1
|
Zhang J, Dong Z, Xue C, Qu L, Zhao T, Fu Y, Zhang X, He Y, Xue W, Tu W, Lu H, Gao D. Silver niobate/platinum piezoelectric heterojunction enhancing intra-tumoral infiltration of immune cells for transforming "cold tumor" into "hot tumor". J Colloid Interface Sci 2025; 690:137303. [PMID: 40088819 DOI: 10.1016/j.jcis.2025.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Cancer immunotherapy represents a promising strategy, however, its efficacy is often hindered by high tumor interstitial fluid pressure (TIFP) due to fluid retention, and strong solid stress (SS) caused by the excessive proliferation of cancer-associated fibroblasts (CAFs). These factors limit the infiltration of immune cells into the deeper layers of tumors, thereby reducing the efficacy of immunotherapy. In this study, we designed an innovative AgNbO3/Pt@HA (ANPH) Schottky heterojunction system to induce ultrasound (US)-triggered piezocatalytic reactions for cancer therapy, which catalyze the water decomposition in the tumor interstitial fluid to produce H2, therefore, resulting in a 48.16 % reduction in TIFP. Furthermore, the reactive oxygen species (ROS) generated by the system eliminated 59.4 % of CAFs, reducing the tumor extracellular matrix and SS by 44.07 %. This reduction facilitated a 3.95-fold and 3-fold increase in quantities of intratumoral CD8+ and CD4+ T cells, respectively, and transformed "cold tumors" into "hot tumors" to activate systemic immune responses. The growth of primary, distal, and metastatic tumors was significantly inhibited. This study demonstrates effective reductions in intratumoral TIFP and SS, promoting immune cell infiltration and thereby enhancing the efficacy of immunotherapy through US-triggered piezocatalytic reactions, which establishes a new paradigm of the application of nanocatalytic medicine.
Collapse
Affiliation(s)
- Jinhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhechen Dong
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Chunlei Xue
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Li Qu
- Maternity & Child Care Center of Qinhuangdao, Qinhuangdao 066000, PR China
| | - Tengfei Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Yang Fu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Weili Xue
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hongzhi Lu
- Maternity & Child Care Center of Qinhuangdao, Qinhuangdao 066000, PR China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
2
|
Issa H, Singh L, Lai KS, Parusheva-Borsitzky T, Ansari S. Dynamics of inflammatory signals within the tumor microenvironment. World J Exp Med 2025; 15:102285. [DOI: 10.5493/wjem.v15.i2.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tumor stroma, or tumor microenvironment (TME), has been in the spotlight during recent years for its role in tumor development, growth, and metastasis. It consists of a myriad of elements, including tumor-associated macrophages, cancer-associated fibroblasts, a deregulated extracellular matrix, endothelial cells, and vascular vessels. The release of proinflammatory molecules, due to the inflamed microenvironment, such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy. This review discusses the major key players and important chemical inflammatory signals released in the TME. Furthermore, the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted. In addition, recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed.
Collapse
Affiliation(s)
- Hala Issa
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Sciences, Jumla 21200, Karnali, Nepal
| | - Kok-Song Lai
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Tina Parusheva-Borsitzky
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Shamshul Ansari
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| |
Collapse
|
3
|
Lu G, Liu H, Wang H, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of FER and SULF1 in the fibroblast-related genes are associated with non-small-cell lung cancer survival. Int J Cancer 2025; 156:2107-2117. [PMID: 39707607 PMCID: PMC11971011 DOI: 10.1002/ijc.35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Fibroblasts are important components in the tumor microenvironment and can affect tumor progression and metastasis. However, the roles of genetic variants of the fibroblast-related genes (FRGs) in the prognosis of non-small-cell lung cancer (NSCLC) patients have not been reported. Therefore, we investigated the associations between 26,544 single nucleotide polymorphisms (SNPs) in 291 FRGs and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In Cox regression multivariable analysis, we found that 661 SNPs were associated with NSCLC overall survival (OS). Then we validated these SNPs in another independent replication dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. Finally, we identified two independent SNPs (i.e., FER rs7716388 A>G and SULF1 rs11785839 G>C) that remained significantly associated with NSCLC survival with hazards ratios (HRs) of 0.87 (95% confidence interval [CI] = 0.77-0.98, p = 0.018) and 0.88 (95% CI = 0.79-0.99, p = 0.033), respectively. Combined analysis for these two SNPs showed that the number of protective alleles was associated with better OS and disease-specific survival. Expression quantitative trait loci analysis indicated that the FER rs7716388 G allele was associated with the up-regulation of FER mRNA expression levels in lung tissue. Our results indicated that these two functional SNPs in the FRGs may be prognostic biomarkers for the prognosis of NSCLC patients, and the possible mechanism may be through modulating the expression of their corresponding genes.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University Medical Center, Durham, Durham, NC 27710, USA
| |
Collapse
|
4
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Malakpour-Permlid A, Rodriguez MM, Untracht GR, Andersen PE, Oredsson S, Boisen A, Zór K. High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Toxicol Rep 2025; 14:101863. [PMID: 39758801 PMCID: PMC11699757 DOI: 10.1016/j.toxrep.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
High-throughput screening (HTS) three-dimensional (3D) tumor models are a promising approach for cancer drug discovery, as they more accurately replicate in vivo cell behavior than two-dimensional (2D) models. However, assessing and comparing current 3D models for drug efficacy remains essential, given the significant influence of cellular conditions on treatment response. To develop in vivo mimicking 3D models, we evaluated two HTS 3D models established in 96-well plates with 3D polycaprolactone (PCL) scaffolds fabricated using two distinct methods, resulting in scaffolds with either homogenous or non-homogenous fiber networks. These models, based on human HeLa cervical cancer cells and cancer-associated fibroblasts (CAFs) cultured as mono- or co-cultures within the 3D scaffolds, revealed that anticancer drug paclitaxel (PTX) exhibited consistently higher inhibitory concentration 50 (IC50) in 3D (≥ 1000 nM) compared to 2D (≥ 100 nM), indicating reduced toxicity on cells cultured in 3D. Interestingly, the toxicity of PTX was significantly lower on mini-tumors in non-homogenous 3D (IC50: 600 or 1000 nM) than in homogenous 3D cultures (IC50 exceeding 1000 nM). Microscopic studies revealed that the non-homogenous scaffolds closely resemble the tumor collagen network than their homogeneous counterpart. Both 3D scaffolds offer optimal pore size, facilitating efficient cell infiltration into the depth of 58.1 ± 1.2 µm (homogenous) and 86.4 ± 9.8 µm (non-homogenous) within 3D cultures. Cells cultured in the 3D non-homogenous systems exhibited drug treatment responses closer to in vivo conditions, highlighting the role of scaffold structure and design on cellular response to drug treatment. The PCL-based 3D models provide a robust, tunable, and efficient approach for the HTS of anti-cancer drugs compared to conventional 2D systems.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gavrielle R. Untracht
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter E. Andersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
- Innovation Acta S.r.l., Siena, Via delle 1-53100, Italy
| |
Collapse
|
6
|
Romoli J, Chiodelli P, Signoroni PB, Vertua E, Ferrari C, Giuzzi E, Paini A, Scalvini E, Papait A, Stefani FR, Silini AR, Parolini O. Modeling Stromal Cells Inside the Tumor Microenvironment of Ovarian Cancer: In Vitro Generation of Cancer-Associated Fibroblast-Like Cells and Their Impact in a 3D Model. MedComm (Beijing) 2025; 6:e70172. [PMID: 40255916 PMCID: PMC12006666 DOI: 10.1002/mco2.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
The tumor microenvironment (TME) is the combination of cells and factors that promotes tumor progression, and cancer-associated fibroblasts (CAFs) are a key component within TME. CAF originates from various stromal cells and is activated by factors such as transforming growth factor-beta (TGF-β) secreted by tumor cells, favoring chemoresistance and metastasis. Recent publications have underlined plasticity and heterogeneity and their strong contribution to the reactive stroma within the TME. Our study aimed to replicate the TME's structure by creating a 3D in vitro model of ovarian cancer (OC). By incorporating diverse tumor and stromal cells, we simulated a physiologically relevant environment for studying CAF-like cell behavior within tumor spheroids in a context-dependent manner. CAF-like cells were generated by exposing human dermal fibroblasts to OC cell line conditioned media in the presence or absence of TGF-β. Herein, we found that different stimuli induce the generation of heterogeneous populations of CAF-like cells. Notably, we observed the ability of CAF-like cells to shape the intratumoral architecture and to contribute to functional changes in tumor cell behavior. This study highlights the importance of precise assessment of CAF for potential therapeutic interventions and further provides a reliable model for investigating novel therapeutic targets in OC.
