMT of cells with AR of 1, but hindering the EMT with an impact more significant on microwells with large ARs due to the impeded cytoskeleton assembly. This fundamental research has illustrated the complex of cellular and subcellular geometries on cell behaviors including phenotype transition in cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongrui Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanshuang Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Chen X, Tang L, Pan Y, Xie Y, Jin H, Xiang X, Wang Z. oar-miR-29a promotes the establishment of endometrial receptivity by targeting CDC42 in sheep. Theriogenology 2025; 237:22-32. [PMID: 39956034 DOI: 10.1016/j.theriogenology.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Endometrial receptivity is vital for the successful implantation of embryos in sheep. Insufficient receptivity is a major cause of implantation failure, highlighting the need to understand the underlying mechanisms. MicroRNAs (miRNAs) play an essential role in the epigenetic regulation of endometrial receptivity and embryo implantation by influencing post-transcriptional processes. However, the specific mechanisms by which various miRNAs contribute to endometrial receptivity and embryo implantation in sheep remain to be fully elucidated. Our research highlights the significant role of oar-miR-29a, which promotes the migration and proliferation of sheep endometrial epithelial cells (sEECs). We found that oar-miR-29a enhances mRNA expression associated with proliferation, migration, and epithelial-mesenchymal transition (EMT) in sEECs. Additionally, this miRNA enhances the proliferation and migration capabilities of sheep trophoblast cells (sTCs). Moreover, our findings suggest that the target genes of oar-miR-29a are involved in key biological processes and pathways essential for embryo implantation. Notably, our analysis identifies cell division cycle 42 (CDC42) as a target gene of oar-miR-29a. In summary, oar-miR-29a plays a crucial role in promoting endometrial receptivity by targeting CDC42 in sheep. These findings provide insights into the miRNA-based regulatory mechanisms governing uterine physiology during the early stages of pregnancy, emphasizing the importance of this research for improving reproductive outcomes in sheep.
Collapse
Affiliation(s)
- Xi Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Luyi Tang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yizhe Pan
- Agricultural Product Quality and Safety Research Center of Huzhou City, Huzhou, 313000, PR China
| | - Yanshe Xie
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Huijia Jin
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xin Xiang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
4
|
Erzurumlu Y, Catakli D. Cannabidiol Enhances the Anticancer Activity of Etoposide on Prostate Cancer Cells. Cannabis Cannabinoid Res 2025; 10:258-276. [PMID: 39161998 DOI: 10.1089/can.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Introduction: Cannabis sativa extract has been used as an herbal medicine since ancient times. It is one of the most researched extracts, especially among supportive treatments against cancer. Prostate cancer is one of the most frequently diagnosed cancer types in men worldwide and an estimated 288,300 new cases were diagnosed in 2023. Today, many advanced therapeutic approaches are used for prostate cancer, such as immunotherapy and chemotherapy, but acquired drug resistance, long-term drug usage and differentiation of cancer cells mostly restricted the efficiency of therapies. Therefore, it is thought that the use of natural products to overcome these limitations and improve the effectiveness of existing therapies may offer promising approaches. The present study focused on the investigation of the possible enhancer role of cannabidiol (CBD), which is a potent ingredient compound of Cannabis, on the chemotherapeutic agent etoposide in prostate cancer cells. Methods: Herein, we tested the potentiator role of CBD on etoposide in prostate cancer cells by testing the cytotoxic effect, morphological alterations, apoptotic effects, autophagy, unfolded protein response (UPR) signaling, endoplasmic reticulum-associated degradation mechanism (ERAD), angiogenic and androgenic factors, and epithelial-mesenchymal transition (EMT). In addition, we examined the combined treatment of CBD and etoposide on colonial growth, migrative, invasive capability, 3D tumor formation, and cellular senescence. Results: Our findings demonstrated that cotreatment of etoposide with CBD importantly suppressed autophagic flux and induced ERAD and UPR signaling in LNCaP cells. Also, CBD strongly enhanced the etoposide-mediated suppression of androgenic signaling, angiogenic factor VEGF-A, protooncogene c-Myc, EMT, and also induced apoptosis through activation caspase-3 and PARP-1. Moreover, coadministration markedly decreased tumorigenic properties, such as proliferative capacity, colonial growth, migration, and 3D tumor formation and also induced senescence. Altogether, our data revealed that CBD has a potent enhancer effect on etoposide-associated anticancer activities. Conclusion: The present study suggests that the use of CBD as a supportive therapy in existing chemotherapeutic approaches may be a promising option, but this effectiveness needs to be investigated on a large scale.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
- Department of Drug Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
5
|
Ghosh T, Sollich P, Nandi SK. An elastoplastic model approach for the relaxation dynamics of active glasses. SOFT MATTER 2025. [PMID: 40162833 DOI: 10.1039/d4sm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
How activity affects the glassy dynamics is crucial for several biological processes. Furthermore, active glasses offer fascinating phenomenologies, extend the scope of equilibrium glass-forming liquids, and can provide novel insights into the original problem. We introduce a family of novel approaches to investigating the relaxation dynamics of active glasses via an active elastoplastic model (EPM). These approaches describe the relaxation dynamics via local plastic yielding and can provide improved insights as we can study various aspects of the system separately. Activity enters the model via three crucial features: activity-mediated plastic yielding, activated barrier crossing, and persistent rotational dynamics of the yielding direction. We first consider a minimal active EPM that adds the effect of active yielding to a thermal EPM. We show that this active EPM captures the known results of active glasses within a reasonable parameter space. The results also agree well with the analytical results for active glasses when activity is small. The minimal model breaks down at very low temperatures where other effects become important. Looking at the broader model class, we demonstrate that whereas active yielding primarily dominates the relaxation dynamics, the persistence of the yielding direction governs the dynamic heterogeneity in active glasses.
Collapse
Affiliation(s)
- Tanmoy Ghosh
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad 500046, India.
| | - Peter Sollich
- Institute for Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad 500046, India.
| |
Collapse
|
6
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Ko CC, Yang PM. Hypoxia-induced MIR31HG expression promotes partial EMT and basal-like phenotype in pancreatic ductal adenocarcinoma based on data mining and experimental analyses. J Transl Med 2025; 23:305. [PMID: 40065368 PMCID: PMC11895263 DOI: 10.1186/s12967-025-06292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer, with a five-year survival rate below 8%. Its high mortality is largely due to late diagnosis, metastatic potential, and resistance to therapy. Epithelial-mesenchymal transition (EMT) plays a key role in metastasis, enabling cancer cells to become mobile. Partial EMT, where cells maintain both epithelial and mesenchymal traits, is more frequent in tumors than complete EMT and contributes to cancer progression. The long non-coding RNA MIR31 host gene (MIR31HG) has recently emerged as a critical factor in PDAC oncogenesis. This study aimed to investigate MIR31HG's role in partial EMT and its association with the basal-like PDAC subtype. METHODS We analyzed the relationship between MIR31HG expression, partial EMT, and the basal-like subtype of PDAC by integrating data from public databases. We reanalyzed public data from PDAC patient-derived organoids to assess MIR31HG expression and gene signatures under hypoxic and normoxic conditions. RNA sequencing and bioinformatics analyses, including gene set enrichment analysis (GSEA), were used to investigate differentially expressed genes and pathway enrichments. EMT, partial EMT, and hypoxia scores were calculated based on the expression levels of specific gene sets. RESULTS We observed that MIR31HG overexpression strongly correlates with higher partial EMT scores and the stabilization of the epithelial phenotype in PDAC. MIR31HG is highly expressed in the basal-like subtype of PDAC, which exhibits partial EMT traits. Hypoxia, a hallmark of basal-like PDAC, was shown to significantly induce MIR31HG expression, thereby promoting the basal-like phenotype and partial EMT. In patient-derived organoids, hypoxic conditions increased MIR31HG expression and enhanced basal-like and partial EMT gene signatures, while normoxia reduced these expressions. These findings suggest that hypoxia-induced MIR31HG expression plays a crucial role in driving the aggressive basal-like subtype of PDAC. CONCLUSIONS Our results indicate that MIR31HG is crucial in regulating PDAC progression, particularly in the aggressive basal-like subtype associated with hypoxia and partial EMT. Targeting the MIR31HG-mediated network may offer a novel therapeutic approach to combat hypoxia-driven PDAC.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, 71004, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235603, Taiwan.
