1
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
2
|
Cheng Y, Sun Q, Chen Y, Wang J, Chen Y, Yang Y, Zhang J, Cao Y, Li Z, Zhang Y. DTX3 suppresses bladder cancer cell invasion and metastasis by inhibiting the Notch signaling pathway. Int Immunopharmacol 2025; 153:114529. [PMID: 40127622 DOI: 10.1016/j.intimp.2025.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Deltex E3 ubiquitin ligase 3 (DTX3) was identified as a tumor suppressor in human cancers. However, whether DTX3 could suppress the progression of bladder cancer (BC) remains unknown. In this study, DTX3 downregulation in BC tissues was confirmed at mRNA and protein levels, and decreased DTX3 expression was associated with poor prognosis. DTX3 knockdown triggered aberrant epithelial-to-mesenchymal transition (EMT), principally via downregulation of E-cadherin and upregulation of N-cadherin, MMP9, Snail, and Slug. Gain- and loss-of-function assays indicated that DTX3 acted as a suppressor gene by inhibiting the migration and invasion of BC cells both in vivo and in vitro. Further analysis revealed that DTX3 inhibited Notch signaling pathway activity, and the Notch signaling inhibitor DAPT could partially reverse the effects of DTX3 knockdown on the metastatic abilities of BC cells. Mechanically, DTX3 bind to Notch intracellular domain (NICD) via its C-terminal RING finger domain (RFD), ubiquitinated, and degraded NICD, resulting in repression of the Notch pathway. Our findings reveal the key role of DTX3 in binding to NICD, promoting its ubiquitination and protein degradation, and suppressing the activation of the Notch signaling pathway to inhibit BC invasion and metastasis.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology, Cancer Research Laboratory, Chengde Medical University, Chengde, China
| | - Qi Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ya Chen
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - JiaYu Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - YanJun Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - YuanZhong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - JiangBo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - ZhiYong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - YiJun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Skálová A, Bradová M, Agaimy A, Laco J, Badual C, Ihrler S, Damjanov I, Rupp NJ, Bacchi CE, Mueller S, Ventelä S, Zhang D, Comperat E, Martínek P, Šíma R, Vaněček T, Grossmann P, Steiner P, Hájková V, Kovářová I, Michal M, Leivo I. Molecular Profiling of Sinonasal Adenoid Cystic Carcinoma: Canonical and Noncanonical Gene Fusions and Mutation. Am J Surg Pathol 2025; 49:227-242. [PMID: 39760648 PMCID: PMC11834963 DOI: 10.1097/pas.0000000000002349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Adenoid cystic carcinomas (AdCC) of salivary gland origin have long been categorized as fusion-defined carcinomas owing to the almost universal presence of the gene fusion MYB::NFIB , or less commonly MYBL1::NFIB. Sinonasal AdCC is an aggressive salivary gland malignancy with no effective systemic therapy. Therefore, it is urgent to search for potentially targetable genetic alterations associated with AdCC. We have searched the authors' registries and selected all AdCCs arising in the sinonasal tract. The tumors were examined histologically, immunohistochemically, by next generation sequencing (NGS) and/or fluorescence in situ hybridization (FISH) looking for MYB/MYBL1 and/or NFIB gene fusions or any novel gene fusions and/or mutations. In addition, all tumors were tested for HPV by genotyping using (q)PCR. Our cohort comprised 88 cases of sinonasal AdCC, predominantly characterized by canonical MYB::NFIB (49 cases) and MYBL1::NFIB (9 cases) fusions. In addition, noncanonical fusions EWSR1::MYB ; ACTB::MYB; ESRRG::DNM3 , and ACTN4::MYB were identified by NGS, each of them in 1 case. Among nine fusion-negative AdCCs, FISH detected rearrangements in MYB (7 cases) , NFIB (1 case), and EWSR1 (1 case). Six AdCCs lacked fusions or gene rearrangements, while 11 cases were unanalyzable. Mutational analysis was performed by NGS in 31/88 (35%) AdCCs. Mutations in genes with established roles in oncogenesis were identified in 21/31 tumors (68%), including BCOR (4/21; 19%), NOTCH1 (3/21; 14%), EP300 (3/21; 14%), SMARCA4 (2/21; 9%), RUNX1 (2/21; 9%), KDM6A (2/21; 9%), SPEN (2/21; 9%), and RIT1, MGA, RB1, PHF6, PTEN, CREBBP, DDX41, CHD2, ROS1, TAF1, CCD1, NF1, PALB2, AVCR1B, ARID1A, PPM1D, LZTR1, GEN1 , PDGFRA , each in 1 case (1/21; 5%). Additional 24 cases exhibited a spectrum of gene mutations of uncertain pathogenetic significance. No morphologic differences were observed between AdCCs with MYBL1::NFIB and MYB::NFIB fusions. Interestingly, mutations in the NOTCH genes were seen in connection with both canonical and noncanonical fusions, and often associated with high-grade histology or metatypical phenotype, as well as with poorer clinical outcome. Noncanonical fusions were predominantly observed in metatypical AdCCs. These findings emphasize the value of comprehensive molecular profiling in correlating morphologic characteristics, genetic landscape, and clinical behavior in AdCC.
Collapse
Affiliation(s)
- Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Martina Bradová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU)
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Cécile Badual
- Service d’Anatomo-Pathologie, Department of Pathology, Hôpital Européen G Pompidou, APHP, Université de Paris
| | | | | | - Niels J. Rupp
- Department of Pathology, and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Sarina Mueller
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Erlangen, Erlanden
| | | | - Da Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS
| | - Eva Comperat
- Department of Pathology, Tenon Hospital, Sorbonne University, Paris, France
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Petr Martínek
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Radek Šíma
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Tomas Vaněček
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Petr Grossmann
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Petr Steiner
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Veronka Hájková
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Inka Kovářová
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen
- Bioptic Laboratory Ltd
| | - Ilmo Leivo
- Pathology, Turku University Hospital
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Argyris DG, Markaki MP, Afaloniati H, Karagiannis GS, Poutahidis T, Angelopoulou K. Suppression of chemically induced mammary cancer by early-life oral administration of cholera toxin in mice is associated with aberrant regulation of Bmp and Notch signaling pathways. Mol Biol Rep 2025; 52:150. [PMID: 39841292 DOI: 10.1007/s11033-025-10271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules. In the present work we investigated the protumorigenic mammary microenvironment for possible associations between early life CT administration and the expression of key components of the Bmp and Notch signaling pathways. METHODS AND RESULTS Total RNA from mammary tissue samples were retrieved from a recent experiment where FVB/N female mice were preconditioned with CT and later treated with the carcinogen 7,12-dimethylbenzanthracene (DMBA). Real-time PCR was used for relative quantification of gene expression. Our results revealed that CT anti-tumor effects significantly correlated with deregulation of crucial BMP pathway elements, with downregulation of Bmp7 ligand and upregulation of inhibitory Smad6 being the most prominent alterations observed. Concerning Notch signaling pathway, significantly elevated gene expression levels in the CT-treated DMBA mice, as compared to their non-treated counterparts, were also identified at the ligand-receptor level. CONCLUSIONS These findings suggest that CT tumor protective effects in the mammary gland are associated with discerning deregulation of components of both Bmp and Notch signaling pathways and provide insights into the mechanisms underlying CT's anti-cancer outcome.