Collapse
Affiliation(s)
- Jacopo Romoli
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paola Chiodelli
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Elsa Vertua
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Clarissa Ferrari
- Research and Clinical Trials UnitFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Elisabetta Giuzzi
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Alice Paini
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Elisa Scalvini
- Centro di Ricerca E. MenniFondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Andrea Papait
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCSRomeItaly
| | | | | | - Ornella Parolini
- Department of Life Science and Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCSRomeItaly
| |
Collapse
|
7
|
Zhao B, Shi G, Shi J, Li Z, Xiao Y, Qiu Y, He L, Xie F, Yu D, Cao H, Du H, Zhang J, Zhou Y, Jiang C, Li W, Li M, Wang Z. Research progress on the mechanism and treatment of cachexia based on tumor microenvironment. Nutrition 2025; 133:112697. [PMID: 39999652 DOI: 10.1016/j.nut.2025.112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Cachexia is a prevalent multifactorial syndrome characterized by a substantial decrease in food intake, which results from processes such as proteolysis, lipolysis, inflammatory activation, and autophagy, ultimately leading to weight loss. In cancer patients, this condition is referred to as cancer-related cachexia (CRC) and affects over 50% of this population. A comprehensive understanding of the intricate interactions between tumors and the host organism is essential for the development of effective treatments for tumor cachexia. This review aims to elucidate the role of the tumor microenvironment (TME) in the pathogenesis of tumor-associated cachexia and to summarize the current evidence supporting treatment modalities that target the TME.
Collapse
Affiliation(s)
- Bochen Zhao
- School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Gege Shi
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jiaxin Shi
- School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Zhaozhao Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yang Xiao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yueyuan Qiu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Fei Xie
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Duo Yu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Haiyan Cao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Haichen Du
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yang Zhou
- School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Caiyi Jiang
- School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Weber F, Reese KL, Pantel K, Smit DJ. Cancer-associated fibroblasts as a potential novel liquid biopsy marker in cancer patients. J Exp Clin Cancer Res 2025; 44:127. [PMID: 40259388 DOI: 10.1186/s13046-025-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are tissue residing cells within the tumor microenvironment (TME). Stromal CAFs have been shown to be associated with poor prognosis and tumor progression in several solid tumor entities. Although the molecular mechanisms are not fully understood yet, a critical role within the TME through direct interaction with the tumor cells as well as other cells has been proposed. While most studies on CAFs focus on stromal CAFs, recent reports highlight the possibility of detecting circulating CAFs (cCAFs) in the blood. In contrast to invasive tissue biopsies for stromal CAF characterization, liquid biopsy allows a minimally invasive isolation of cCAFs. Furthermore, liquid biopsy methods could enable continuous monitoring of cCAFs in cancer patients and therefore may present a novel biomarker for solid tumors. In this work, we present an overview of cCAF studies currently available and summarize the liquid biopsy techniques for cCAF isolation and detection. Moreover, the future research directions in the emerging field are highlighted and the potential applications of cCAFs as novel biomarkers for solid tumor patients discussed.
Collapse
Affiliation(s)
- Franziska Weber
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
9
|
Paniagua K, Jin YF, Chen Y, Gao SJ, Huang Y, Flores M. Dissection of tumoral niches using spatial transcriptomics and deep learning. iScience 2025; 28:112214. [PMID: 40230519 PMCID: PMC11994907 DOI: 10.1016/j.isci.2025.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
This study introduces TG-ME, an innovative computational framework that integrates transformer with graph variational autoencoder (GraphVAE) models for dissection of tumoral niches using spatial transcriptomics data and morphological images. TG-ME effectively identifies and characterizes niches in bench datasets and a high resolution NSCLC dataset. The pipeline consists in different stages that include normalization, spatial information integration, morphological feature extraction, gene expression quantification, single cell expression characterization, and tumor niche characterization. For this, TG-ME leverages advanced deep learning techniques that achieve robust clustering and profiling of niches across cancer stages. TG-ME can potentially provide insights into the spatial organization of tumor microenvironments (TME), highlighting specific niche compositions and their molecular changes along cancer progression. TG-ME is a promising tool for guiding personalized treatment strategies by uncovering microenvironmental signatures associated with disease prognosis and therapeutic outcomes.