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Taipei Cancer Center, Taipei Medical University (TMU) and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Guo W, Duan Z, Wu J, Zhou BP. Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis. Semin Cancer Biol 2025; 112:20-35. [PMID: 40058616 DOI: 10.1016/j.semcancer.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Wenzheng Guo
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Zhibing Duan
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Jingjing Wu
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States
| | - Binhua P Zhou
- Departments of Molecular and Cellular Biochemistry, and the Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
9
|
Chung S, Kim C. Comparative Analysis of Transcription Factors TWIST2, GATA3, and HES5 in Glioblastoma Multiforme : Evaluating Biomarker Potential and Therapeutic Targets Using in Silico Methods. J Korean Neurosurg Soc 2025; 68:202-212. [PMID: 39444320 PMCID: PMC11924635 DOI: 10.3340/jkns.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is characterized by substantial heterogeneity and limited therapeutic options. As molecular approaches to central nervous system tumors have gained prominence, this study examined the roles of three genes, TWIST2, GATA3, and HES5, known to be involved in oncogenesis, developmental processes, and maintenance of cancer stem cell properties, which have not yet been extensively studied in GBM. This study is the first to present gene expression data for TWIST2, GATA3, and HES5 specifically within the context of GBM patient survival. METHODS Gene expression data for TWIST2, GATA3, and HES5 were collected from GBM and normal brain tissues using datasets from The Cancer Genome Atlas via the Genomic Data Commons portal and the Genotype-Tissue Expression database. These data were rigorously analyzed using in silico methods. RESULTS All three genes were significantly more expressed in GBM tissues than in normal tissues. TWIST2 and GATA3 were linked to lower survival rates in GBM patients. Interestingly, higher HES5 levels were associated with better survival rates, suggesting a complex role that needs more investigation. CONCLUSION This study shows that TWIST2, GATA3, and HES5 could help predict outcomes in GBM patients. Our multigene model offers a better understanding of GBM and points to new treatment options, bringing hope for improved therapies and patient outcomes. This research advances our knowledge of GBM and highlights the potential of molecular diagnostics in oncology.
Collapse
Affiliation(s)
- Suhmi Chung
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Choonghyo Kim
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
- College of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
10
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Yun H, Han GH, Wee DJ, Chay DB, Chung JY, Kim JH, Cho H. Loss of E-cadherin Activates EGFR-MEK/ERK Signaling, Promoting Cervical Cancer Progression. Cancer Genomics Proteomics 2025; 22:271-284. [PMID: 39993806 PMCID: PMC11880930 DOI: 10.21873/cgp.20501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM This study investigated the relationship between E-cadherin down-regulation and enhanced pERK1/2 signaling in cervical cancer, evaluated their combined prognostic impact, and explored potential therapeutic targets. MATERIALS AND METHODS We analyzed 188 cervical cancer specimens and 300 normal cervical tissue samples using tissue microarray and immunohistochemistry. Small interfering RNA transfection and western blotting were used to study molecular interactions in cervical cancer cell lines. RESULTS We observed a significant inverse correlation between E-cadherin and pERK1/2 expression, as well as poor disease-free survival and overall survival. Additionally, molecular analysis indicated that E-cadherin silencing enhanced ERK signaling and promoted cancer cell proliferation. CONCLUSION The findings suggest that E-cadherin and pERK1/2 are crucial biomarkers for cervical cancer prognosis and their interaction provides a potential target for therapeutic interventions. Further studies are recommended to explore these pathways in the clinical setting.
Collapse
Affiliation(s)
- Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Daniel J Wee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Doo-Byung Chay
- Department of Obstetrics and Gynecology, Sahmyook Medical Center, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea;
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Chisolm SJ, Guo E, Subramaniam V, Schulze KD, Angelini TE. Transitions between cooperative and crowding-dominated collective motion in non-jammed MDCK monolayers. Cells Dev 2025; 181:203989. [PMID: 39709146 DOI: 10.1016/j.cdev.2024.203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Transitions between solid-like and fluid-like states in living tissues have been found in steps of embryonic development and in stages of disease progression. Our current understanding of these transitions has been guided by experimental and theoretical investigations focused on how motion becomes arrested with increased mechanical coupling between cells, typically as a function of packing density or cell cohesiveness. However, cells actively respond to externally applied forces by contracting after a time delay, so it is possible that at some packing densities or levels of cell cohesiveness, mechanical coupling stimulates cell motion instead of suppressing it. Here we report our findings that at low densities and within multiple ranges of cell cohesiveness, cell migration speeds increase with these measures of mechanical coupling. Our observations run counter to our intuition that cell motion will be suppressed by increasingly packing or sticking cells together and may provide new insight into biological processes involving motion in dense cell populations.
Collapse
Affiliation(s)
- Steven J Chisolm
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America
| | - Emily Guo
- Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, United States of America
| | - Vignesh Subramaniam
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America
| | - Kyle D Schulze
- Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, United States of America
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32605, United States of America; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32605, United States of America.
| |
Collapse
|
13
|
Ahmadi S, Yazdi F, Khastar S, Kaur I, Ahmed MH, Kumar A, Rathore G, Kaur P, Shahsavan M, Dehghani-Ghorbi M, Akhavan-Sigari R. Molecular Mechanism of lncRNAs in Regulation of Breast Cancer Metastasis; a Comprehensive Review. Cell Biochem Biophys 2025; 83:229-245. [PMID: 39367197 DOI: 10.1007/s12013-024-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/06/2024]
Abstract
Although the number of breast cancer deaths has decreased, and there have been developments in targeted therapies and combination treatments for the management of metastatic illness, metastatic breast cancer is still the second most common cause of cancer-related deaths in U.S. women. Numerous phases and a vast number of proteins and signaling molecules are involved in the invasion-metastasis cascade. The tumor cells penetrate and enter the blood or lymphatic vessels, and travel to distant organs via the lymphatic or blood vessels. Tumor cells enter cell cycle arrest, adhere to capillary beds in the target organ, and then disseminate throughout the organ's parenchyma, proliferating and enhancing angiogenesis. Each of these processes is regulated by changes in the expression of different genes, in which lncRNAs play a role in this regulation. Transcripts that are longer than 200 nucleotides and do not translate into proteins are called RNAs. LncRNA molecules, whose function depends on their unique molecular structure, play significant roles in controlling the expression of genes at various epigenetic levels, transcription, and so on. LncRNAs have essential functions in regulating the expression of genes linked to cell development in healthy and pathological processes, specialization, programmed cell death, cell division, invasion, DNA damage, and spread to other parts of the body. A number of cancer types have been shown to exhibit aberrant expression of lncRNAs. In this review, we describe the general characteristics, potential molecular mechanisms and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Shokoufeh Ahmadi
- Department of Microbiology, Rabe'Rashidi University, Tabriz, Iran
| | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Mohammad Shahsavan
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
15
|
Shannon KR, Weiss-Sadan T, Merquiol E, Dey G, Gilon T, Turk B, Blum G. Novel Nucleus-Oriented Quenched Activity-Based Probes Link Cathepsin Nuclear Localization with Mitosis. ACS Sens 2025; 10:1321-1333. [PMID: 39960252 DOI: 10.1021/acssensors.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Cysteine cathepsins are important proteases that are highly upregulated in cancers and other diseases. While their reported location is mostly endolysosomal, some evidence shows their nuclear localization and involvement in the cell cycle. We aim to generate tools to investigate the involvement of cathepsins in the cell cycle progression. To investigate nuclear cathepsin activity, we designed nucleus-directed quenched activity-based probes (qABPs) by attaching cell-penetrating peptides (CPPs). qABPs are active-site-directed compounds that enable direct real-time monitoring of enzyme activity by the covalent linkage between the probe and the enzyme's active site. Biochemical evaluation of the CPP-qABPs showed potent and selective probes; cell fractionation, multimodal flow cytometry-imaging, and time-lapse movies demonstrated nuclear cathepsin activity in living cells. Interestingly, these probes reveal a spatiotemporal pattern, a surge of nuclear cathepsin just before mitosis, suggesting yet unrevealed roles of cathepsin in cell division. In summary, these nuclear-directed qABPs serve as unique scientific tools to unlock the hidden features of cysteine proteases and to understand their involvement in cell division and cancer.