Collapse
MESH Headings
- Animals
- Female
- Signal Transduction/drug effects
- Cholera Toxin
- Mice
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Administration, Oral
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/genetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- 9,10-Dimethyl-1,2-benzanthracene
Collapse
Affiliation(s)
- Dimitrios G Argyris
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Maria P Markaki
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment of Metastasis Program, Montefiore-Einstein Cancer Center, Bronx, NY, USA
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
5
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Abdalla AM, Miao Y, Ming N, Ouyang C. ADAM10 modulates the efficacy of T-cell-mediated therapy in solid tumors. Immunol Cell Biol 2024; 102:907-923. [PMID: 39417304 DOI: 10.1111/imcb.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy. Tumor-associated protease ADAM10, endothelial cells (ECs) and cytotoxic CD8+ T cells engage in complex communication via adhesion, transmigration and chemotactic mechanisms to facilitate an anti-cancer immune response. The precise impact of ADAM10 on the intricate mechanisms underlying these interactions remains unclear. This paper broadly explores how ADAM10, through different routes, influences the efficacy of T-cell-mediated therapy. ADAM10 cleaves CD8+ T-cell-targeting genes and impacts their expression and specificity. In addition, ADAM10 mediates the interactions of adhesion molecules with T cells and influences CD8+ T-cell activity and trafficking. Thus, understanding the role of ADAM10 in these events may lead to innovative strategies for advancing T-cell-mediated therapies.
Collapse
Affiliation(s)
- Ahmed Me Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Department of Phase 1 Clinical and Research Ward, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ning Ming
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Lindblad KE, Donne R, Liebling I, Bresnahan E, Barcena-Varela M, Lozano A, Park E, Giotti B, Burn O, Fiel MI, Bravo-Cordero JJ, Tsankov AM, Lujambio A. NOTCH1 drives tumor plasticity and metastasis in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619856. [PMID: 39484457 PMCID: PMC11527037 DOI: 10.1101/2024.10.23.619856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Liver cancer, the third leading cause of cancer-related mortality worldwide, has two main subtypes: hepatocellular carcinoma (HCC), accounting most of the cases, and cholangiocarcinoma (CAA). NOTCH pathway regulates the intrahepatic development of bile ducts, which are lined with cholangiocytes, but it can also be upregulated in 1/3 of HCCs. To better understand the role of NOTCH in HCC, we developed a novel mouse model driven by activated NOTCH1 intracellular domain (NICD1) and MYC overexpression in hepatocytes. Using the hydrodynamic tail vein injection method for establishing primary liver tumors, we generated a novel murine model of liver cancer harboring MYC overexpression and NOTCH1 activation. We characterized this model histopathologically as well as transcriptomically, utilizing both bulk and single cell RNA-sequencing. MYC;NICD1 tumors displayed a combined HCC-CCA phenotype with temporal plasticity. At early time-points, histology was predominantly cholangiocellular, which then progressed to mainly hepatocellular. The hepatocellular component was enriched in mesenchymal genes and gave rise to lung metastasis. Metastatic cells were enriched in the TGFB and VEGF pathways and their inhibition significantly reduced the metastatic burden. Our novel mouse model uncovered NOTCH1 as a driver of temporal plasticity and metastasis in HCC, the latter of which is, in part, mediated by angiogenesis and TGFß pathways.
Collapse
|
9
|
Zhu Y, Liu F, Liu L, Wang J, Gao F, Ye L, Wu H, Zhou C, Lin G, Zhao X, Li P. Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway. J Zhejiang Univ Sci B 2024; 26:76-91. [PMID: 39815612 PMCID: PMC11735908 DOI: 10.1631/jzus.b2300896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/17/2024] [Indexed: 10/22/2024]
Abstract
Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis. In vitro and in vivo experiments demonstrated that HEEC-Cr(VI) cells obtain the ability of anchorage-independent growth, greater proliferative capacity, cancer stem cell properties, and the capacity to form subcutaneous xenografts in BALB/c nude mice when compared to their parental cells, HEECs. Additionally, HEEC-Cr(VI) cells exhibited weakened cell motility and enhanced cell adhesion. Interestingly, HEECs with acute exposure to Cr(VI) failed to display those malignant phenotypes of HEEC-Cr(VI) cells, suggesting that Cr(VI)-induced malignant transformation, but not Cr(VI) itself, is the cause for the tumor characteristics of HEEC-Cr(VI) cells. Mechanistically, chronic exposure to Cr(VI) induced abnormal activation of Notch signaling, which is crucial to maintaining the capacity for malignant proliferation and stemness of HEEC-Cr(VI) cells. As expected, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor for the Notch pathway, drastically attenuated cancerous phenotypes of HEEC-Cr(VI) cells. In conclusion, our study clarified the molecular mechanism underlying Cr(VI)-induced esophageal tumorigenesis, which provides novel insights for further basic research and clinical therapeutic strategies about Cr(VI)-associated esophageal cancer.
Collapse
Affiliation(s)
- Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinfu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lan Ye
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Honglei Wu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guimei Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Sun NY, Kumar S, Kim YS, Varghese D, Mendoza A, Nguyen R, Okada R, Reilly K, Widemann B, Pommier Y, Elloumi F, Dhall A, Patel M, Aber E, Contreras-Burrola C, Kaplan R, Martinez D, Pogoriler J, Hamilton AK, Diskin SJ, Maris JM, Robey RW, Gottesman MM, Rivero JD, Roper N. Identification of DLK1, a Notch ligand, as an immunotherapeutic target and regulator of tumor cell plasticity and chemoresistance in adrenocortical carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617077. [PMID: 39416174 PMCID: PMC11482787 DOI: 10.1101/2024.10.09.617077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Immunotherapeutic targeting of cell surface proteins is an increasingly effective cancer therapy. However, given the limited number of current targets, the identification of new surface proteins, particularly those with biological importance, is critical. Here, we uncover delta-like non-canonical Notch ligand 1 (DLK1) as a cell surface protein with limited normal tissue expression and high expression in multiple refractory adult metastatic cancers including small cell lung cancer (SCLC) and adrenocortical carcinoma (ACC), a rare cancer with few effective therapies. In ACC, ADCT-701, a DLK1 targeting antibody-drug conjugate (ADC), shows potent in vitro activity among established cell lines and a new cohort of patient-derived organoids as well as robust in vivo anti-tumor responses in cell line-derived and patient-derived xenografts. However, ADCT-701 efficacy is overall limited in ACC due to high expression and activity of the drug efflux protein ABCB1 (MDR1, P-glycoprotein). In contrast, ADCT-701 is extremely potent and induces complete responses in DLK1+ ACC and SCLC in vivo models with low or no ABCB1 expression. Genetic deletion of DLK1 in ACC dramatically downregulates ABCB1 and increases ADC payload and chemotherapy sensitivity through NOTCH1-mediated adrenocortical de-differentiation. Single cell RNA-seq of ACC metastatic tumors reveals significantly decreased adrenocortical differentiation in DLK low or negative cells compared to DLK1 positive cells. This works identifies DLK1 as a novel immunotherapeutic target that regulates tumor cell plasticity and chemoresistance in ACC. Our data support targeting DLK1 with an ADC in ACC and neuroendocrine neoplasms in an active first-in-human phase I clinical trial (NCT06041516).