Collapse
Affiliation(s)
- Karla Paniagua
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Science, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, KLESSE School of Engineering and Integrated Design, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
11
|
Kimura E, Hayashi Y, Nakagawa K, Saiki H, Kato M, Uema R, Inoue T, Yoshihara T, Sakatani A, Fukuda H, Tajiri A, Adachi Y, Murai K, Yoshii S, Tsujii Y, Shinzaki S, Iijima H, Takehara T. p53 Deficiency in Colon Cancer Cells Promotes Tumor Progression Through the Modulation of Meflin in Fibroblasts. Cancer Sci 2025. [PMID: 40241262 DOI: 10.1111/cas.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment, play an important role in tumor progression. Colon cancer cells deficient in p53 activate fibroblasts and enhance fibroblast-mediated tumor growth. Meflin is a CAF marker capable of inhibiting tumor growth. In this study, we investigated the role of Meflin in fibroblasts using human cell lines (colon cancer HCT116 and fibroblasts CCD-18Co) and clinical specimens. TP53-suppressed HCT116 (HCT116sh p53) cells cocultured with CCD-18Co cells showed significantly faster proliferation than HCT116sh control cells. In xenograft experiments, the volume of tumors induced by coinoculation with HCT116sh p53 and CCD-18Co cells was significantly larger than that induced by HCT116sh control cells co-inoculated with CCD-18Co cells. HCT116sh p53 cells increased the levels of CAF-like phenotypic markers in CCD-18Co cells. Moreover, Meflin expression was significantly reduced in CCD-18Co cells cocultured with HCT116sh p53 cells compared to that in CCD-18Co cells cocultured with HCT116sh control cells. si-RNA-mediated inhibition of Meflin activated CCD-18Co cells into tumor-promoting CAF-like cells, which significantly promoted xenograft tumor growth. Overexpression of Meflin in CCD-18Co cells using lentivirus suppressed fibroblast-mediated growth of HCT116sh p53 tumor xenografts. The expression of Meflin in CCD-18Co cells was suppressed by TGF-β and enhanced by vitamin D. These results indicate that colon cancer cells deficient in p53 suppress Meflin expression in fibroblasts, which affects tumor growth by altering the properties of tumor growth-promoting CAFs. Our results suggest that targeting Meflin in fibroblasts may be a novel therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Eiji Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Nakagawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Saiki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromu Fukuda
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayaka Tajiri
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Adachi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
12
|
Wang YQ, Wang S, Yi HM, Qian Y, Wang Y, Xu HM, Xu-Monette ZY, Au K, Tian S, Dong Y, Zhao J, Fu D, Mu RJ, Wang SY, Wang L, Young KH, Xu PP, Zhao WL. Practical microenvironment classification in diffuse large B cell lymphoma using digital pathology. Cell Rep Med 2025; 6:102030. [PMID: 40112808 DOI: 10.1016/j.xcrm.2025.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a heterogeneous B cell neoplasm with variable clinical outcomes influenced by both tumor-derived and lymphoma microenvironment (LME) alterations. A recent transcriptomic study identifies four DLBCL subtypes based on LME characteristics: germinal center (GC)-like, mesenchymal (MS), inflammatory (IN), and depleted (DP). However, integrating this classification into clinical practice remains challenging. Here, we utilize deconvolution methods to assess microenvironment component abundance, establishing an LME classification of DLBCL using immunohistochemistry markers and digital pathology based on CD3, CD8, CD68, PD-L1, and collagen. This staining-based algorithm demonstrates over 80% concordance with transcriptome-based classification. Single-cell sequencing confirms that the immune microenvironments distinguished by this algorithm align with transcriptomic profiles. Significant disparities in overall and progression-free survival are observed among LME subtypes following rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) or R-CHOP with targeted agents (R-CHOP-X) immunochemotherapy. LME subtypes differed from distinct immune escape mechanisms, highlighting specific immunotherapeutic targets and supporting application of this classification in future precision medicine trials.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Min Xu
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA; Duke Cancer Institute, Durham, NC, USA
| | - Kelly Au
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Shuang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong-Ji Mu
- Department of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Ye Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA; Duke Cancer Institute, Durham, NC, USA.
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
13
|
Mohammad SI, Vasudevan A, Hussein Alzewmel A, Rab SO, Ballal S, Kalia R, Bethanney Janney J, Ray S, Joshi KK, Yasin HA. The mutual effects of stearoyl-CoA desaturase and cancer-associated fibroblasts: A focus on cancer biology. Exp Cell Res 2025; 447:114508. [PMID: 40122505 DOI: 10.1016/j.yexcr.2025.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
The tumor microenvironment (TME) 's primary constituents that promote cancer development are cancer-associated fibroblasts (CAFs). Metabolic remodeling has been shown to control CAF activity, particularly aberrant lipid metabolism. SCD1 can be thought of as the primary enzyme controlling the fluidity of lipid bilayers by gradually converting saturated fatty acids into monounsaturated fatty acids. Furthermore, its crucial function in the onset and spread of cancer is well acknowledged. Even with the increasing amount of research on changes in lipid metabolism, this problem remains a relatively understudied aspect of cancer research. Blocking several fatty acid synthesis-related enzymes highly expressed in cancerous cells inhibits cell division and encourages apoptosis. This is the situation with SCD1, whose overexpression has been linked to several changed tumors and cells. Both genetic and pharmacological silencing of SCD1 in cancer cells prevents glucose-mediated lipogenesis and tumor cell growth. However, its role in CAFs, hence, cancer biology, has been less studied. This study aimed to review the role of SCD1 in CAF biology, shedding light on their function in cancer cell biology.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800 Negeri Sembilan, Malaysia; Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia.
| | - Ahmad Hussein Alzewmel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Bethanney Janney
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
14
|
Peña R, Baulida J. Snail1 as a key prognostic biomarker of cancer-associated fibroblasts in breast tumors. Biochim Biophys Acta Rev Cancer 2025:189316. [PMID: 40222423 DOI: 10.1016/j.bbcan.2025.189316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Accurate cancer diagnosis is crucial for selecting optimal treatments, yet current classification systems often include non-responders who receive ineffective therapies. Cancer-associated fibroblasts (CAFs) play a central role in tumor progression, and CAF biomarkers are increasingly recognized for their prognostic value. Recent studies have revealed significant heterogeneity within CAF populations, with distinct subtypes linked to different tumors and stages of disease. In this review, we summarize recent findings from patient samples and mouse models of breast cancer, focusing on gene signatures identified by single-cell RNA sequencing that define CAF subtypes and predict cancer prognosis. Additionally, we explore the genes and pathways regulated by Snail1, a transcription factor whose expression in breast and colon CAFs is associated with malignancy. Altogether these data emphasize the fibrotic and immunosuppressive roles of Snail1-expressing fibroblasts and unveil an undescribed streamlined Snail1-related gene signature in CAFs with prognostic potential in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Raúl Peña
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Baulida
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
15
|
Ackermann J, Bernard C, Sirven P, Salmon H, Fraldi M, Ben Amar MD. Mechanistic insight for T-cell exclusion by cancer-associated fibroblasts in human lung cancer. eLife 2025; 13:RP101885. [PMID: 40208246 PMCID: PMC11984955 DOI: 10.7554/elife.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.