Collapse
Affiliation(s)
- Karin Reut Shannon
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University, POB 12271, Jerusalem 9112001, Israel
| | - Tommy Weiss-Sadan
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University, POB 12271, Jerusalem 9112001, Israel
| | - Emmanuelle Merquiol
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University, POB 12271, Jerusalem 9112001, Israel
| | - Gourab Dey
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University, POB 12271, Jerusalem 9112001, Israel
| | - Tamar Gilon
- Azrieli College of Engineering, 26 Yaakov Shreibom Street, Jerusalem 9103501, Israel
| | - Boris Turk
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Galia Blum
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University, POB 12271, Jerusalem 9112001, Israel
- The Wohl Institute for Translational Medicine, Hadassah Hospital, Kalman Ya'akov Man Street , Jerusalem 9112001, Israel
| |
Collapse
|
16
|
Canarslan Demir K, Avci AU, Ozgok Kangal MK, Ceylan B, Abayli SY, Ozler I, Yilmaz KB. Hyperbaric Oxygen Therapy for Managing Cancer Treatment Complications: A Safety Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:385. [PMID: 40142196 PMCID: PMC11943617 DOI: 10.3390/medicina61030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Hyperbaric oxygen therapy (HBOT) has shown promise in managing complications due to cancer treatments, particularly those related to radiotherapy and surgery. Despite its clinical benefits, concerns persist regarding its potential to influence cancer progression. This study aimed to evaluate the safety and clinical outcomes of HBOT in patients with active or previously treated solid tumors. Methods: A retrospective analysis was conducted on patients with solid tumors who underwent at least five HBOT sessions. Comprehensive data, including patient demographics, cancer type, total number of HBOT sessions, imaging findings, and clinical outcomes (recurrence, metastasis, and mortality), were collected. Descriptive statistics and the relationship between the number of HBOT sessions and long-term cancer outcomes were analyzed. Results: This study included 45 patients (median age: 64 years; 60% male) who received a median of 27 HBOT sessions. At initiation, 27.9% of the patients were classified as cured, 53.5% were in remission, and 18.6% had active cancer. Over a median follow-up period of 783 days, 8.7% experienced recurrence, 2.7% had persistent active cancer, and 59.5% had no recurrence. No HBOT-related complications were observed during the course of HBOT. Statistical analyses revealed no significant correlations between the number of HBOT sessions and metastasis (p = 0.213) or mortality (p = 0.881). Conclusions: HBOT appears to be a safe and effective adjunctive therapy for managing complications in patients with solid tumors. No evidence was found to suggest HBOT contributes to tumor progression, recurrence, or metastasis. Future prospective studies with larger cohorts are needed to confirm these results and further evaluate the therapeutic role of HBOT in oncology.
Collapse
Affiliation(s)
- Kubra Canarslan Demir
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Ahmet Ugur Avci
- Department of Aerospace Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Munire Kubra Ozgok Kangal
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Berrin Ceylan
- Department of Aerospace Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Selcen Yusra Abayli
- Department of Undersea and Hyperbaric Medicine, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey; (K.C.D.); (M.K.O.K.)
| | - Ismail Ozler
- Department of General Surgery, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
| | - Kerim Bora Yilmaz
- Department of General Surgery, Gulhane Research and Training Hospital, University of Health Sciences, 06010 Ankara, Turkey
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, 06010 Ankara, Turkey
| |
Collapse
|
17
|
Okuyama K, Tsuchiya M, Debnath KC, Islam S, Yanamoto S. Desmoplastic reaction in the microenvironment of head and neck and other solid tumors: the therapeutic barrier. Ther Adv Med Oncol 2025; 17:17588359251317144. [PMID: 39926258 PMCID: PMC11806477 DOI: 10.1177/17588359251317144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenge due to limited prognostic biomarkers and therapeutic options. The tumor microenvironment (TME), particularly the desmoplastic reaction (DR) characterized by stromal fibrosis, plays a crucial role in cancer progression and resistance to therapy. This review aims to summarize the biological significance of DR in HNSCC initiation, progression, and treatment resistance. Histologically, DR in HNSCC correlates with invasion patterns and clinical outcomes, affecting disease-free and overall survival. The interaction between cancer-associated fibroblasts (CAFs) and TME influences immune responses, including resistance to immunotherapy. Notably, human papillomavirus-driven HNSCC exhibits distinct DR characteristics that further influence the prognosis. DR promotes epithelial-mesenchymal transition and cancer cell invasion through CAF-mediated extracellular matrix remodeling and signaling pathways such as transforming growth factor-beta. DR also affects bone invasion and chemotherapy resistance by modulating stromal responses. Therapeutic strategies targeting DR and stromal components show promise in overcoming therapeutic resistance including resistance to immune checkpoint inhibitors. Understanding the role of DR in HNSCC biology and its impact on treatment response is critical to developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 123, Houston, TX 77030-4009, USA
| | - Maiko Tsuchiya
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
| |
Collapse
|
18
|
Deb VK, Chauhan N, Jain U. Deciphering TGF-β1's role in drug resistance and leveraging plant bioactives for cancer therapy. Eur J Pharmacol 2025; 988:177218. [PMID: 39722325 DOI: 10.1016/j.ejphar.2024.177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement. Tumor microenvironmental TGF-β1 prompts epithelial-mesenchymal transition (EMT), facilitated by transcription factors like slug, twist-1, and snail. Notably, cancer-associated fibroblasts (CAFs) amplify this effect by secreting TGF-β1, fostering drug resistance. Of particular concern is the resistance observed with BRAF/MEK inhibitors (BRAFi/MEKi), highlighting the clinical significance of TGF-β signaling in cancer therapeutics. However, emerging interest in natural anti-cancer agents, with their distinct pharmacological actions on signaling proteins offers promising avenues for therapeutic intervention. This review emphasizes the multifaceted interplay between TGF-β signaling, tumor microenvironment dynamics, and therapeutic resistance mechanisms, illuminating potential targets for combating cancer progression by plant-derived-natural-bioactive compounds. However, this review additionally explores the currently available advanced methods for detecting various types of cancer. Not only that, but it also discussed the function of plant-derived compounds in clinical aspects, as well as its limitations.
Collapse
Affiliation(s)
- Vishal Kumar Deb
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
19
|
López-Collazo E, Hurtado-Navarro L. Cell fusion as a driver of metastasis: re-evaluating an old hypothesis in the age of cancer heterogeneity. Front Immunol 2025; 16:1524781. [PMID: 39967663 PMCID: PMC11832717 DOI: 10.3389/fimmu.2025.1524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Numerous studies have investigated the molecular mechanisms and signalling pathways underlying cancer metastasis, as there is still no effective treatment for this terminal stage of the disease. However, the exact processes that enable primary cancer cells to acquire a metastatic phenotype remain unclear. Increasing attention has been focused on the fusion of cancer cells with myeloid cells, a phenomenon that may result in hybrid cells, so-called Tumour Hybrid Cells (THCs), with enhanced migratory, angiogenic, immune evasion, colonisation, and metastatic properties. This process has been shown to potentially drive tumour progression, drug resistance, and cancer recurrence. In this review, we explore the potential mechanisms that govern cancer cell fusion, the molecular mediators involved, the metastatic characteristics acquired by fusion-derived hybrids, and their clinical significance in human cancer. Additionally, we discuss emerging pharmacological strategies aimed at targeting fusogenic molecules as a means to prevent metastatic dissemination.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
- UNIE University, Madrid, Spain
| | - Laura Hurtado-Navarro
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
20
|
Chen LY, Yang SY, Chou JL, Chou HL, Yeh CC, Chiu CC, Lai HC, Chan MWY, Jhang JS. The Role of SMAD7 in the Epigenetic Regulation of TGF-β Targets in the Metastasis of Ovarian Cancer. Mol Carcinog 2025; 64:290-304. [PMID: 39540800 DOI: 10.1002/mc.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The role of TGF-β signaling in the epigenetic modifications involved in ovarian cancer is not fully understood. This study investigated the relationship between TGF-β signaling, epigenetic modifications, and cellular behaviors in ovarian cancer. We found that E-cadherin, a key cell adhesion molecule, underwent epigenetic silencing via promoter DNA hypermethylation in ovarian cancer cell lines and that this was accompanied by the upregulation of vimentin, which is indicative of a mesenchymal and invasive phenotype. DNA-demethylating agents restored E-cadherin expression, which suggests that TGF-β signaling mediates this epigenetic silencing. Overexpression of SMAD7, an inhibitory component of TGF-β signaling, reversed E-cadherin silencing, which suggests a role of SMAD7 in modulating the epigenetic status. Functionally, SMAD7 overexpression inhibited the migration and invasion in ovarian cancer cells, which suggests its therapeutic potential for suppressing metastasis. Clinically, ovarian cancer patients with high SMAD7 expression had significantly longer disease-free survival. Mechanistically, SMAD7 overexpression decreased the acetylation of H3K9 and the binding of the transcriptional repressor TWIST1 at the E-cadherin promoter, which promoted its demethylation and reactivation. Disruption of TGF-β signaling upregulated SMAD4 target genes, which are silenced by epigenetic mechanisms, a finding that suggests broader therapeutic implications. Overall, our results provide insights into the role of TGF-β-mediated epigenetic regulation in ovarian cancer metastasis and underscore the therapeutic potential of targeting TGF-β signaling and its downstream effectors. Further research is needed to elucidate the underlying mechanisms and validate these therapeutic strategies.