Collapse
Affiliation(s)
- Nai-Yun Sun
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Diana Varghese
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Reona Okada
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Karlyne Reilly
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Brigitte Widemann
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Mayank Patel
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Etan Aber
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | | | - Rosie Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Dan Martinez
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber K. Hamilton
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, and Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharon J. Diskin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, and Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M. Maris
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, and Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, MD, USA
| | | | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, USA
| |
Collapse
|
11
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
12
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
13
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Ilanchit Chenni S, Suresh K, Theerthu A, Ahamed AAN, Pugazhendhi R, Vasu R. PLGA-Loaded Nedaplatin (PLGA-NDP) Inhibits 7,12-Dimethylbenz[a]anthracene (DMBA) Induced Oral Carcinogenesis via Modulating Notch Signaling Pathway and Induces Apoptosis in Experimental Hamster Model. Cell Biochem Funct 2024; 42:e4133. [PMID: 39390703 DOI: 10.1002/cbf.4133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
The present study is designed to evaluate the nanotherapeutic efficacy of prepared PLGA-loaded Nedaplatin (PLGA-NDP) against 7,12-dimethyl benz(a)anthracene (DMBA)-induced experimental oral carcinogenesis in hamster buccal pouch (HBP) model. The buccal pouch of golden Syrian hamsters was painted with 0.5% DMBA in liquid paraffin three times a week for 14 weeks, ultimately leading to the development of oral squamous cell carcinoma (OSCC). Oral administration of PLGA-NDP (preinitiation) and Cisplatin delivery (5 mg/kg b.wt) started 1 week before the carcinogen exposure and continued on alternative days. Post-administration of PLGA-NDP (5 mg/kg b.wt) started 2 days after carcinogen (DMBA) induction until the end of the experiment. After the 14th week, we observed that DMBA-painted hamsters exhibited tumor formation, morphological alterations, and well-differentiated OSSC in addition to the responsive molecular proteins during oral carcinogenesis. Furthermore, immunoblotting analysis demonstrated that PLGA-NDP inhibits Notch signaling, as evidenced by downregulation of Bcl-Xl, Bcl-2, p21, PGE2, HGF, and CXCL12 proteins, and upregulation of p53 and Bax. This apoptotic response is crucial for PLGA-NDP to induce apoptosis. In addition, RT-PCR results showed that PLGA-NDP nanoparticles play a downregulatory role in the therapeutic action of the notch signaling gene (Notch1, Notch 2, Hes1, Hey1, and Jagged1) at the mRNA transcription level in HBP carcinoma. Taken together, these data indicate that PLGA-NDP is a potent inhibitor of oral carcinogenesis and the expansion of cells that specifically target the Notch signaling pathway indicates that obstructing Notch signaling could potentially serve as a new and innovative therapeutic approach for oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
| | - Kathiresan Suresh
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Azhamuthu Theerthu
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Abulkalam A N Ahamed
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Ravichandran Pugazhendhi
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Rajeswari Vasu
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
15
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
16
|
Kim JY, Hong N, Ham SW, Park S, Seo S, Kim H. Cancer-wide in silico analyses using differentially expressed genes demonstrate the functions and clinical relevance of JAG, DLL, and NOTCH. PLoS One 2024; 19:e0307943. [PMID: 39074091 DOI: 10.1371/journal.pone.0307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Notch ligands [jagged (JAG) and, delta-like (DLL) families] and receptors [NOTCH family] are key regulators of Notch signaling. NOTCH signaling contributes to vascular development, tissue homeostasis, angiogenesis, and cancer progression. To elucidate the universal functions of the JAG, DLL, and NOTCH families and their connections with various biological functions, we examined 15 types of cancer using The Cancer Genome Atlas clinical database. We selected the differentially expressed genes (DEGs), which were positively correlated to the JAG, DLL, and NOTCH families in each cancer. We selected positive and negative hallmark signatures across cancer types. These indicated biological features associated with angiogenesis, hypoxia, KRAS signaling, cell cycle, and MYC targets by gene ontology and gene set enrichment analyses using DEGs. Furthermore, we analyzed single-cell RNA sequencing data to examine the expression of JAG, DLL, and NOTCH families and enrichment of hallmark signatures. Positive signatures identified using DEGs, such as KRAS signaling and hypoxia, were enriched in clusters with high expression of JAG, DLL, and NOTCH families. We subsequently validated the correlation between the JAG, DLL, and NOTCH families and clinical stages, including treatment response, metastasis, and recurrence. In addition, we performed survival analysis to identify hallmark signatures that critically affect patient survival when combining the expression of JAG, DLL, and NOTCH families. By combining the DEG enrichment and hallmark signature enrichment in survival analysis, we suggested unexplored regulatory functions and synergistic effects causing synthetic lethality. Taken together, our observations demonstrate the functions of JAG, DLL, and NOTCH families in cancer malignancy and provide insights into their molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Jung Yun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- MEDIFIC Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sehyeon Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Zhu R, Shirley CM, Chu SH, Li L, Nguyen BH, Seo J, Wu M, Seale T, Duffield AS, Staudt LM, Levis M, Hu Y, Small D. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition. Leukemia 2024; 38:1581-1591. [PMID: 38811818 DOI: 10.1038/s41375-024-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Internal tandem duplication mutations of FLT3 (FLT3/ITD) confer poor prognosis in AML. FLT3 tyrosine kinase inhibitors (TKIs) alone have limited and transient clinical efficacy thus calling for new targets for more effective combination therapy. In a loss-of-function RNAi screen, we identified NOTCH4 as one such potential target whose inhibition proved cytotoxic to AML cells, and also sensitized them to FLT3 inhibition. Further investigation found increased NOTCH4 expression in FLT3/ITD AML cell lines and primary patient samples. Inhibition of NOTCH4 by shRNA knockdown, CRISPR-Cas9-based knockout or γ-secretase inhibitors synergized with FLT3 TKIs to kill FLT3/ITD AML cells in vitro. NOTCH4 inhibition sensitized TKI-resistant FLT3/ITD cells to FLT3 TKI inhibition. The combination reduced phospho-ERK and phospho-AKT, indicating inhibition of MAPK and PI3K/AKT signaling pathways. It also led to changes in expression of genes involved in regulating cell cycling, DNA repair and transcription. A patient-derived xenograft model showed that the combination reduced both the level of leukemic involvement of primary human FLT3/ITD AML cells and their ability to engraft secondary recipients. In summary, these results demonstrate that NOTCH4 inhibition synergizes with FLT3 TKIs to eliminate FLT3/ITD AML cells, providing a new therapeutic target for AML with FLT3/ITD mutations.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Receptor, Notch4/genetics
- Xenograft Model Antitumor Assays
- Mutation
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ruiqi Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Courtney M Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Haihua Chu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao H Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaesung Seo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy S Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Li S, Gao K, Yao D. Comprehensive Analysis of angiogenesis associated genes and tumor microenvironment infiltration characterization in cervical cancer. Heliyon 2024; 10:e33277. [PMID: 39021997 PMCID: PMC11252983 DOI: 10.1016/j.heliyon.2024.e33277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cervical cancer is among the most prevalent malignancies worldwide. This study explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it develops a diagnostic model based on angiogenesis-related differentially expressed genes (ARDEGs). Methods We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diagnostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy responses in cervical cancer. Results A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the model were associated with clinicopathological features, prognosis, and immune cell infiltration. Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell activation) were highly correlated. Conclusion This study identifies the prognostic characteristics of ARGs in cervical cancer patients, elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Kun Gao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
19
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
20
|
Ito T. Molecular pathology of small cell lung cancer: Overview from studies on neuroendocrine differentiation regulated by ASCL1 and Notch signaling. Pathol Int 2024; 74:239-251. [PMID: 38607250 DOI: 10.1111/pin.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Pulmonary neuroendocrine (NE) cells are rare airway epithelial cells. The balance between Achaete-scute complex homolog 1 (ASCL1) and hairy and enhancer of split 1, one of the target molecules of the Notch signaling pathway, is crucial for NE differentiation. Small cell lung cancer (SCLC) is a highly aggressive lung tumor, characterized by rapid cell proliferation, a high metastatic potential, and the acquisition of resistance to treatment. The subtypes of SCLC are defined by the expression status of NE cell-lineage transcription factors, such as ASCL1, which roles are supported by SRY-box 2, insulinoma-associated protein 1, NK2 homeobox 1, and wingless-related integration site signaling. This network reinforces NE differentiation and may induce the characteristic morphology and chemosensitivity of SCLC. Notch signaling mediates cell-fate decisions, resulting in an NE to non-NE fate switch. The suppression of NE differentiation may change the histological type of SCLC to a non-SCLC morphology. In SCLC with NE differentiation, Notch signaling is typically inactive and genetically or epigenetically regulated. However, Notch signaling may be activated after chemotherapy, and, in concert with Yes-associated protein signaling and RE1-silencing transcription factor, suppresses NE differentiation, producing intratumor heterogeneity and chemoresistance. Accumulated information on the molecular mechanisms of SCLC will contribute to further advances in the control of this recalcitrant cancer.