Collapse
Affiliation(s)
- Joseph Ackermann
- Laboratoire Jean Perrin, Sorbonne UniversitéParisFrance
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
| | - Chiara Bernard
- Department of Structures for Engineering and Architecture, University of Naples "Federico II"NaplesItaly
| | | | - Helene Salmon
- Institut Curie, PSL Research University, INSERMParisFrance
| | - Massimiliano Fraldi
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
- Department of Structures for Engineering and Architecture, University of Naples "Federico II"NaplesItaly
| | - Martine D Ben Amar
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris CitéParisFrance
- Institut Universitaire de Cancérologie, Faculté de médecine, Sorbonne UniversitéParisFrance
| |
Collapse
|
16
|
Xiong T, Wang K. Reconstructing the hepatocellular carcinoma microenvironment: the current status and challenges of 3D culture technology. Discov Oncol 2025; 16:506. [PMID: 40208520 PMCID: PMC11985711 DOI: 10.1007/s12672-025-02290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC), with high incidence and mortality rates among digestive system diseases, has become a focal point for researchers. However, the more we learn about HCC, the more apparent it becomes that our understanding is still superficial. The successes and failures of numerous studies underscore the urgent need for precision medicine in cancer treatment. A crucial aspect of preclinical research in precision medicine is the experimental model, particularly cell culture models. Among these, 3D cell culture models can effectively integrate and simulate the tumor microenvironment, closely reflecting the in vivo conditions of patients. This capability provides a solid theoretical foundation for personalized treatment approaches. In this review, we first outline the common in vitro 3D cell culture models and examine the essential elements within the tumor microenvironment, followed by insights into the current state and future developments of 3D in vitro cell models for HCC.
Collapse
Affiliation(s)
- Ting Xiong
- Division of Hepato-Biliary-Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
17
|
Wang W, Zhai Y, Yang X, Ye L, Lu G, Shi X, Zhai G. Effective design of therapeutic nanovaccines based on tumor neoantigens. J Control Release 2025; 380:17-35. [PMID: 39892648 DOI: 10.1016/j.jconrel.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Neoantigen vaccines are among the most potent immunotherapies for personalized cancer treatment. Therapeutic vaccines containing tumor-specific neoantigens that elicit specific T cell responses offer the potential for long-term clinical benefits to cancer patients. Unlike immune-checkpoint inhibitors (ICIs), which rely on pre-existing specific T cell responses, personalized neoantigen vaccines not only promote existing specific T cell responses but importantly stimulate the generation of neoantigen-specific T cells, leading to the establishment of a persistent specific memory T cell pool. The review discusses the current state of clinical research on neoantigen nanovaccines, focusing on the application of vectors, adjuvants, and combinational strategies to address a range of challenges and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Weilin Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States of America
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Jerabkova-Roda K, Peralta M, Huang KJ, Mousson A, Bourgeat Maudru C, Bochler L, Busnelli I, Karali R, Justiniano H, Lisii LM, Carl P, Mittelheisser V, Asokan N, Larnicol A, Lefebvre O, Lachuer H, Pichot A, Stemmelen T, Molitor A, Scheid L, Frenger Q, Gros F, Hirschler A, Delalande F, Sick E, Carapito R, Carapito C, Lipsker D, Schauer K, Rondé P, Hyenne V, Goetz JG. Peripheral positioning of lysosomes supports melanoma aggressiveness. Nat Commun 2025; 16:3375. [PMID: 40204688 PMCID: PMC11982396 DOI: 10.1038/s41467-025-58528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Emerging evidence suggests that the function and position of organelles are pivotal for tumor cell dissemination. Among them, lysosomes stand out as they integrate metabolic sensing with gene regulation and secretion of proteases. Yet, how their function is linked to their position and how this controls metastasis remains elusive. Here, we analyze lysosome subcellular distribution in patient-derived melanoma cells and patient biopsies and show that lysosome spreading scales with melanoma aggressiveness. Peripheral lysosomes promote matrix degradation and cell invasion which is directly linked to the lysosomal and cell transcriptional programs. Using chemo-genetical control of lysosome positioning, we demonstrate that perinuclear clustering impairs lysosome secretion, matrix degradation and invasion. Impairing lysosome spreading significantly reduces invasive outgrowth in two in vivo models, mouse and zebrafish. Our study provides a direct demonstration that lysosome positioning controls cell invasion, illustrating the importance of organelle adaptation in carcinogenesis and suggesting its potential utility for diagnosis of metastatic melanoma.
Collapse
Affiliation(s)
- Katerina Jerabkova-Roda
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
- Institut Curie, PSL, CNRS, UMR144, Paris, France.
| | - Marina Peralta
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, 00015, Rome, Italy
| | - Kuang-Jing Huang
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Antoine Mousson
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Clara Bourgeat Maudru
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Louis Bochler
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Rabia Karali
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Hélène Justiniano
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Lucian-Mihai Lisii
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Philippe Carl
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Nandini Asokan
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Annabel Larnicol
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics, Strasbourg, France
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Hugo Lachuer
- Institut Curie, PSL, CNRS, UMR144, Paris, France
- Institut Gustave Roussy, INSERM UMR1279, Université Paris-Saclay, Villejuif, France
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Angélique Pichot
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Tristan Stemmelen
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
| | - Anne Molitor
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | - Léa Scheid
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Quentin Frenger
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Frédéric Gros
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Emilie Sick
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France
| | - Raphaël Carapito
- INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Plateforme GENOMAX, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), IPHC, UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Dan Lipsker
- Faculté de Médecine, Université de Strasbourg et Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Kristine Schauer
- Institut Curie, PSL, CNRS, UMR144, Paris, France.
- Institut Gustave Roussy, INSERM UMR1279, Université Paris-Saclay, Villejuif, France.
| | - Philippe Rondé
- Université de Strasbourg, Strasbourg, France.
- CNRS UMR7021, Faculté de Pharmacie, Illkirch, France.
| | - Vincent Hyenne
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
- CNRS, SNC5055, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, Strasbourg, France.
- INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
19
|
Palomeque Chávez JC, McGrath M, O'Connor C, Dervan A, Dixon JE, Kearney CJ, Browne S, O'Brien FJ. Development of a VEGF-activated scaffold with enhanced angiogenic and neurogenic properties for chronic wound healing applications. Biomater Sci 2025; 13:1993-2011. [PMID: 40012508 PMCID: PMC11865941 DOI: 10.1039/d4bm01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Chronic wounds remain in a state of disrupted healing, impeding neurite outgrowth from injured nerves and poor development of new blood vessels by angiogenesis. Current therapeutic approaches primarily focus on the restoration of vascularization and overlook the need of nerve regeneration for complete healing. Vascular endothelial growth factor (VEGF) is a critical growth factor supporting angiogenesis in wound healing, promoting vascularization and has also demonstrated neuro-protective capabilities in both central and peripheral nervous system. While the delivery of pro-regenerative recombinant growth factors has shown promise, gene delivery offers greater stability, reduced off-target side effects, diminished cytotoxicity, and lower production costs. In this context, the overarching goal of this study was to develop a VEGF-activated scaffold with the potential to provide a multifaceted response that enhances both angiogenesis and nerve repair in wound healing through the localized delivery of plasmid encoding VEGF (pVEGF) encapsulated within the GET peptide system. Initially, delivery of pVEGF/GET nanoparticles to dermal fibroblasts led to higher VEGF protein expression without a compromise in cell viability. Transfection of dermal fibroblasts and endothelial cells on the VEGF-activated scaffolds resulted in enhanced VEGF expression, improved endothelial cell migration and organization into vascular-like structures. Finally, the VEGF-activated scaffolds consistently displayed enhanced neurogenic ability through improved neurite outgrowth from neural cells in in vitro and ex vivo models. Taken together, the VEGF-activated scaffold demonstrates multifaceted outcomes through the induction of pro-angiogenic and neurogenic responses from dermal, vascular and neural cells, illustrating the potential of this platform for the healing of chronic wounds.