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Dalin Township, Chiayi, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jian-Liang Chou
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Research and Development, Instrument Center, National Defense Medical Center, Taipei, Taiwan
| | - Han-Lin Chou
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Sanyi Tzuchi Chinese Medicine Hospital, The Buddhist Tzuchi Medical Foundation, Miaoli, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Siang Jhang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Chinese Medicine, Sanyi Tzuchi Chinese Medicine Hospital, The Buddhist Tzuchi Medical Foundation, Miaoli, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, Taiwan
| |
Collapse
|
21
|
Świerczewska M, Nowacka M, Stasiak P, Iżycki D, Sterzyńska K, Płóciennik A, Nowicki M, Januchowski R. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother 2025; 183:117804. [PMID: 39787968 DOI: 10.1016/j.biopha.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions. Molecular analyses identified overexpression of essential drug resistance-related genes, including MDR1 and BCRP, and extracellular matrix (ECM) components, such as MYOT and SPP1, which were more pronounced in resistant cell lines. MDR1 and BCRP overexpression contribute to chemotherapy resistance in OC by expelling drugs like DOX and TOP. Targeting these transporters with inhibitors or gene silencing could improve drug efficacy, making them key therapeutic targets to enhance treatment outcomes for drug-resistant OC. The study further showed that EMT-associated markers, including VIM, SNAIL1, and SNAIL2, were upregulated in the 3D spheroids, reflecting a more mesenchymal phenotype. These findings suggest that factors beyond gene expression, such as spheroid architecture, cell-cell interactions, and drug penetration, contribute to the enhanced resistance observed in 3D cultures. These results highlight the importance of 3D cell culture models for a more accurate representation of tumour drug resistance mechanisms in ovarian cancer, providing valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland; Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Piotr Stasiak
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., Poznan 61-866, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Wieniawskiego 1 St., Poznan 61-712, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| |
Collapse
|
22
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
23
|
Kamiya T, Ishii K, Ozawa K, Hara H. Bortezomib suppresses TGF-β1-mediated LOXL4 reduction through the inhibition of MEK/ERK pathways in MDA-MB-231 cells. J Recept Signal Transduct Res 2025; 45:73-82. [PMID: 39862152 DOI: 10.1080/10799893.2025.2455594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression. In this study, we also investigated how TGF-β1 decreases LOXL4 expression. TGF-β1-induced intracellular reactive oxygen species (ROS) played a role in LOXL4 protein expression but had no effect on LOXL4 mRNA levels. The proteasomal inhibitor, bortezomib, significantly suppressed TGF-β1-mediated LOXL4 reduction, which indicated that TGF-β1 facilitates LOXL4 proteasomal degradation. Furthermore, bortezomib inhibited TGF-β1-induced MEK/ERK pathways which are involved in LOXL4 reduction and TGF-β1-mediated cell migration. Finally, we also determined the potential role of N-glycosylation in LOXL4 secretion. We found that the dysregulation of N-glycosylation may be involved in the reduction in LOXL4 secretion. Overall, bortezomib is expected to inhibit TNBC progression by inhibiting both the MEK/ERK and proteasomal degradation pathways, which regulate LOXL4 expression.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kana Ishii
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyomi Ozawa
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
24
|
Al Shahrani M, Abohassan M, Alshahrani M, Gahtani RM, Rajagopalan P. Identification of 8-(2-methyl phenyl)-9H-benzo[f]indeno[2,1-c]quinolin-9-one (C-5635020) as a novel and selective TGFβ RII kinase inhibitor for breast cancer therapy. Biochem Biophys Res Commun 2025; 746:151225. [PMID: 39761620 DOI: 10.1016/j.bbrc.2024.151225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVE AND SIGNIFICANCE Transforming growth factor-beta (TGF-β) plays a pivotal role in breast development by modulating tissue composition during the developmental phase. The TGFβ type II receptor (TGFβ RII) is implicated in breast cancer and represents a valuable therapeutic target. Due to the off-target side effects of many existing TGFβI/TGFβ RII inhibitors, a more targeted approach to drug discovery is necessary. This study used computational modeling and molecular dynamics simulations to screen the ChemBridge small molecule library against TGFβ RII. METHODS This study employed high-throughput virtual screening, molecular dynamics simulations, and binding free energy calculations to identify potential inhibitors targeting TGF-β RII. MDA-MB 231 and MCF-7 breast cancer cells were used in anti-proliferative, tans-endothelial migration, and flow cytometric assays for in vitro validations. RESULTS We identified 8-(2-methylphenyl)-9H-benzo[f]indeno[2,1-c]quinolin-9-one (C-5635020) as a potent and selective inhibitor. Protein-ligand modeling analysis revealed that C-5635020 targets the kinase domain of TGFβ RII with superior binding affinities compared to the standard drug, staurosporine. Computational results suggest that C-5635020 selectively binds and inhibits TGFβ RII activity, thereby controlling cell proliferation in breast cancer. In vitro, experiments corroborated these predictions, where C-5635020 inhibited TGFβ RII and p-Smad 2/3 positive population in MDAMB-231 and MCF-7 cells. The compound dose-dependently inhibited cell proliferation, trans-endothelial migration, and increased apoptosis in both breast cancer cell lines. CONCLUSION The strong binding affinity, stability, and favorable thermodynamics of C-5635020 with established in vitro efficacy highlight its potential as a lead compound for further preclinical and clinical developments for breast cancer treatment.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
25
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
26
|
Ogura K, Kawashima I, Kasahara K. HGS Promotes Tumor Growth, Whereas the Coiled-Coil Domain and Its Oligopeptide of HGS Suppress It. Int J Mol Sci 2025; 26:772. [PMID: 39859488 PMCID: PMC11766344 DOI: 10.3390/ijms26020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation. The overexpression of HGS in mouse melanoma B16 cells and human colorectal cancer COLO205 cells promoted cancer characteristic anchorage-independent cell growth ability and tumor growth, whereas the overexpression of the coiled-coil domain of HGS in these cells suppressed them. The oligopeptide OP12-462 constituting the coiled-coil domain suppressed the anchorage-independent cell growth ability and tumor growth of COLO205 cells. The coiled-coil domain of HGS and OP12-462 are novel tumor growth inhibitors that do not directly destroy cancer cells but rather inhibit only the anchorage-independent cell growth ability of cancer cells.