Collapse
Grants
- 20H03691 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K19489 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 16590318 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 25460439 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- Smoking Research Foundation, Japan
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Kumamoto Health Science University Faculty of Health Sciences, Kumamoto, Japan
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
21
|
Xu Z, Yuan Y, Liu J, Li C, Chen K, Wang F, Li G. STK214947, a novel indole alkaloids, inhibits HeLa and SK-HEP-1 cells survival and EMT process by blocking the Notch3 and Akt signals. Anticancer Drugs 2024; 35:325-332. [PMID: 38277337 DOI: 10.1097/cad.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Apoptosis and epithelial-to-mesenchymal transition (EMT) are closely associated with tumor survival and metastasis. These are the basic events in tumor occurrence and progression. STK214947 is an indole alkaloid with a skeleton that is similar to that of indirubin. Indole alkaloids have attracted considerable attention because of their antitumor activity. However, the relationship between STK214947 and these basic events remains unknown. In this study, the effects of STK214947 on inducing apoptosis and reversing the EMT process in tumor cells were confirmed. Mild concentrations of STK214947 inhibited tumor cell migration by reversing EMT and significantly regulated the expression of EMT-related proteins, including Notch3, E-cadherin, N-cadherin and vimentin. In addition, STK214947 in high concentration could induce apoptosis by down-regulating Notch3, p-Akt/Akt, and NF-κB, and upregulating Caspase 3. These findings support the further development of STK214947 as a potential antitumor small molecule that targets Notch3 and Akt signal transduction in cancer.
Collapse
Affiliation(s)
- Zihan Xu
- School of Ethnic Medicine, Yunnan Minzu University, Yunnan, Kunming, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Hussain S, Guo Y, Huo Y, Shi J, Hou Y. Regulation of cancer progression by CK2: an emerging therapeutic target. Med Oncol 2024; 41:94. [PMID: 38526625 DOI: 10.1007/s12032-024-02316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/28/2024] [Indexed: 03/27/2024]
Abstract
Casein kinase II (CK2) is an enzyme with pleiotropic kinase activity that catalyzes the phosphorylation of lots of substrates, including STAT3, p53, JAK2, PTEN, RELA, and AKT, leading to the regulation of diabetes, cardiovascular diseases, angiogenesis, and tumor progression. CK2 is observed to have high expression in multiple types of cancer, which is associated with poor prognosis. CK2 holds significant importance in the intricate network of pathways involved in promoting cell proliferation, invasion, migration, apoptosis, and tumor growth by multiple pathways such as JAK2/STAT3, PI3K/AKT, ATF4/p21, and HSP90/Cdc37. In addition to the regulation of cancer progression, increasing evidence suggests that CK2 could regulate tumor immune responses by affecting immune cell activity in the tumor microenvironment resulting in the promotion of tumor immune escape. Therefore, inhibition of CK2 is initially proposed as a pivotal candidate for cancer treatment. In this review, we discussed the role of CK2 in cancer progression and tumor therapy.
Collapse
Affiliation(s)
- Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
De Strooper B, Karran E. New precision medicine avenues to the prevention of Alzheimer's disease from insights into the structure and function of γ-secretases. EMBO J 2024; 43:887-903. [PMID: 38396302 PMCID: PMC10943082 DOI: 10.1038/s44318-024-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Two phase-III clinical trials with anti-amyloid peptide antibodies have met their primary goal, i.e. slowing of Alzheimer's disease (AD) progression. However, antibody therapy may not be the optimal therapeutic modality for AD prevention, as we will discuss in the context of the earlier small molecules described as "γ-secretase modulators" (GSM). We review here the structure, function, and pathobiology of γ-secretases, with a focus on how mutations in presenilin genes result in early-onset AD. Significant progress has been made in generating compounds that act in a manner opposite to pathogenic presenilin mutations: they stabilize the proteinase-substrate complex, thereby increasing the processivity of substrate cleavage and altering the size spectrum of Aβ peptides produced. We propose the term "γ-secretase allosteric stabilizers" (GSAS) to distinguish these compounds from the rather heterogenous class of GSM. The GSAS represent, in theory, a precision medicine approach to the prevention of amyloid deposition, as they specifically target a discrete aspect in a complex cell biological signalling mechanism that initiates the pathological processes leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Bart De Strooper
- Dementia Research Institute, Institute of Neurology, University College London, at the Francis Crick Institute, London, NW1 AT, UK.
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, and Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| | - Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| |
Collapse
|
24
|
Chan T, Cheng L, Hsu C, Yang P, Liao T, Hsieh H, Lin P, HuangFu W, Chuu C, Tsai KK. ASPM stabilizes the NOTCH intracellular domain 1 and promotes oncogenesis by blocking FBXW7 binding in hepatocellular carcinoma cells. Mol Oncol 2024; 18:562-579. [PMID: 38279565 PMCID: PMC10920086 DOI: 10.1002/1878-0261.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Notch signaling is aberrantly activated in approximately 30% of hepatocellular carcinoma (HCC), significantly contributing to tumorigenesis and disease progression. Expression of the major Notch receptor, NOTCH1, is upregulated in HCC cells and correlates with advanced disease stages, although the molecular mechanisms underlying its overexpression remain unclear. Here, we report that expression of the intracellular domain of NOTCH1 (NICD1) is upregulated in HCC cells due to antagonism between the E3-ubiquitin ligase F-box/WD repeat-containing protein 7 (FBXW7) and the large scaffold protein abnormal spindle-like microcephaly-associated protein (ASPM) isoform 1 (ASPM-i1). Mechanistically, FBXW7-mediated polyubiquitination and the subsequent proteasomal degradation of NICD1 are hampered by the interaction of NICD1 with ASPM-i1, thereby stabilizing NICD1 and rendering HCC cells responsive to stimulation by Notch ligands. Consistently, downregulating ASPM-i1 expression reduced the protein abundance of NICD1 but not its FBXW7-binding-deficient mutant. Reinforcing the oncogenic function of this regulatory module, the forced expression of NICD1 significantly restored the tumorigenic potential of ASPM-i1-deficient HCC cells. Echoing these findings, NICD1 was found to be strongly co-expressed with ASPM-i1 in cancer cells in human HCC tissues (P < 0.001). In conclusion, our study identifies a novel Notch signaling regulatory mechanism mediated by protein-protein interaction between NICD1, FBXW7, and ASPM-i1 in HCC cells, representing a targetable vulnerability in human HCC.