Collapse
Affiliation(s)
- Juan Carlos Palomeque Chávez
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Matthew McGrath
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Cathal J Kearney
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Ma Z, Yu D, Tan S, Li H, Zhou F, Qiu L, Xie X, Wu X. CXCL12 alone is enough to Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts. Cell Death Discov 2025; 11:156. [PMID: 40199862 PMCID: PMC11978793 DOI: 10.1038/s41420-025-02420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME), playing significant roles in regulating cancer progression. However, the underlying mechanism of CAFs activation remains elusive. In this study, we aim to investigates the mechanisms by which CAFs promote the conversion of normal fibroblasts (NFs) to CAFs in lung cancer, with a focus on the role of p53 mutations and the CXCL12/STAT3 signaling axis. We found that CAFs significantly induced NFs to acquire CAFs properties (called CEFs), including upregulation of α-SMA and Vimentin, enhanced proliferation and migration, and increased ability to promote lung cancer cell migration. In vivo, CEFs accelerated A549 xenograft growth and induced spontaneous lung metastasis. CXCL12 was identified as a key factor in NFs-to-CEFs conversion, with its expression positively correlated with CAFs markers in lung cancer. Further investigation confirmed that CXCL12 is sufficient to reprogram NFs into CAFs through the STAT3 pathway. Notably, inhibiting CXCL12 signaling and the STAT3 pathway reduced the conversion of NFs to CAFs, thereby hindering lung cancer progression progression both in vitro and in vivo. Our study reveals CAFs could promote the conversion of NFs to CAFs-like cells through the CXCL12/STAT3 axis, enhancing tumor growth and metastasis in lung cancer. Therefore, inhibition of the CXCL12/STAT3 axis is a promising strategy for the treatment of lung cancers and other CXCL12-dependent malignancies.
Collapse
Affiliation(s)
- Zelong Ma
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Diping Yu
- Department of Pathology, Pu'er People's Hospital, Pu'er, Yunnan, 665000, China
| | - Siqi Tan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Hao Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Faxiao Zhou
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Lei Qiu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
21
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Hu WT, Li M, Ma PJ, Yang D, Liu XD, Wang Y. A silence catalyst: CCL5-mediated intercellular communication in cancer. Arch Toxicol 2025:10.1007/s00204-025-04036-w. [PMID: 40167774 DOI: 10.1007/s00204-025-04036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Chemokine CCL5 (RANTES), as a key mediator of intercellular communication in cancers, and its role in cancer development, metastasis and immune escape has received increasing attention. CCL5 and its receptors are important components of the tumor microenvironment and play a tumor promoting role in different ways by triggering signaling pathways through binding to the primary receptor CCR5. CCL5 was viewed as indispensable "gate keepers" of immunity and inflammation, it remains unclear of CCL5-mediated intercellular communication. Therefore, in this review, we summarize the latest information on the origin, structure, and characterization of CCL5 and role of CCL5 in the tumor microenvironment. It includes CCL5-mediated intercellular communication through exosomes, microvesicles and others in breast, lung, and ovarian cancers. CCL5 has a multifaceted role in cancer and has potential applications as a biomarker for cancer diagnosis and prognosis, which provides theoretical bases and therapeutic targets for the development of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Wei-Ting Hu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pei-Jun Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ding Yang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiao-Dong Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
24
|
Yang J, Xin B, Wang X, Wan Y. Cancer-associated fibroblasts in breast cancer in the single-cell era: Opportunities and challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189291. [PMID: 40024607 DOI: 10.1016/j.bbcan.2025.189291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women, and its progression is closely linked to the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), key components of the TME, play a crucial role in promoting tumor growth by driving cancer cell proliferation, invasion, extracellular matrix (ECM) remodeling, inflammation, chemoresistance, and immunosuppression. CAFs exhibit considerable heterogeneity and are classified into subgroups based on different combinations of biomarkers. Single-cell RNA sequencing (scRNA-seq) enables high-throughput and high-resolution analysis of individual cells. Relying on this technology, it is possible to cluster complex CAFs according to different biomarkers to analyze the specific phenotypes and functions of different subpopulations. This review explores CAF clusters in breast cancer and their associated biomarkers, highlighting their roles in disease progression and potential for targeted therapies.
Collapse
Affiliation(s)
- Jingtong Yang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Xiaoyu Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
25
|
Boixareu C, Taha T, Venkadakrishnan VB, de Bono J, Beltran H. Targeting the tumour cell surface in advanced prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01014-w. [PMID: 40169837 DOI: 10.1038/s41585-025-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Prostate cancer remains a substantial health challenge, with >375,000 annual deaths amongst men worldwide. Most prostate cancer-related deaths are attributable to the development of resistance to standard-of-care treatments. Characterization of the diverse and complex surfaceome of treatment-resistant prostate cancer, combined with advances in drug development that leverage cell-surface proteins to enhance drug delivery or activate the immune system, have provided novel therapeutic opportunities to target advanced prostate cancer. The prostate cancer surfaceome, including proteins such as prostate-specific membrane antigen (PSMA), B7-H3, six transmembrane epithelial antigen of the prostate 1 (STEAP1), delta-like ligand 3 (DLL3), trophoblastic cell-surface antigen 2 (TROP2), prostate stem cell antigen (PSCA), HER3, CD46 and CD36, can be exploited as therapeutic targets, as regulatory mechanisms might contribute to the heterogeneity of expression of these proteins and subsequently affect treatment response and resistance. Specific treatment strategies targeting the surfaceome are in clinical development, including radionuclides, antibody-drug conjugates, T cell engagers and chimeric antigen receptor (CAR) T cells. Ultimately, biomarker development and clinical implementation of these agents will be informed and refined by further understanding of the biology of various targets; the target specificity and sensitivity of different agents; and off-target and toxic effects associated with these agents. Understanding the dynamic nature of cell-surface targets and non-overlapping expression patterns might also lead to future combinational strategies.