Collapse
Affiliation(s)
- Kiyoshi Ogura
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, 6-1-2, Kamikitazawa, Setagaya-Ku, Tokyo 113-8613, Japan
| | | | - Kohji Kasahara
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, 6-1-2, Kamikitazawa, Setagaya-Ku, Tokyo 113-8613, Japan
| |
Collapse
|
27
|
Gralewska P, Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Olaparib Combined with DDR Inhibitors Effectively Prevents EMT and Affects miRNA Regulation in TP53-Mutated Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2025; 26:693. [PMID: 39859407 PMCID: PMC11766100 DOI: 10.3390/ijms26020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality. Despite advances in treatment, metastatic progression and resistance to standard therapies significantly worsen patient outcomes. Epithelial-mesenchymal transition (EMT) is a critical process in metastasis, enabling cancer cells to gain invasive and migratory capabilities, often driven by changing miRNA expression involved in the regulation of pathological processes like drug resistance. Targeted therapies like PARP inhibitors (PARPi) have improved outcomes, particularly in BRCA-mutated and DNA repair-deficient tumors; however, resistance and limited efficacy in advanced stages remain challenges. Recent studies highlight the potential synergy of PARPi with DNA damage response (DDR) inhibitors, such as ATR and CHK1 inhibitors, which disrupt cancer cell survival pathways under stress. This study investigated the combined effects of olaparib with ATR and CHK1 inhibitors (ATRi and CHK1i) on migration, invasion, and EMT-related protein expression and miRNA expression in ovarian cancer cell lines OV-90 and SKOV-3. The results demonstrated enhanced cytotoxicity, inhibition of migration and invasion, and modulation of miRNAs linked to metastasis. These findings suggest that combination therapies targeting DNA repair and cell cycle pathways may offer a novel, more effective approach to managing advanced EOC and reducing metastatic spread.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (P.G.); (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
28
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
29
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Rozman J, Chaithanya K, Yeomans JM, Sknepnek R. Vertex model with internal dissipation enables sustained flows. Nat Commun 2025; 16:530. [PMID: 39789022 PMCID: PMC11718050 DOI: 10.1038/s41467-025-55820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos. When coupled to cell shape anisotropy, the internal viscous dissipation allows for long-range velocity correlations and thus enables the spontaneous emergence of flows with a large degree of spatiotemporal organisation. We demonstrate sustained flow in epithelial sheets confined to a channel, providing a link between the cell-level vertex model of tissue dynamics and continuum active nematics, whose behaviour in a channel is theoretically understood and experimentally realisable. Our findings also show a simple mechanism that could account for collective cell migration correlated over distances large compared to the cell size, as observed during morphogenesis.
Collapse
Affiliation(s)
- Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Kvs Chaithanya
- School of Life Sciences, University of Dundee, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Rastko Sknepnek
- School of Life Sciences, University of Dundee, Dundee, UK.
- School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
31
|
Arner EN, Jennings EQ, Crooks DR, Ricketts CJ, Wolf MM, Cottam MA, Fisher-Gupta EL, Lang M, Maio N, Shibata Y, Krystofiak ES, Vlach LM, Hatem Z, Blatt AM, Heintzman DR, Sewell AE, Hathaway ES, Steiner KK, Ye X, Schaefer S, Bacigalupa ZA, Linehan WM, Beckermann KE, Mason FM, Idrees K, Rathmell WK, Rathmell JC. Impaired oxidative phosphorylation drives primary tumor escape and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631936. [PMID: 39829901 PMCID: PMC11741308 DOI: 10.1101/2025.01.08.631936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Metastasis causes most cancer deaths and reflects transitions from primary tumor escape to seeding and growth at metastatic sites. Epithelial-to-mesenchymal transition (EMT) is important early in metastasis to enable cancer cells to detach from neighboring cells, become migratory, and escape the primary tumor. While different phases of metastasis expose cells to variable nutrient environments and demands, the metabolic requirements and plasticity of each step are uncertain. Here we show that EMT and primary tumor escape are stimulated by disrupted oxidative metabolism. Using Renal Cell Carcinoma (RCC) patient samples, we identified the mitochondrial electron transport inhibitor NDUFA4L2 as upregulated in cells undergoing EMT. Deletion of NDUFA4L2 enhanced oxidative metabolism and prevented EMT and metastasis while NDUFA4L2 overexpression enhanced these processes. Mechanistically, NDUFA4L2 suppressed oxidative phosphorylation and caused citric acid cycle intermediates to accumulate, which modified chromatin accessibility of EMT-related loci to drive primary tumor escape. The effect of impaired mitochondrial metabolism to drive EMT appeared general, as renal cell carcinoma patient tumors driven by fumarate hydratase mutations with disrupted oxidative phosphorylation were highly metastatic and also had robust EMT. These findings highlight the importance of dynamic shifts in metabolism for cell migration and metastasis, with mitochondrial impairment driving early phases of this process. Understanding mitochondrial dynamics may have important implications in both basic and translational efforts to prevent cancer deaths.
Collapse
|
32
|
Kong Y, Zhuang T, Ding X, Cai S, Ding W, Zhang X, Sun Y, Zhou B, Sun Y, Yang S, Zhang X, Yang K, Jiang D. A five-plex Hepatic Oncochip reveals EMT triplet correlated with BAP31 in liver cancer. Front Cell Dev Biol 2025; 12:1478444. [PMID: 39834395 PMCID: PMC11743502 DOI: 10.3389/fcell.2024.1478444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Youjia Kong
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Tengfei Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Xvshen Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Sirui Cai
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Weijie Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Xiaoxiao Zhang
- Department of Information, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yubo Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Bingquan Zhou
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
- Military Medical Innovation Center, Air-Force Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
- The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
33
|
Lyu SY, Meshesha SM, Hong CE. Synergistic Effects of Mistletoe Lectin and Cisplatin on Triple-Negative Breast Cancer Cells: Insights from 2D and 3D In Vitro Models. Int J Mol Sci 2025; 26:366. [PMID: 39796221 PMCID: PMC11719730 DOI: 10.3390/ijms26010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models. In 2D cultures, the combination of VCA and cisplatin synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase. Also, the combination treatment significantly reduced cell migration and invasion. Gene expression analysis showed significant changes in specific genes related to apoptosis (Bax, Bcl-2), metastasis (MMP-2, MMP-9), and EMT (E-cadherin, N-cadherin). Three-dimensional spheroid models corroborated these findings, demonstrating enhanced cytotoxicity and reduced invasion with the combination treatment. Significantly, the 3D models exhibited differential drug sensitivity compared to 2D cultures, emphasizing the importance of utilizing physiologically relevant models in preclinical studies. The combination treatment also reduced the expression of angiogenesis-related factors VEGF-A and HIF-1α. This comprehensive study provides substantial evidence for the potential of VCA and cisplatin combination therapy in TNBC treatment and underscores the significance of integrating 2D and 3D models in preclinical cancer research.
Collapse
Affiliation(s)
- Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Saporie Melaku Meshesha
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
| | - Chang-Eui Hong
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
34
|
Kallenberger EM, Khandelwal A, Nath P, Nguyen SA, DiGiovanni J, Nathan CA. FGFR2 in the Development and Progression of Cutaneous Squamous Cell Cancer. Mol Carcinog 2025; 64:5-13. [PMID: 39466044 DOI: 10.1002/mc.23835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is an increasingly common malignancy of the skin and the leading cause of death from skin cancer in adults over the age of 85. Fibroblast growth factor receptor 2 (FGFR2) has been identified as an important effector of signaling pathways that lead to the growth and development of cSCC. In recent years, there have been numerous studies evaluating the role FGFR2 plays in multiple cancers, its contribution to resistance to anticancer therapy, and new drugs that may be used to inhibit FGFR2. This review will provide an overview of our current understanding of FGFR2 and potential mechanisms in which we can target FGFR2 in cSCC. The goals of this review are the following: (1) to highlight our current knowledge of the role of FGFR2 in healthy skin and contrast this with its role in the development of cancer; (2) to further explain the specific molecular mechanisms that FGFR2 uses to promote tumorigenesis; (3) to describe how FGFR2 contributes to more invasive disease; (4) to describe its immunosuppressive effects in skin; and (5) to evaluate its effect on current anticancer therapy and discuss therapies on the horizon to target FGFR2 related malignancy.