Collapse
Affiliation(s)
- Tze‐Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang HospitalTaipei Medical UniversityTaiwan
- School of Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Pancreatic Cancer Group, Taipei Cancer CenterTaipei Medical UniversityTaiwan
| | - Li‐Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Core Laboratory of Organoids Technology, Office of R&DTaipei Medical UniversityTaiwan
| | - Chung‐Chi Hsu
- School of Medicine, College of MedicineI‐Shou UniversityKaohsiung CityTaiwan
| | - Pei‐Ming Yang
- Master Program in Graduate Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaiwan
| | - Tai‐Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Hsiao‐Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Pei‐Chun Lin
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
| | - Wei‐Chun HuangFu
- Master Program in Graduate Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaiwan
| | - Chih‐Pin Chuu
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang HospitalTaipei Medical UniversityTaiwan
- Pancreatic Cancer Group, Taipei Cancer CenterTaipei Medical UniversityTaiwan
- Core Laboratory of Organoids Technology, Office of R&DTaipei Medical UniversityTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaiwan
| |
Collapse
|
25
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
26
|
Mangla A, Agarwal N, Schwartz G. Desmoid Tumors: Current Perspective and Treatment. Curr Treat Options Oncol 2024; 25:161-175. [PMID: 38270798 PMCID: PMC10873447 DOI: 10.1007/s11864-024-01177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
OPINION STATEMENT Desmoid tumors are rare tumors with a tendency to infiltrate locally. The lack of a standard treatment approach makes choosing the most appropriate treatment for patients challenging. Most experts recommend watchful observation for asymptomatic patients as spontaneous regression of tumor is observed in up to 20% of patients. Upfront resection of the desmoid tumor has fallen out of favor due to high morbidity and high relapse rates associated with the tumor. Systemic therapy has evolved over several decades. Where chemotherapy, hormonal therapy, and non-steroidal anti-inflammatory drugs were used over the last several decades, tyrosine kinase inhibitors came to the forefront within the last decade. Most recently, gamma-secretase inhibitors have shown significant clinical benefit in patients with desmoid tumors, bringing forth an entirely new mechanistic approach. Several Wnt pathway inhibitors are also under development. Invasive approaches like cryoablation have also shown clinical benefit in patients with extra-abdominal desmoid tumors in recent years. The recent approval of nirogacestat has ushered in a new era of treatment for patients diagnosed with desmoid tumors. Several new molecules are expected to be approved over the coming years.
Collapse
Affiliation(s)
- Ankit Mangla
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Lakeside Suite#1200, Room 1243, Cleveland, OH, 44106, USA.
| | - Nikki Agarwal
- Cleveland Clinic Children's Hospitals, Cleveland, OH, USA
| | - Gary Schwartz
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Lakeside Suite#1200, Room 1243, Cleveland, OH, 44106, USA
| |
Collapse
|
27
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
28
|
Ibrahim R, Assi T, Khoury R, Ngo C, Faron M, Verret B, Lévy A, Honoré C, Hénon C, Le Péchoux C, Bahleda R, Le Cesne A. Desmoid-type fibromatosis: Current therapeutic strategies and future perspectives. Cancer Treat Rev 2024; 123:102675. [PMID: 38159438 DOI: 10.1016/j.ctrv.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Desmoid tumors (DT) are rare, slow-growing, locally invasive soft tissue tumors that often pose significant therapeutic challenges. Traditional management strategies including active surveillance, surgery, radiotherapy, and systemic therapy which are associated with varying recurrence rates and high morbidity. Given the challenging nature of DT and the modest outcomes associated with current treatment strategies, there has been a growing interest in the field of γ-secretase inhibitors as a result of its action on the Wnt/β-catenin signaling pathway. In this review article, we will shed the light on the pathogenesis and molecular biology of DT, discuss its symptoms and diagnosis, and provide a comprehensive review of the traditional therapeutic approaches. We will also delve into the mechanisms of action of γ-secretase inhibitors, its efficacy, and the existing preclinical and clinical data available to date on the use of these agents, as well as the potential challenges and future prospects in the treatment landscape of these tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carine Ngo
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Matthieu Faron
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Verret
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antonin Lévy
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Honoré
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Clémence Hénon
- Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | - Axel Le Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France; Sarcoma Unit, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
29
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Li W, Wu L, Huang C, Ma H, Wang L, Liu W, Liu L. Activation of Notch-1 signaling pathway in macrophages to secrete PD-L1 and regulate cytotoxicity of CAR-T cells in diffuse large B-cell lymphoma. Aging (Albany NY) 2024; 16:1845-1859. [PMID: 38261741 PMCID: PMC10866421 DOI: 10.18632/aging.205463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE To investigate the mechanism of action of the Notch-1/IRE1/XBP1s signaling pathway in diffuse large B-cell lymphoma (DLBCL). METHODS The expressions of relevant proteins were detected by Western blotting. The effect of myeloid-specific knockout of Notch-1 on lymphoma progression was observed by mouse tumor transplantation and imaging. The apoptosis of chimeric antigen receptor T-cell therapy (CAR-T) cells were detected by flow cytometry, and the proliferation of CAR-T cells was detected by wound healing assay and cell counting kit-8 (CCK8) assay. RESULTS Lymphoma cells mediated the Notch-1 signaling pathway in bone marrow-derived macrophages and promoted the activation of STAT3 and STAT6 in bone marrow-derived macrophages. Myeloid-specific knockout of Notch-1 could inhibit the progression of lymphoma. Lymphoma cells enhanced the expression of p-PERK, p-IRE1α, ATF6, IL-6, IL-4, p-AKT, CD9, CD63 and PD-L1 in bone marrow-derived macrophages by mediating the Notch-1 signaling pathway. Knockout of Notch-1 in macrophages alleviated, to some extent, the suppression of killing activity of CAR-T cells, while activation of Notch-1 in macrophages inhibited proliferation and promoted apoptosis of CAR-T cells. The PD-L1 antibody significantly restored the cytotoxicity and proliferation of CAR-T cells, and inhibited their apoptosis. CONCLUSION Activation of the Notch-1/IRE1/XBP1s signaling pathway in myeloid macrophages promotes the secretion of IL-6 and IL-4 as well as PD-L1, thereby inhibiting the activity and proliferation of CAR-T cells and promoting their apoptosis.
Collapse
Affiliation(s)
- Weijing Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lili Wu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Huang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianjing Wang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Ghosh A, Mitra AK. Metastasis and cancer associated fibroblasts: taking it up a NOTCH. Front Cell Dev Biol 2024; 11:1277076. [PMID: 38269089 PMCID: PMC10806909 DOI: 10.3389/fcell.2023.1277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.
Collapse
Affiliation(s)
- Argha Ghosh
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
32
|
Zheng C, Huang J, Xu G, Li W, Weng X, Zhang S. The Notch signaling pathway in desmoid tumor: Recent advances and the therapeutic prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166907. [PMID: 37793461 DOI: 10.1016/j.bbadis.2023.166907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Desmoid tumor (DT) is a rare fibroblastic soft-tissue neoplasm that is characterized by local aggressiveness but no metastatic potential. Although the prognosis is relatively favorable, the unpredictable disease course and infiltrative growth lead to significant impairments and morbidity. Aberrant activation of Wnt/β-catenin signaling has been well-established in the pathogenesis of sporadic DT and familial adenomatous polyposis (FAP) or Gardners syndrome-associated DT, suggesting therapy targeting this pathway is an appealing treatment strategy. However, agents against this pathway are currently in their preliminary stages and have not yet been implemented in clinical practice. Increasing studies demonstrate activation of the Notch pathway is closely associated with the development and progression of DT, which provides a potential alternative therapeutic target against DT. Early-stage clinical trials and preclinical models have indicated that inhibition of Notch pathway might be a promising treatment approach for DT. The Notch signaling activation is mainly dependent on the activity of the γ-secretase enzyme, which is responsible for cleaving the Notch intracellular domain and facilitating its nuclear translocation to promote gene transcription. Two γ-secretase inhibitors called nirogacestat and AL102 are currently under extensive investigation in the advanced stage of clinical development. The updated findings from the phase III randomized controlled trial (DeFi trial) demonstrated that nirogacestat exerts significant benefits in terms of disease control and symptom resolution in patients with progressive DT. Therefore, this review provides a comprehensive overview of the present understanding of Notch signaling in the pathogenesis of DT, with a particular emphasis on the prospective therapeutic application of γ-secretase inhibitors in the management of DT.