Collapse
Affiliation(s)
- Cristina Boixareu
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Tarek Taha
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | | | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK.
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Gupta R, Schärer P, Liao Y, Roy B, Benoit RM, Shivashankar GV. Regulation of p65 nuclear localization and chromatin states by compressive force. Mol Biol Cell 2025; 36:ar37. [PMID: 39908115 PMCID: PMC12005105 DOI: 10.1091/mbc.e23-11-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The tumor microenvironment (TME) is a dynamic ecosystem, that evolves with the developing tumor to support its growth and metastasis. A key aspect of TME evolution is the recruitment of stromal fibroblasts, carried out via the release of various tumor signals including tumor necrosis factor (TNFα). These tumor signals in turn alter the mechanical properties of the TME as the tumor grows. Because of the important role of stromal cells in supporting tumor progression, new therapies aim to target stromal fibroblasts. However, these therapies have been unsuccessful in part due to the limited understanding of cross-talk between chemical and altered mechanical signaling within stromal fibroblasts. To investigate this, we designed a coculture assay with YFP-TNFα releasing spheroids embedded within collagen gels alongside fibroblasts to mimic the stromal response within the TME. This resulted in the nuclear translocation of p65 in the stromal fibroblasts which was further intensified by the addition of compressive stress. The combination of mechanical and chemical signals led to cytoskeletal disruption and induced a distinct chromatin state in the stromal fibroblasts. These results highlight the important cross-talk between cytokine signaling and mechanical forces on stromal cells within the TME and facilitate the development of a better spheroid model for therapeutic interventions.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Paulina Schärer
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - Yawen Liao
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Bibhas Roy
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Biological Science, BITS-Pilani Hyderabad Campus, Secunderabad, Telngana, India 500078
| | - Roger M. Benoit
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - G. V. Shivashankar
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| |
Collapse
|
27
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
28
|
Hong R, Yu P, Zhang X, Su P, Liang H, Dong D, Wang X, Wang K. The role of cancer-associated fibroblasts in the tumour microenvironment of urinary system. Clin Transl Med 2025; 15:e70299. [PMID: 40195290 PMCID: PMC11975626 DOI: 10.1002/ctm2.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Urological tumours are a type of neoplasms that significantly jeopardise human life and wellbeing. Cancer-associated fibroblasts (CAFs), serving as the primary component of the stromal cellular milieu, form a diverse cellular cohort that exerts substantial influence on tumourigenesis and tumour progression. In this review, we summarised the literatures regarding the functions of CAFs in the urinary tumour microenvironment (TME). We primarily examined the multifaceted activities of CAFs in the TME of urological system tumours, including inhibiting tumour immunity, remodelling the extracellular matrix, promoting tumour growth, metastasis, drug resistance and their clinical applications. We also discussed potential future directions for leveraging artificial intelligence in CAFs research. KEY POINTS: The interaction of CAFs with various cell secretory factors in the TME of urological tumors. The application of CAFs in diagnosis, treatment and prognosis of urological tumors.
Collapse
Affiliation(s)
- Ri Hong
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Puguang Yu
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoli Zhang
- Department of Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Peng Su
- Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Dong
- College of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Xuesong Wang
- Department of UrologyPeople's Hospital of China Medical UniversityShenyangChina
- Department of UrologyPeople's Hospital of Liaoning ProvinceShenyangChina
| | - Kefeng Wang
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
29
|
Yan X, Gao X, Dong J, Wang F, Jiang X, Hu X, Zhang J, Wang N, Xu L, Liu Z, Hu S, Zhao H. Integration of Single-Cell and Bulk RNA-seq Data to Identify the Cancer-Associated Fibroblast Subtypes and Risk Model in Glioma. Biochem Genet 2025; 63:1275-1297. [PMID: 38536568 DOI: 10.1007/s10528-024-10751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the stroma. Studies showed that CAFs were pivotally in glioma progression which have long been considered a promising therapeutic target. Therefore, the identification of prognostic CAF markers might facilitate the development of novel diagnostic and therapeutic approaches. A total of 1333 glioma samples were obtained from the TCGA and CGGA datasets. The EPIC, MCP-counter, and xCell algorithms were used to evaluate the relative proportion of CAFs in glioma. CAF markers were identified by the single-cell RNA-seq datasets (GSE141383) from the Tumor Immune Single-Cell Hub database. Unsupervised consensus clustering was used to divide the glioma patients into different distinct subgroups. The least absolute shrinkage and selection operator regression model was utilized to establish a CAF-related signature (CRS). Finally, the prognostic CAF markers were further validated in clinical specimens by RT‒qPCR. Combined single-cell RNA-seq analysis and differential expression analysis of samples with high and low proportions of CAFs revealed 23 prognostic CAF markers. By using unsupervised consensus clustering, glioma patients were divided into two distinct subtypes. Subsequently, based on 18 differentially expressed prognostic CAF markers between the two CAF subtypes, we developed and validated a new CRS model (including PCOLCE, TIMP1, and CLIC1). The nomogram and calibration curves indicated that the CRS was an accurate prognostic marker for glioma. In addition, patients in the high-CRS score group had higher immune infiltration and tumor mutation burden levels. Moreover, the CRS score had the potential to predict the response to immune checkpoint blockade (ICB) therapy and chemotherapy. Finally, the expression profiles of three CAF markers were verified by RT‒qPCR. In general, our study classified glioma patients into distinct subgroups based on CAF markers, which will facilitate the development of individualized therapy. We also provided insights into the role of the CRS in predicting the response to ICB and chemotherapy in glioma patients.
Collapse
Affiliation(s)
- Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Taylor H, Spruill L, Jensen-Smith H, Rujchanarong D, Hulahan T, Ivey A, Siougiannis A, Bethard JR, Ball LE, Sandusky GE, Hollingsworth MA, Barth JL, Mehta AS, Drake RR, Marks JR, Nakshatri H, Ford M, Angel PM. Spatial localization of collagen hydroxylated proline site variation as an ancestral trait in the breast cancer microenvironment. Matrix Biol 2025; 136:71-86. [PMID: 39863086 DOI: 10.1016/j.matbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/27/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment. In the present study, we test the hypothesis that the breast cancer microenvironment presents unique PTMs of collagen, which form bioactive domains at these sites that are associated with spatial histopathological characteristics and influence breast epithelial cell signaling. Mass spectrometry imaging proteomics targeting collagens were paired with comprehensive proteomic methods to identify novel breast cancer-related collagen domains based on spatial localization and regulation in 260 breast tissue samples. As ancestry plays a significant role in breast cancer outcomes, these methods were performed on ancestry diverse breast cancer tissues. Lumpectomies from the Cancer Genome Atlas (TCGA; n=10) reported increased levels of prolyl 4-hydroxylase subunit alpha-3 (P4HA3) accompanied by spatial regulation of fibrillar collagen protein sequences. A concise set of triple negative breast cancer lumpectomies (n=10) showed spatial regulation of specific domain sites from collagen alpha-1(I) chain. Tissue microarrays identified proteomic alterations around post-translationally modified collagen sites in healthy breast (n=81) and patient matched normal adjacent (NAT; n=76) and invasive ductal carcinoma (n=83). A collagen alpha-1(I) chain domain encompassing amino acids 506-514 with site-specific proline hydroxylation reported significant alteration between patient matched normal adjacent tissue and invasive breast cancer. Functional testing of domain 506-514 on breast cancer epithelial cells showed proliferation, chemotaxis and cell signaling response dependent on site localization of proline hydroxylation within domain 506-514 variants. These findings support site localized collagen HYP forms novel bioactive domains that are spatially distributed within the breast cancer microenvironment and may play a role in ancestral traits of breast cancer.