Collapse
Affiliation(s)
- Ethan M Kallenberger
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alok Khandelwal
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| | - Priyatosh Nath
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John DiGiovanni
- Department of Pharmacology, University of Texas, Austin, Texas, USA
| | - Cherie-Ann Nathan
- Department of Oto/HNS, Health Sciences Center, Louisiana State University, Shreveport, Louisiana, USA
| |
Collapse
|
35
|
Cirauqui BC, Peguera AB, Pi-Sunyer AQ, Ferrando-Díez A, Serrano JLR, Viñolas MD, García IT, García VQ, Oukadour IC, Valencia AG, Vergara PH, de Aguirre Egaña I, Herrero CQ, Carbonell OM, Paradís AL, Esteve A, Vila MM, Rosell R, Martínez-Cardús A, Mesía R. Deciphering the impact of STAT3 activation mediated by PTPRT promoter hypermethylation as biomarker of response to paclitaxel-plus-cetuximab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck 2025; 47:57-67. [PMID: 39072941 DOI: 10.1002/hed.27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor prognosis. It is known that the activation of STAT3 signaling pathways promotes the development and progression of this neoplasia and it has been described the role of PTPRT as a negative regulator of STAT3. Then, we have evaluated the impact of them as biomarkers of outcome in a series of patients with recurrent and/or metastatic SCCHN treated with weekly paclitaxel-plus-cetuximab (ERBITAX) regimen. PATIENTS AND METHODS Between 2008 and 2017, 52 patients with recurrent/metastatic SCCHN were treated with ERBITAX at our center, 34 of whom had available tumor samples. Phosphorylated STAT3 (pSTAT3) protein expression was analyzed by immunohistochemistry, STAT3 mRNA expression by qPCR, and PTPRT promoter methylation by methylation-specific PCR. Molecular results were correlated with response rate (RR), progression-free survival (PFS), and overall survival (OS). RESULTS pSTAT3 overexpression was detected in 67% and PTPRT promoter hypermethylation in 41% of tumor samples. PTPRT promoter hypermethylation showed a trend towards an association with lower RR (21% vs. 60%; p = 0.06). A lower RR was also observed in patients with pSTAT3 overexpression (36% vs. 54%) and in those with high STAT3 mRNA levels (43% vs. 64%), but these differences did not reach statistical significance. PTPRT promoter hypermethylation correlated with pSTAT3 overexpression (p = 0.009) but not with STAT3 mRNA overexpression. OS and PFS was shorter in patients with activated STAT3, but the difference did not reach statistical significance. CONCLUSIONS Although this was a relatively small retrospective study, it provides preliminary indications of the potential role of the STAT3 pathway on outcome in SCCHN and confirms that PTPRT acts as a negative regulator of STAT3. Our findings warrant investigation in a larger patient cohort to determine if inactivating this pathway through specific targeted treatments could improve outcomes in recurrent/metastatic SCCHN patients.
Collapse
Affiliation(s)
- Beatriz Cirauqui Cirauqui
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Head and Neck Functional Unit, Catalan Institute of Oncology (ICO), Badalona, Spain
| | - Adrià Bernat Peguera
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Ariadna Quer Pi-Sunyer
- Head and Neck Functional Unit, Catalan Institute of Oncology (ICO), Badalona, Spain
- Department of Pathology, Germans Trias i Pujol Hospital, Badalona, Spain
| | - Angelica Ferrando-Díez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Head and Neck Functional Unit, Catalan Institute of Oncology (ICO), Badalona, Spain
| | | | - Marta Domenech Viñolas
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Iris Teruel García
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Vanesa Quiroga García
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Imane Chaib Oukadour
- Laboratory of Cellular and Molecular Biology, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Andrea González Valencia
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Itziar de Aguirre Egaña
- Molecular Biology Unit, Hematology Laboratory, Catalan Institute of Oncology (ICO), Badalona, Spain
| | - Cristina Queralt Herrero
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Resistance Cancer Predictive Biomarkers Group, ProCURE Program-Catalan Institute of Oncology, Badalona, Spain
| | - Oscar Mesía Carbonell
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Assumpció López Paradís
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Esteve
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Mireia Margelí Vila
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Rafael Rosell
- Laboratory of Cellular and Molecular Biology, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Martínez-Cardús
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Ricard Mesía
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Badalona, Spain
- Badalona Applied Research Group in Oncology (BARGO), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Translational Program in Cancer Research (CARE), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
36
|
Ko HH, Chou HYE, Hou HH, Kuo WT, Liu WW, Yen-Ping Kuo M, Cheng SJ. Oleanolic acid inhibits aldo-keto reductase family 1 member B10-induced cancer stemness and avoids cisplatin-based chemotherapy resistance via the Snail signaling pathway in oral squamous cell carcinoma cell lines. J Dent Sci 2025; 20:100-108. [PMID: 39873100 PMCID: PMC11762581 DOI: 10.1016/j.jds.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy. Materials and methods Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells. Stemness, epithelial mesenchymal transition (EMT) markers, and CDDP drug resistance in overexpressed AKR1B10 were also identified. Results Upregulated AKR1B10 in OSCC significantly increased cell motility and aggregation. The results also showed that the canonical TGF-β1-Smad3 pathway was involved in arecoline-induced AKR1B10 expression, further increasing cancer stemness with CDDP resistance via the Snail-dependent EMT pathway. Moreover, oleanolic acid (OA) and ROS/RNS (reactive oxygen/nitrogen species) inhibitors effectively reversed AKR1B10-induced CDDP-resistance. Conclusion Arecoline-induced ROS/RNS to hyper-activate AKR1B10 in tumor sphere cells via the TGF-β1-Smad3 pathway. Furthermore, AKR1B10 enhanced CDDP resistance in OSCC cells via EMT-inducing markers. Finally, Finally, OA may efficiently target CDDP resistance, reverse stemness in OSCC cells, and have the potential as a novel anticancer drug.
Collapse
Affiliation(s)
- Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Han-Yi E. Chou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Kuo
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
37
|
Bullock E, Brunton VG. E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:259-275. [PMID: 39821030 DOI: 10.1007/978-3-031-70875-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Collapse
Affiliation(s)
- Esme Bullock
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Sun X, Gao H, Lu L, Wang Q, Li Y, Gu Y. Tumor necrosis factor receptor-associated factor 5 enhances perianal fistulizing Crohn's disease through epithelial-mesenchymal transition. Cytojournal 2024; 21:82. [PMID: 39917000 PMCID: PMC11801662 DOI: 10.25259/cytojournal_148_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/22/2024] [Indexed: 02/09/2025] Open
Abstract
Objective Crohn's disease (CD) is a chronic inflammatory condition of the bowel that remarkably impairs a patient's quality of life and often has a poor prognosis. Perianal fistulizing CD (PFCD) is one of the most common parenteral symptoms of CD and a huge challenge for the management of this illness. This study aimed to elucidate the molecular mechanisms underlying PFCD and identify potential biomarkers to advance our understanding and management of this condition. Material and Methods Transcriptome sequencing was performed using the control and PFCD groups to investigate the mechanisms of PFCD development. The expression of tumor necrosis factor receptor-associated factor 5 (TRAF5), nuclear factor-kappa B (NF-κB), and interleukin 13 (IL-13) messenger ribonucleic acid (mRNAs) was detected by quantitative polymerase chain reaction (qPCR). Pathological morphology was observed using hematoxylin and eosin staining. The expression of TRAF5, Epithelial Cadherin (E-cadherin), Snail family transcriptional repressor 1 (SNAIL1), and vimentin protein was detected by immunohistochemistry. Following the knockdown of TRAF5 in human tumor-29 (HT-29) cells, the effects on cell proliferation and migration were assessed using the cell counting kit-8 and Transwell assays. The expression levels of crucial markers were analyzed by qPCR, Western blot, and immunohistochemistry. Results Transcriptomic sequencing revealed a significant upregulation of TRAF5 in the PFCD group, accompanied by elevated mRNA levels of NF-κB and IL-13 compared with those in the control group. In addition, the PFCD group exhibited increased expression of TRAF5, SNAIL, and vimentin and marked reduction in E-cadherin levels, indicating that PFCD may facilitate epithelial-mesenchymal transition (EMT). Knocking down TRAF5 in HT-29 cells reduced cell proliferation and migration; inhibited NF-κB and IL-13 mRNAs, SNAIL1, and vimentin levels; and promoted E-cadherin levels. Conclusions The development of PFCD was associated with EMT, and TRAF5 was a key gene of PFCD. Knocking down TRAF5 alleviated the EMT promotion of PFCD, indicating that TRAF5 drove the development of PFCD through EMT.