Collapse
Affiliation(s)
- Chuanxi Zheng
- Department of Musculoskeletal Tumor Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Jianghong Huang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Gang Xu
- Department of Musculoskeletal Tumor Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Wei Li
- Department of Musculoskeletal Tumor Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Shiquan Zhang
- Department of Musculoskeletal Tumor Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
33
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
34
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
35
|
Deng M, Xu Y, Yao Y, Wang Y, Yan Q, Cheng M, Liu Y. Circular RNA hsa_circ_0051246 acts as a microRNA-375 sponge to promote the progression of gastric cancer stem cells via YAP1. PeerJ 2023; 11:e16523. [PMID: 38505381 PMCID: PMC10950207 DOI: 10.7717/peerj.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 03/21/2024] Open
Abstract
Background Gastric cancer (GC) stem cells play an important role in GC progression. Circular RNAs (circRNAs) act as microRNA (miRNA) sponges and inhibit the biological function of miRNAs in GC cytoplasm. MiRNAs also participate in GC progress. circ_0051246 was shown to be associated with miR-375 after analyzing GC microarray data GSE78091 and GSE83521. The oncoprotein Yes-associated protein 1 (YAP1) is targeted by miR-375 and can be inactivated via the Hippo tumor suppressor pathway. Due to insufficient research on circ_0051246, this study aimed to investigate its relationship with miR-375 and YAP1 in cancer stem cells (CSCs). Methods SGC-7901 CSCs were used to establish knockdown/overexpression models of circ_0051246, miR-375, and YAP1. Malignant phenotypes of CSCs were assessed using Cell Counting Kit 8, colony/sphere formation, 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, Transwell, and wound healing assays. To detect the interactions between circ_0051246, miR-375, and YAP1 in CSCs, a dual-luciferase reporter assay and fluorescence in situ hybridization were performed. In addition, 24 BALB/c nude mice were used to establish orthotopic xenograft tumor models. Four groups of mice were injected with CSCs (1 × 106 cells/100 µL) with circ_0051246 knockdown, miR-375 overexpression, or their respective control cells, and tumor progression and gene expression were observed by hematoxylin-eosin staining, immunohistochemistry. Western blot and quantitative real-time PCR were utilized to examine protein and gene expression, respectively. Results Circ_0051246 silencing reduced viability, promoted apoptosis, and inhibited proliferation, migration and invasion of CSCs. The functional effects of miR-375 mimics were comparable to those of circ_0051246 knockdown; however, the opposite was observed after miR-375 inhibitors treatment of CSCs. Furthermore, circ_0051246-overexpression antagonized the miR-375 mimics' effects on CSCs. Additionally, YAP1 overexpression promoted CSC features, such as self-renewal, migration, and invasion, inhibited apoptosis and E-cadherin levels, and upregulated the expression of N-cadherin, vimentin, YAP1, neurogenic locus notch homolog protein 1, and jagged canonical notch ligand 1. Conversely, YAP1-silenced produced the opposite effect. Moreover, miR-375 treatment antagonized the malignant effects of YAP1 overexpression in CSCs. Importantly, circ_0051246 knockdown and miR-375 activation suppressed CSC tumorigenicity in vivo. Conclusion This study highlights the promotion of circ_0051246-miR-375-YAP1 axis activation in GC progression and provides a scientific basis for research on the molecular mechanism of CSCs.
Collapse
Affiliation(s)
- Minghui Deng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Yefeng Xu
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Yongwei Yao
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Yiqing Wang
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Qingying Yan
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Miao Cheng
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - YunXia Liu
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Chen B, Huang R, Xia T, Wang C, Xiao X, Lu S, Chen X, Ouyang Y, Deng X, Miao J, Zhao C, Wang L. The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene 2023; 42:3564-3574. [PMID: 37853162 PMCID: PMC10673713 DOI: 10.1038/s41388-023-02865-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Metastasis remains the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), in which sustained activation of the Notch signaling plays a critical role. N6-Methyladenosine (m6A)-mediated post-transcriptional regulation is involved in fine-tuning the Notch signaling output; however, the post-transcriptional mechanisms underlying NPC metastasis remain poorly understood. In the present study, we report that insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) serves as a key m6A reader in NPC. IGF2BP3 expression was significantly upregulated in metastatic NPC and correlated with poor prognosis in patients with NPC. IGF2BP3 overexpression promoted, while IGF2BP3 downregulation inhibited tumor metastasis and the stemness phenotype of NPC cells in vitro and in vivo. Mechanistically, IGF2BP3 maintains NOTCH3 mRNA stability via suppression of CCR4-NOT complex-mediated deadenylation in an m6A-dependent manner, which sustains Notch3 signaling activation and increases the transcription of stemness-associated downstream genes, eventually promoting tumor metastasis. Our findings highlight the pro-metastatic function of the IGF2BP3/Notch3 axis and revealed the precise role of IGF2BP3 in post-transcriptional regulation of NOTCH3, suggesting IGF2BP3 as a novel prognostic biomarker and potential therapeutic target in NPC metastasis.
Collapse
Affiliation(s)
- Boyu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Runda Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shunzhen Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaowu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jingjing Miao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Chong Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Lin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
37
|
Yoshizumi A, Kuboki S, Takayashiki T, Takano S, Takayanagi R, Sonoda I, Ohtsuka M. Tspan15-ADAM10 signalling enhances cancer stem cell-like properties and induces chemoresistance via Notch1 activation in ICC. Liver Int 2023; 43:2275-2291. [PMID: 37545390 DOI: 10.1111/liv.15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND & AIMS Notch1 activation promotes ICC progression and is associated with chemoresistance; however, therapies directly targeting Notch1 showed severe adverse effects. Notch1 activation is mediated by ADAM10, a molecular scissor that separates the target protein from its substrates in the cell membrane. Tspan15 regulates ADAM10 function, but the role of Tspan15 in ICC progression is unclear. METHODS Tspan15, ADAM10, and Notch1 expression and activation in fresh surgical specimens from 80 ICC patients and ICC cells were evaluated by immunohistochemistry, RT-PCR, western blotting, and flow cytometry. RESULTS Tspan15 expression was increased in ICC compared with adjacent liver tissue, and high Tspan15 expression was an independent factor for poor prognosis. In ICC with high Tspan15 expression, vascular invasion, lymph node metastasis, and haematogenous recurrence were increased. Tspan15 was co-expressed with ADAM10 in ICC, and associated with the expression of stemness and EMT markers. In ICC cells, Tspan15 induced ADAM10 activation by mediating the translocation of activated m-ADAM10 from the cytoplasm to the surface of the cell membrane, which further activated Notch1 by separating the intracellular domain of Notch1 from its extracellular domain, leading to enhancement of CSC-like properties and EMT. This signalling was associated with enhanced chemoresistance against gemcitabine and cisplatin. Inhibition of Tspan15 or ADAM10 is a promising therapeutic strategy in ICC, as Tspan15 or ADAM10 knockdown or treatment with ADAM10 inhibitor reduced chemoresistance and invasiveness by suppressing Notch1-mediated CSC-like properties and EMT. CONCLUSIONS Tspan15-ADAM10-Notch1 signalling is associated with aggressive tumour progression and poor prognosis in ICC.