Collapse
Affiliation(s)
- Harrison Taylor
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Heather Jensen-Smith
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Denys Rujchanarong
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Taylor Hulahan
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Ashlyn Ivey
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Alex Siougiannis
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jennifer R Bethard
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren E Ball
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - George E Sandusky
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - M A Hollingsworth
- Eppley Institute for Cancer Research & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey R Marks
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Marvella Ford
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M Angel
- Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
31
|
Maruyama M, Torii R, Matsui H, Hayashi H, Ogawara KI, Higaki K. Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice. Eur J Pharm Biopharm 2025; 209:114663. [PMID: 39922508 DOI: 10.1016/j.ejpb.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation.
Collapse
Affiliation(s)
- Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530 Japan.
| | - Reiya Torii
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530 Japan
| | - Hazuki Matsui
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530 Japan
| | - Hiroki Hayashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530 Japan
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530 Japan
| |
Collapse
|
32
|
Xu W, Yang H, Xu K, Zhu A, Hall SRR, Jia Y, Zhao B, Zhang E, Liu G, Xu J, Marti TM, Peng R, Dorn P, Niu Y, Pan X, Zhang Y, Yao F. Transitional CXCL14 + cancer-associated fibroblasts enhance tumour metastasis and confer resistance to EGFR-TKIs, revealing therapeutic vulnerability to filgotinib in lung adenocarcinoma. Clin Transl Med 2025; 15:e70281. [PMID: 40162549 PMCID: PMC11955843 DOI: 10.1002/ctm2.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The heterogeneity of cancer-associated fibroblasts (CAFs) has become a crucial focus in understanding cancer biology and treatment response, revealing distinct subpopulations with specific roles in tumor pathobiology. CAFs have also been shown to promote resistance in lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, the specific CAF subsets responsible for driving tumor advancement and resistance to EGFR-TKIs in lung adenocarcinoma (LUAD) remain poorly understood. METHODS We integrate multiple scRNA-seq datasets to identify cell subclusters most relevant to tumor stage, patient survival, and EGFR-TKIs response. Additionally, in vitro and in vivo experiments, clinical tissue sample immunohistochemistry and patient plasma ELISA experiments are performed to validate key findings in independent LUAD cohorts. RESULTS By analyzing multiple scRNA-seq and spatial transcriptomic datasets, we identified a unique subset of CXCL14+ myofibroblastic CAFs (myCAFs), emerging during the early differentiation phase of pan-cancer invasiveness-associated THBS2⁺ POSTN⁺ COL11A1⁺ myCAFs. Notably, plasma levels of CXCL14 in LUAD patients correlate significantly with tumor stage. Mechanistically, this subset enhances tumor aggressiveness through epithelial-to-mesenchymal transition and angiogenesis. Among standard treatment regimens, transitional CXCL14+ myCAFs specifically confer resistance to EGFR-TKIs, while showing no significant impact on chemotherapy or immunotherapy outcomes. Through a pharmacological screen of FDA-approved drugs, we identified Filgotinib as an effective agent to counteract the EGFR-TKIs resistance conferred by this CAF subset. CONCLUSIONS In summary, our study highlights the role of the differentiated stage from transitional CXCL14+ myCAFs to invasiveness-associated myCAFs in driving tumor progression and therapy resistance in LUAD, positioning Filgotinib as a promising targeted therapy for this process. These insights may enhance patient stratification and inform precision treatment strategies in LUAD. KEY POINTS Single-cell analysis identifies transitional CXCL14+ myofibroblastic cancer-associated fibroblasts (myCAFs) predominantly exist in the advanced-stage lung adenocarcinoma (LUAD). Transitional CXCL14+ myCAFs fuel metastasis by promoting epithelial-mesenchymal transition (EMT) and angiogenesis on the spatial level. CXCL14 is a potential diagnostic marker for LUAD patients and predict the occurrence of metastasis. Transitional CXCL14+ myCAFs induce the resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and JAK1 inhibitor, filgotinib could reverse the effect.
Collapse
Affiliation(s)
- Weijiao Xu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haitang Yang
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Xu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anshun Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| | - Sean R. R. Hall
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
- Present address:
Iovance Biotherapeutics, Inc.San CarlosCAUSA
| | - Yunxuan Jia
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baicheng Zhao
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Enshuo Zhang
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Liu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianlin Xu
- Department of Respiratory MedicineShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Thomas M. Marti
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Ren‐Wang Peng
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Patrick Dorn
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Yongliang Niu
- Department of Respiratory and Critical Care MedicineNo. 2 People`s Hospital of Fuyang City, Fuyang Infectious Disease Clinical College of Anhui Medical UniversityFuyangChina
| | - Xufeng Pan
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yajuan Zhang
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Yao
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Thoracic Surgery, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
33
|
Wang S, Van KV, Zheng M, Chen WL, Ma YS. High antigen-presenting CAF levels correlate with reduced glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism in immune cells and poor prognosis in esophageal squamous cell carcinoma: Insights from bulk and single-cell transcriptome profiling. Int J Biol Macromol 2025; 301:140418. [PMID: 39889995 DOI: 10.1016/j.ijbiomac.2025.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
In esophageal squamous cell carcinoma (ESCC), the tumor microenvironment (TME) is characterized by a significant accumulation of cancer-associated fibroblasts (CAFs), which play a pivotal role in the host response against tumor cells. While fibroblasts are known to be crucial in the metabolic reprogramming of the TME, the specific metabolic alterations induced by these cells remain largely undefined. Utilizing single-cell RNA sequencing, we have identified a distinct subpopulation of antigen-presenting CAF (apCAF) within ESCC tumors. Our findings reveal that apCAF contribute to adverse patient outcomes by remodeling the tumor metabolic environment. Notably, apCAF modulate the glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism pathway in T cells, B cells, and macrophages. Disruption of this pathway may facilitate immune evasion by the tumor. These insights underscore the critical role of CAFs in shaping the metabolic landscape of the TME and lay the groundwork for developing therapeutic strategies aimed at enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Kelly Van Van
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Miaomiao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China.