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Hairui Gao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Lu
- Department of Gastroenterology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Qianqian Wang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Youran Li
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Yunfei Gu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Sasankan D, Mohan R. End Binding Proteins: Drivers of Cancer Progression. Cytoskeleton (Hoboken) 2024. [PMID: 39699076 DOI: 10.1002/cm.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Cancer, a complex and heterogeneous disease, continues to be a major global health concern. Despite advancements in diagnostics and therapeutics, the aggressive nature of certain cancers remain a significant challenge, necessitating a deeper understanding of the underlying molecular mechanisms driving their severity and progression. Cancer severity and progression depend on cellular properties such as cell migration, cell division, cell shape changes, and intracellular transport, all of which are driven by dynamic cellular microtubules. Dynamic properties of microtubules, in turn, are regulated by an array of proteins that influence their stability and growth. Among these regulators, End Binding (EB) proteins stand out as critical orchestrators of microtubule dynamics at their growing plus ends. Beyond their fundamental role in normal cellular functions, recent research has uncovered compelling evidence linking EB proteins to the pathogenesis of various diseases, including cancer progression. As the field of cancer research advances, the clinical implication of EB proteins role in cancer severity and aggressiveness become increasingly evident. This review aims to comprehensively explore the role of microtubule-associated EB proteins in influencing the severity and aggressiveness of cancer. We also discuss the potential significance of EB as a clinical biomarker for cancer diagnosis and prognosis and as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Dhakshmi Sasankan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| | - Renu Mohan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| |
Collapse
|
40
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
Affiliation(s)
- Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
41
|
Valverde M, Rosales-Cruz P, Torrejon-Gonzalez E, Ponce-Ortiz A, Rodriguez-Sastre MA, Rojas E. Epithelial-Mesenchymal Transition Induced by a Metal Mixture in Liver Cells With Antioxidant Barrier Decreased. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:6983256. [PMID: 39722890 PMCID: PMC11669431 DOI: 10.1155/omcl/6983256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Occupational exposure to arsenic (As), cadmium (Cd), and lead (Pb) affects many sectors, necessitating research to understand their transformation mechanisms. In this study, we characterized the process of epithelial-mesenchymal transition (EMT) in a rat hepatic epithelial cell line with decreased expression of catalase and glutamate cysteine ligase catalytic (GCLC) subunit that was exposed to a mixture of As, Cd, and Pb at equimolar occupational exposure concentrations. We evaluated the expression of genes and proteins involved in EMT. Our findings revealed that cells with a decreased antioxidant barrier showed a decreased expression and abundance of epithelial genes when exposed to a mixture of metals. Additionally, we observed alterations in the expression of transcription factors (TFs) associated with EMT and an increase in the expression and abundance of mesenchymal genes. Specifically, we found that E-cadherin expression decreased by ~50% at both the gene and protein levels. In contrast, the expression of vimentin, α-smooth muscle actin, and N-cadherin genes increased by ~70%, whereas their corresponding protein levels increased by nearly 100%. Furthermore, the TFs zinc finger e-box binding homeobox 1 and snail family transcriptional repressor 1 showed a 30% increase in gene expression and an ~80% increase in protein expression. These changes enable the cells to acquire migratory capabilities. Our results confirmed that exposure to this mixture of As, Cd, and Pb can induce EMT in cells with a decreased antioxidant barrier.
Collapse
Affiliation(s)
- M. Valverde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - P. Rosales-Cruz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - E. Torrejon-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - A. Ponce-Ortiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - M. A. Rodriguez-Sastre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - E. Rojas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| |
Collapse
|
42
|
Debeljak M, Cho S, Downs BM, Considine M, Avin-McKelvey B, Wang Y, Perez PN, Grizzle WE, Hoadley KA, Lynch CF, Hernandez BY, van Diest PJ, Cozen W, Hamilton AS, Hawes D, Gabrielson E, Cimino-Mathews A, Florea LD, Cope L, Umbricht CB. Multimodal genome-wide survey of progressing and non-progressing breast ductal carcinoma in-situ. Breast Cancer Res 2024; 26:178. [PMID: 39633428 PMCID: PMC11616160 DOI: 10.1186/s13058-024-01927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Ductal carcinoma in-situ (DCIS) is a pre-invasive form of invasive breast cancer (IBC). Due to improved breast cancer screening, it now accounts for ~ 25% of all breast cancers. While the treatment success rates are over 90%, this comes at the cost of considerable morbidity, considering that the majority of DCIS never become invasive and our understanding of the molecular changes occurring in DCIS that predispose to invasive disease is limited. The aim of this study is to characterize molecular changes that occur in DCIS, with the goal of improving DCIS risk stratification. METHODS We identified and obtained a total of 197 breast tissue samples from 5 institutions (93 DCIS progressors, 93 DCIS non-progressors, and 11 adjacent normal breast tissues) that had at least 10-year follow-up. We isolated DNA and RNA from archival tissue blocks and characterized genome-wide mRNA expression, DNA methylation, DNA copy number variation, and RNA splicing variation. RESULTS We obtained all four genomic data sets in 122 of the 197 samples. Our intrinsic expression subtype-stratified analyses identified multiple molecular differences both between DCIS subtypes and between DCIS and IBC. While there was heterogeneity in molecular signatures and outcomes within intrinsic subtypes, several gene sets that differed significantly between progressing and non-progressing DCIS were identified by Gene Set Enrichment Analysis. CONCLUSION DCIS is a molecularly highly heterogenous disease with variable outcomes, and the molecular events determining DCIS disease progression remain poorly defined. Our genome-wide multi-omic survey documents DCIS-associated alterations and reveals molecular heterogeneity within the intrinsic DCIS subtypes. Further studies investigating intrinsic subtype-stratified characteristics and molecular signatures are needed to determine if these may be exploitable for risk assessment and mitigation of DCIS progression. The highly significant associations of specific gene sets with IBC progression revealed by our Gene Set Enrichment Analysis may lend themselves to the development of a prognostic molecular score, to be validated on independent DCIS cohorts.
Collapse
Affiliation(s)
- Marija Debeljak
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley M Downs
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Considine
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip N Perez
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Katherine A Hoadley
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles F Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Brenda Y Hernandez
- Population Sciences in the Pacific-Program, University of Hawaii Cancer Research Center, Honolulu, HI, USA
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wendy Cozen
- Department of Medicine, School of Medicine, Susan and Henry Samueli College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Ann S Hamilton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Cimino-Mathews
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liliana D Florea
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher B Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Johns Hopkins University School of Medicine, Ross Building, Room 743, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
44
|
Cohen D, Fernandez D, Lázaro-Diéguez F, Überheide B, Müsch A. Borg5 restricts contractility and motility in epithelial MDCK cells. J Cell Sci 2024; 137:jcs261705. [PMID: 39503295 PMCID: PMC11698036 DOI: 10.1242/jcs.261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.