Collapse
Affiliation(s)
- Arihito Yoshizumi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Takayanagi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Itaru Sonoda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
38
|
Ameya G, Birri DJ. The molecular mechanisms of virus-induced human cancers. Microb Pathog 2023; 183:106292. [PMID: 37557930 DOI: 10.1016/j.micpath.2023.106292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Cancer is a serious public health problem globally. Many human cancers are induced by viruses. Understanding of the mechanisms by which oncogenic (tumorigenic) viruses induce cancer is essential in the prevention and control of cancer. This review covers comprehensive characteristics and molecular mechanisms of the main virus-attributed cancers caused by human papillomavirus, hepatitis B virus, hepatitis C virus, Epstein-Barr virus, human herpesvirus type 8, human T-cell lymphotropic virus, human polyomaviruses, Merkel cell polyomavirus, and HIV. Oncogenic viruses employ biological processes to replicate and avoid detection by host cell immune systems. Tumorigenic infectious agents activate oncogenes in a variety of ways, allowing the pathogen to block host tumour suppressor proteins, inhibit apoptosis, enhance cell proliferation, and promote invasion of host cells. Furthermore, this review assesses many pathways of viruses linked to cancer, including host cellular communication perturbation, DNA damage mechanisms, immunity, and microRNA targets that promote the beginning and progression of cancer. The current cancer prevention is primarily focused on non-communicable diseases, but infection-attributable cancer also needs attention to significantly reduce the rising cancer burden and related deaths.
Collapse
Affiliation(s)
- Gemechu Ameya
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Kotebe Metropolitan University, Addis Ababa, Ethiopia; Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
39
|
Hanna GJ, Stathis A, Lopez-Miranda E, Racca F, Quon D, Leyvraz S, Hess D, Keam B, Rodon J, Ahn MJ, Kim HR, Schneeweiss A, Ribera JM, DeAngelo D, Perez Garcia JM, Cortes J, Schönborn-Kellenberger O, Weber D, Pisa P, Bauer M, Beni L, Bobadilla M, Lehal R, Vigolo M, Vogl FD, Garralda E. A Phase I Study of the Pan-Notch Inhibitor CB-103 for Patients with Advanced Adenoid Cystic Carcinoma and Other Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:1853-1861. [PMID: 37712875 PMCID: PMC10501326 DOI: 10.1158/2767-9764.crc-23-0333] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE CB-103 selectively inhibits the CSL-NICD (Notch intracellular domain) interaction leading to transcriptional downregulation of oncogenic Notch pathway activation. This dose-escalation/expansion study aimed to determine safety, pharmacokinetics, and preliminary antitumor activity. EXPERIMENTAL DESIGN Patients ≥18 years of age with selected advanced solid tumors [namely, adenoid cystic carcinoma (ACC)] and hematologic malignancies were eligible. CB-103 was dosed orally in cycles of 28 days at escalating doses until disease progression. Notch-activating mutations were required in a dose confirmatory cohort. Endpoints included dose-limiting toxicities (DLT), safety, tumor response, pharmacokinetics, and pharmacodynamics. Exploratory analyses focused on correlates of Notch and target gene expression. RESULTS Seventy-nine patients (64, 12 dose-escalation cohorts; 15, confirmatory cohort) enrolled with 54% receiving two or more lines of prior therapy. ACC was the dominant tumor type (40, 51%). Two DLTs were observed [elevated gamma-glutamyl transferase (GGT), visual change]; recommended phase II dose was declared as 500 mg twice daily (5 days on, 2 days off weekly). Grade 3-4 treatment-related adverse events occurred in 15 patients (19%), including elevated liver function tests (LFTs), anemia, and visual changes. Five (6%) discontinued drug for toxicity; with no drug-related deaths. There were no objective responses, but 37 (49%) had stable disease; including 23 of 40 (58%) patients with ACC. In the ACC cohort, median progression-free survival was 2.5 months [95% confidence interval (CI), 1.5-3.7] and median overall survival was 18.4 months (95% CI, 6.3-not reached). CONCLUSIONS CB-103 had a manageable safety profile and biological activity but limited clinical antitumor activity as monotherapy in this first-in-human study. SIGNIFICANCE CB-103 is a novel oral pan-Notch inhibitor that selectively blocks the CSL-NICD interaction leading to transcriptional downregulation of oncogenic Notch pathway activation. This first-in-human dose-escalation and -confirmation study aimed to determine the safety, pharmacokinetics, and preliminary antitumor efficacy of CB-103. We observed a favorable safety profile with good tolerability and biological activity but limited clinical single-agent antitumor activity. Some disease stabilization was observed among an aggressive NOTCH-mutant ACC type-I subgroup where prognosis is poor and therapies are critically needed. Peripheral downregulation of select Notch target gene levels was observed with escalating doses. Future studies exploring CB-103 should enrich for patients with NOTCH-mutant ACC and investigate rational combinatorial approaches in tumors where there is limited success with investigational or approved drugs.
Collapse
Affiliation(s)
- Glenn J. Hanna
- Department of Medical Oncology, Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | | | - Fabricio Racca
- IOB – Institute of Oncology Barcelona and Madrid, Hospital Quironsalud-Barcelona, Barcelona, Spain
| | - Doris Quon
- Sarcoma Oncology Research Center, Santa Monica, California
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Dagmar Hess
- Department of Medical Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Myung-Ju Ahn
- Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of South Korea
| | - Hye Ryun Kim
- Severance Hospital – Yonsei Cancer Center, Seoul, Republic of South Korea
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Josep-Maria Ribera
- Institut Català d'Oncologia (Catalan Institute of Oncology [ICO]), Josep Carreras Research Institute, Barcelona, Spain
| | - Daniel DeAngelo
- Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jose Manuel Perez Garcia
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, New Jersey
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research, Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, New Jersey
| | | | - Dirk Weber
- Cellestia Biotech AG, Basel, Switzerland
| | - Pavel Pisa
- piMedConsulting Ltd, Gersau, Switzerland
| | | | - Laura Beni
- Cellestia Biotech AG, Basel, Switzerland
| | | | - Raj Lehal
- Cellestia Biotech AG, Basel, Switzerland
| | | | | | - Elena Garralda
- Early Drug Development Unit, Clinical Research Program, Vall d'Hebron University Hospital and Institute of Oncology (VHIO) and Medical Oncology, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| |
Collapse
|
40
|
Powell SK, Kulakova K, Kennedy S. A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland. Int J Mol Sci 2023; 24:13755. [PMID: 37762061 PMCID: PMC10530759 DOI: 10.3390/ijms241813755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has a worldwide incidence of three to four cases per million population. Although more cases occur in the minor and major salivary glands, it is the most common lacrimal gland malignancy. ACC has a low-grade, indolent histological appearance, but is relentlessly progressive over time and has a strong proclivity to recur and/or metastasise. Current treatment options are limited to complete surgical excision and adjuvant radiotherapy. Intra-arterial systemic therapy is a recent innovation. Recurrent/metastatic disease is common due to perineural invasion, and it is largely untreatable as it is refractory to conventional chemotherapeutic agents. Given the rarity of this tumour, the molecular mechanisms that govern disease pathogenesis are poorly understood. There is an unmet, critical need to develop effective, personalised targeted therapies for the treatment of ACC in order to reduce morbidity and mortality associated with the disease. This review details the evidence relating to the molecular underpinnings of ACC of the lacrimal gland, including the MYB-NFIB chromosomal translocations, Notch-signalling pathway aberrations, DNA damage repair gene mutations and epigenetic modifications.
Collapse
Affiliation(s)
- Sarah Kate Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
| | - Karina Kulakova
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- Department of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland
| |
Collapse
|
41
|
Liu L, Deng P, Liu S, Hong JH, Xiao R, Guan P, Wang Y, Wang P, Gao J, Chen J, Sun Y, Chen J, Mai HQ, Tan J. Enhancer remodeling activates NOTCH3 signaling to confer chemoresistance in advanced nasopharyngeal carcinoma. Cell Death Dis 2023; 14:513. [PMID: 37563118 PMCID: PMC10415329 DOI: 10.1038/s41419-023-06028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.
Collapse
Affiliation(s)
- Lizhen Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sailan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore, Republic of Singapore
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiuping Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinghong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
42
|
Chang YT, Chiu I, Wang Q, Bustamante J, Jiang W, Rycaj K, Yi S, Li J, Kowalski-Muegge J, Matsui W. Loss of p53 enhances the tumor-initiating potential and drug resistance of clonogenic multiple myeloma cells. Blood Adv 2023; 7:3551-3560. [PMID: 37042949 PMCID: PMC10368840 DOI: 10.1182/bloodadvances.2022009387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Tumor relapse and drug resistance are major factors that limit the curability of multiple myeloma (MM). New regimens have improved overall MM survival rates, but patients with high-risk features continue to have inferior outcomes. Chromosome 17p13 deletion (del17p) that includes the loss of the TP53 gene is a high-risk cytogenetic abnormality and is associated with poor clinical outcomes owing to relatively short remissions and the development of pan-drug resistant disease. Increased relapse rates suggest that del17p enhances clonogenic growth, and we found that the loss of p53 increased both the frequency and drug resistance of tumor-initiating MM cells (TICs). Subsequent RNA sequencing (RNA-seq) studies demonstrated significant activation of the Notch signaling pathway and upregulation of inhibitor of DNA binding (ID1/ID2) genes in p53-knock out (p53-KO) cells. We found that the loss of ID1 or HES-1 expression or treatment with a gamma-secretase inhibitor (GSI) significantly decreased the clonogenic growth of p53-KO but not p53 wild-type cells. GSI treatment in a small set of MM specimens also reduced the clonogenic growth in del17p samples but not in non-del17p samples. This effect was specific as overexpression of the Notch intracellular domain (NICD) rescued the effects of GSI treatment. Our study demonstrates that the Notch signaling and ID1 expression are required for TIC expansion in p53-KO MM cells. These findings also suggest that GSI may be specifically active in patients with p53 mutant MM.
Collapse
Affiliation(s)
- Yu-Tai Chang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Ian Chiu
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
- College of Natural Sciences, The University of Texas at Austin, Austin, TX
| | - Qiuju Wang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Jorge Bustamante
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Wenxuan Jiang
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Kiera Rycaj
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Song Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Joey Li
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeanne Kowalski-Muegge
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - William Matsui
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
43
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
44
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
45
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
46
|
Tian Y, Zhang P, Mou Y, Yang W, Zhang J, Li Q, Dou X. Silencing Notch4 promotes tumorigenesis and inhibits metastasis of triple-negative breast cancer via Nanog and Cdc42. Cell Death Discov 2023; 9:148. [PMID: 37149651 PMCID: PMC10164131 DOI: 10.1038/s41420-023-01450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Elucidation of individual Notch protein biology in specific cancer is crucial to develop safe, effective, and tumor-selective Notch-targeting therapeutic reagents for clinical use [1]. Here, we explored the Notch4 function in triple-negative breast cancer (TNBC). We found that silencing Notch4 enhanced tumorigenic ability in TNBC cells via upregulating Nanog expression, a pluripotency factor of embryonic stem cells. Intriguingly, silencing Notch4 in TNBC cells suppressed metastasis via downregulating Cdc42 expression, a key molecular for cell polarity formation. Notably, downregulation of Cdc42 expression affected Vimentin distribution, but not Vimentin expression to inhibit EMT shift. Collectively, our results show that silencing Notch4 enhances tumorigenesis and inhibits metastasis in TNBC, indicating that targeting Notch4 may not be a potential strategy for drug discovery in TNBC.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Peipei Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Yajun Mou
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Wenxiu Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Junhong Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Qing Li
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Xiaowei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
47
|
Kunimasa K. Notch Mutations as a Novel Biomarker for Immunotherapy. J Thorac Oncol 2023; 18:e53-e54. [PMID: 37087125 DOI: 10.1016/j.jtho.2023.01.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
48
|
Zhang X, Han Y, Nie Y, Jiang Y, Sui X, Ge X, Liu F, Zhang Y, Wang X. PAX5 aberrant expression incorporated in MIPI-SP risk scoring system exhibits additive value in mantle cell lymphoma. J Mol Med (Berl) 2023; 101:595-606. [PMID: 37126184 DOI: 10.1007/s00109-023-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin lymphoma with highly heterogeneous clinical courses. Paired-box 5 (PAX5), the regulator of B cell differentiation and growth, is abnormally expressed in several types of cancers. Herein, we explored the prognostic value of PAX5 in MCL by comprehensively analyzing the clinical features and laboratory data of 82 MCL cases. PAX5 positivity was associated with shorter overall survival (OS; p = 0.011) and was identified as an independent prognostic factor in MCL patients. The elevated β2-MG (p = 0.027) and advanced Mantle Cell Lymphoma International Prognostic Index (MIPI) score (p = 0.014) were related to positive PAX5 expression. The MIPI-SP risk scoring system was established and exhibited a superior prognostic value for OS depending on an area under the curve (AUC) of 0.770 (95% CI, 0.658-0.881) than MIPI score. Bioinformatic analysis of PAX5-related genes supported the mechanistic roles of PAX5 in MCL. This study provides insight into the potential role of PAX5 in MCL, and the novel risk scoring system MIPI-SP optimizes the risk stratification and facilitates prognosis evaluation in MCL patients. KEY MESSAGES: • Paired-box 5 positivity indicated adverse prognosis in mantle cell lymphoma patients. • Positive PAX5 expression was related to MIPI score and β2-MG in MCL patients. • MIPI-SP risk scoring system has superior prognostic value than MIPI score in MCL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yu Nie
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
49
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
50
|
Omar M, Dinalankara W, Mulder L, Coady T, Zanettini C, Imada EL, Younes L, Geman D, Marchionni L. Using biological constraints to improve prediction in precision oncology. iScience 2023; 26:106108. [PMID: 36852282 PMCID: PMC9958363 DOI: 10.1016/j.isci.2023.106108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/20/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Many gene signatures have been developed by applying machine learning (ML) on omics profiles, however, their clinical utility is often hindered by limited interpretability and unstable performance. Here, we show the importance of embedding prior biological knowledge in the decision rules yielded by ML approaches to build robust classifiers. We tested this by applying different ML algorithms on gene expression data to predict three difficult cancer phenotypes: bladder cancer progression to muscle-invasive disease, response to neoadjuvant chemotherapy in triple-negative breast cancer, and prostate cancer metastatic progression. We developed two sets of classifiers: mechanistic, by restricting the training to features capturing specific biological mechanisms; and agnostic, in which the training did not use any a priori biological information. Mechanistic models had a similar or better testing performance than their agnostic counterparts, with enhanced interpretability. Our findings support the use of biological constraints to develop robust gene signatures with high translational potential.
Collapse
Affiliation(s)
- Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lotte Mulder
- Technical University Delft, 2628 CD Delft, the Netherlands
| | - Tendai Coady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|