Collapse
Affiliation(s)
- David Cohen
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dawn Fernandez
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Beatrix Überheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Müsch
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
45
|
Hao Y, Long Z, Gu X. Farrerol suppresses epithelial-mesenchymal transition in hepatocellular carcinoma via suppression of TGF-β1/Smad2/3 signaling. Pathol Res Pract 2024; 264:155719. [PMID: 39541767 DOI: 10.1016/j.prp.2024.155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an essential process for the metastasis of multiple malignancies, including hepatocellular carcinoma (HCC). Farrerol is a plant-derived flavonoid and has significant pharmacological effects. However, the anticancer activities of farrerol have not been fully elucidated. Here, we investigated the effects of farrerol on HCC progression. METHODS The potential of farrerol to prevent HCC cell migration and invasiveness was evaluated by wound healing and transwll matrix assays. Immunoblotting, immunofluorescence, and qPCR were used to detect the levels of EMT-related proteins. Transforming growth factor beta (TGF-β) (10 ng/ml) was used to stimulate HCC cells, followed by measurement of cell migration, invasiveness, and the EMT. TGF-β1/Smads signaling was examined by immunoblotting. A xenograft mouse model was used to assess the anticancer efficacy of farrerol in vivo. The expression levels of EMT- and angiogenesis-related proteins in xenograft tumors were evaluated by immunoblotting or immunohistochemistry. RESULTS We found that farrerol blocked HCC cell migration and invasiveness. Farrerol upregulated E-cadherin levels and reduced N-cadherin and vimentin levels. Farrerol also downreuglated the expression levels of EMT-related transcription factors including slug, snail, twist, and zeb1. Furthermore, farrerol suppressed TGF-β-stimulated migration, invasiveness, and the EMT in HCC cells. The phosphorylation of Smad 2/3 induced by TGF-β was inhibited by farrerol. Importantly, farrerol suppressed HCC growth and the EMT in vivo. Farrerol also inhibited tumor angiogenesis by inhibiting hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in vivo. CONCLUSION Overall, farrerol suppresss HCC by inhibiting migration, invasiveness, the EMT, and angiogenesis, implying that farrerol could be a promising antimetastasis agent for HCC.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan 430050, China.
| | - Zhixiong Long
- Department of Oncology, Wuhan Fifth Hospital, Wuhan 430050, China
| | - Xiufeng Gu
- Clinical College of TCM, Hubei University of Traditional Chinese Medicine, Wuhan 430050, China
| |
Collapse
|
46
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
47
|
Somrit K, Krobthong S, Yingchutrakul Y, Phueakphud N, Wongtrakoongate P, Komyod W. KHDRBS3 facilitates self-renewal and temozolomide resistance of glioblastoma cell lines. Life Sci 2024; 358:123132. [PMID: 39413902 DOI: 10.1016/j.lfs.2024.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Glioblastoma is a deadly tumor which possesses glioblastoma stem cell populations involved in temozolomide (TMZ) resistance. To gain insight into the mechanisms of self-renewing and therapy-resistant cancer stem cells, subcellular proteomics was utilized to identify proteins whose expression is enriched in U251-derived glioblastoma stem-like cells. The KH RNA Binding Domain Containing, Signal Transduction Associated 3, KHDRBS3, was successfully identified as a gene up-regulated in the cancer stem cell population compared with its differentiated derivatives. Depletion of KHDRBS3 by RNA silencing led to a decrease in cell proliferation, neurosphere formation, migration, and expression of genes involved in glioblastoma stemness. Importantly, TMZ sensitivity can be induced by the gene knockdown. Collectively, our results highlight KHDRBS3 as a novel factor associated with self-renewal of glioblastoma stem-like cells and TMZ resistance. As a consequence, targeting KHDRBS3 may help eradicate glioblastoma stem-like cells.
Collapse
Affiliation(s)
- Kanokkuan Somrit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Waraporn Komyod
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
48
|
Jia Y, Sun Q, Wang Y, Jiang H, Xiao X. Correlation between CT spectral quantitative parameters and expression levels of HIF-1α and ALX1 in non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e40508. [PMID: 39612428 DOI: 10.1097/md.0000000000040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
To detect the expression levels of hypoxia inducible factor-1alpha (HIF-1α) and aristaless-like homeobox 1 (ALX1) in non-small cell lung cancer and analyze the relationship between CT spectral quantitative parameters and immunohistochemical markers, in order to evaluate the biological characteristics of lung cancer by spectral CT. Spectral CT data and paraffin masses of 50 adult patients with lung cancer were collected. CT quantitative parameters including the slope of spectral curve, effective atomic number and iodine concentration in enhanced phases were acquired. Expression levels of HIF-1α and ALX1 were detected by immunohistochemical tests, and compared between different pathological types and differentiation grades of tumor cells. CT quantitative parameters at different expression levels of HIF-1α and ALX1 were compared, respectively. The relationship between CT quantitative parameters and expression levels of HIF-1α and ALX1 were analyzed. There was no significant difference of expression levels of HIF-1α and ALX1 between adenocarcinoma and squamous cell carcinoma. Expression levels of HIF-1α among different differentiation grades of tumor cells had significant difference (χ2 = 27.100, P < .001), while without significant difference in ALX1 expression. CT spectral parameters had significant difference among expression levels of HIF-1α and ALX1 (P < .01). There was a positive correlation between each CT spectral parameter and the expression level of immunohistochemical markers. CT spectral quantitative parameters are significantly different among expression levels of immunohistochemical markers. The positive correlation between CT quantitative parameter and expression level of immunohistochemical markers suggests CT spectral imaging could predict biological characteristics of tumors.
Collapse
Affiliation(s)
- Yulin Jia
- Radiology Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiulian Sun
- Radiology Department, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Yiqiao Wang
- Radiology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hao Jiang
- Radiology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xigang Xiao
- Radiology Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
49
|
Guo Z, Xie L, Cui H, Yang X, Qi H, Yu M, Gong Y, Tu J, Na S. The Role of the Cytoskeletal Regulatory Protein, Mammalian Enabling Protein (Mena), in Invasion and Metastasis of HPV16-Related Oral Squamous Cell Carcinoma. Cells 2024; 13:1972. [PMID: 39682720 DOI: 10.3390/cells13231972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the effect of mammalian-enabled protein (Mena) on invasion and metastasis of HPV16-related oral squamous cell carcinoma (OSCC) and the underlying mechanism. MATERIALS AND METHODS The Mena gene expression profile of HPV-related OSCC was analyzed from the TCGA, GEO and TIMER databases. Immunohistochemistry was performed to study Mena, and the expression of invasion and metastasis-related markers and their clinicopathological characteristics. The role of Mena in the biological behavior of OSCC cell lines was assessed through both non-transfected and stably transfected models, analyzing EMT-related markers in vitro. The effect of Mena on HPV16-related OSCC metastasis through immunodeficient mouse model in vivo. RESULTS Mena expression was significantly decreased in HPV16-positive OSCC, and Mena expression in HPV16-negative OSCC was related with lymphatic metastasis and TNM stages, and E-cadherin, vimentin and MMP-2, but it was not statistically significant in HPV16-positive OSCC. Increased Mena expression was significantly correlated with a poor overall survival and disease-free survival in an HPV16-negative OSCC patient. Mena plays a vital role in promoting OSCC cell migration, invasion and metastasis. CONCLUSIONS Mena promotes OSCC invasion and metastasis in HPV-negative OSCC by activating the EMT process. However, Mena expression in OSCC infected with HPV16 is inhibited, thus suppressing its invasion and metastasis ability.
Collapse
Affiliation(s)
- Zhichen Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xin Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Qi
- Department of Pathology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Ming Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuxin Gong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
50
|
Zhu Y, Jiang S, Tang R, Chen H, Jia G, Zhou X, Miao J. KMT2A facilitates the epithelial-to-mesenchymal transition and the progression of ovarian cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05167-x. [PMID: 39589456 DOI: 10.1007/s11010-024-05167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays critical roles in cancer progression and metastasis. Thus, the exploration of the molecular mechanism regulating EMT would provide potential opportunities for the therapy of metastatic ovarian cancer (OC). Herein, we investigated the putative role of KMT2A in modulating EMT and metastasis in OC. The expression of KMT2A in OC was detected by Western blot and immunohistochemistry and its relationship with clinicopathological factors was analyzed. The effect of KMT2A on the biological behavior of OC cells was examined. Moreover, the expressions of EMT-associated proteins were detected in vivo and vitro by Western blot, immunofluorescence, and immunohistochemistry. KMT2A was highly expressed in OC cell lines and tissues and was positively correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, and metastasis. KMT2A overexpression was correlated with poor prognosis. Suppression of KMT2A inhibited OC cells proliferation, migration, and invasion and induced their apoptosis in vitro and vivo. In contrast, the ectopic expression of KMT2A had the opposite effects. Furthermore, KMT2A knockdown inhibited TGF-β-induced EMT in OC and reduced the phosphorylation levels of Smad2. Taken together, these observations demonstrate that KMT2A could promote the malignant behavior of OC by activating TGF-β/Smad signaling pathway and may be a potential prognostic biomarker and therapeutic target for OC.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Shenyuan Jiang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ranran Tang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Haiyan Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Genmei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Xue Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Juan Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|