| |
Collapse
|
34
|
Amano Y, Hasegawa M, Kihara A, Matsubara D, Fukushima N, Nishino H, Mori Y, Inamura K, Niki T. Clinicopathological and prognostic significance of stromal p16 and p53 expression in oral squamous cell carcinoma. Ann Diagn Pathol 2025; 75:152439. [PMID: 39837151 DOI: 10.1016/j.anndiagpath.2025.152439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
The tumor microenvironment is highly heterogeneous and consists of neoplastic cells and diverse stromal components, including fibroblasts, endothelial cells, pericytes, immune cells, local and bone marrow-derived stromal stem and progenitor cells, and the surrounding extracellular matrix. Although the significance of p16 and p53 has been reported in various tumor types, their involvement in the stromal cells of oral squamous cell carcinoma (OSCC) remains unclear. We performed immunohistochemical analyses of p16 and p53 expression in OSCC samples, Of the 116 samples, 74 showed p16-positive stromal cells, and 33 showed p53-positive stromal cells. Both p16 and p53 positivity were associated with an increased histological grade, lymphovascular invasion, an immature stromal pattern with abundant amorphous extracellular matrix material, infiltrative invasion patterns (Yamamoto Kohama classification-4C and 4D), and poor prognosis. Multivariate analyses identified p16 and p53 positivity in the stroma as independent prognostic factors for overall survival (P = 0.032 and P = 0.020, respectively); moreover, stromal p16 positivity correlated with stromal p53 positivity. These findings indicated that p16 and p53 stroma positivity may regulate OSCC tumor aggressiveness.
Collapse
Affiliation(s)
- Yusuke Amano
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Masayo Hasegawa
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University Saitama Medical Center, 1-847, Amanumacho, Omiya-ku, Saitama, Japan
| | - Atsushi Kihara
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Daisuke Matsubara
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Faculty of medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Noriyoshi Fukushima
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University Saitama Medical Center, 1-847, Amanumacho, Omiya, Saitama, Saitama, Japan
| | - Kentaro Inamura
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| |
Collapse
|
35
|
Huang Z, Liu Z, Chen L, Liu Y, Yan G, Ni Y, Yan Q, He W, Liu J, Luo S, Xie J. Liquid-liquid phase separation in cell physiology and cancer biology: recent advances and therapeutic implications. Front Oncol 2025; 15:1540427. [PMID: 40231263 PMCID: PMC11994588 DOI: 10.3389/fonc.2025.1540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) is a pivotal biophysical phenomenon that plays a critical role in cellular organization and has garnered significant attention in the fields of molecular mechanism and pathophysiology of cancer. This dynamic process involves the spontaneous segregation of biomolecules, primarily proteins and nucleic acids, into condensed, liquid-like droplets under specific conditions. LLPS drives the formation of biomolecular condensates, which are crucial for various cellular functions. Increasing evidences link alterations in LLPS to the onset and progression of various diseases, particularly cancer. This review explores the diverse roles of LLPS in cancer, highlighting its underlying molecular mechanisms and far-reaching implications. We examine how dysregulated LLPS contributes to cancer development by influencing key processes such as genomic instability, metabolism, and immune evasion. Furthermore, we discuss emerging therapeutic strategies aimed at modulating LLPS, underscoring their potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ziyuan Huang
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Zimeng Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Lieqian Chen
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Yanlin Liu
- Computational Medicine and Epidemiology Laboratory (CMEL), Guangdong Medical University, Zhanjiang, China
| | - Gaofei Yan
- Department of Clinical Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yizheng Ni
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Qiuxia Yan
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| | - Wenqian He
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Junhong Liu
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Shufang Luo
- Department of Critical Care Medicine, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jindong Xie
- Department of Urology, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, China
| |
Collapse
|
36
|
Di Spirito A, Balkhi S, Vivona V, Mortara L. Key immune cells and their crosstalk in the tumor microenvironment of bladder cancer: insights for innovative therapies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002304. [PMID: 40177538 PMCID: PMC11964778 DOI: 10.37349/etat.2025.1002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease associated with high mortality if not diagnosed early. BC is classified into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC), with MIBC linked to poor systemic therapy response and high recurrence rates. Current treatments include transurethral resection with Bacillus Calmette-Guérin (BCG) therapy for NMIBC and radical cystectomy with chemotherapy and/or immunotherapy for MIBC. The tumor microenvironment (TME) plays a critical role in cancer progression, metastasis, and therapeutic efficacy. A comprehensive understanding of the TME's complex interactions holds substantial translational significance for developing innovative treatments. The TME can contribute to therapeutic resistance, particularly in immune checkpoint inhibitor (ICI) therapies, where resistance arises from tumor-intrinsic changes or extrinsic TME factors. Recent advancements in immunotherapy highlight the importance of translational research to address these challenges. Strategies to overcome resistance focus on remodeling the TME to transform immunologically "cold" tumors, which lack immune cell infiltration, into "hot" tumors that respond better to immunotherapy. These strategies involve disrupting cancer-microenvironment interactions, inhibiting angiogenesis, and modulating immune components to enhance anti-tumor responses. Key mechanisms include cytokine involvement [e.g., interleukin-6 (IL-6)], phenotypic alterations in macrophages and natural killer (NK) cells, and the plasticity of cancer-associated fibroblasts (CAFs). Identifying potential therapeutic targets within the TME can improve outcomes for MIBC patients. This review emphasizes the TME's complexity and its impact on guiding novel therapeutic approaches, offering hope for better survival in MIBC.
Collapse
Affiliation(s)
- Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
37
|
Lee YL, Longmore GD, Pathak A. Distinct roles of protrusions and collagen deformation in collective invasion of cancer cell types. Biophys J 2025:S0006-3495(25)00206-1. [PMID: 40170350 DOI: 10.1016/j.bpj.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
The breast tumor microenvironment is composed of heterogeneous cell populations, including normal epithelial cells, cancer-associated fibroblasts (CAFs), and tumor cells that lead collective cell invasion. Both leader tumor cells and CAFs are known to play important roles in tumor invasion across the collagen-rich stromal boundary. However, their individual abilities to utilize their cell-intrinsic protrusions and perform force-based collagen remodeling to collectively invade remain unclear. To compare collective invasion phenotypes of leader-like tumor cells and CAFs, we embedded spheroids composed of 4T1 tumor cells or mouse tumor-derived CAF cell lines within 3D collagen gels and analyzed their invasion and collagen deformation. We found that 4T1s undergo greater invasion while generating lower collagen deformation compared with CAFs. Although force-driven collagen deformations are conventionally associated with higher cellular forces and invasion, here 4T1s specifically rely on actin-based protrusions, while CAFs rely on myosin-based contractility for collective invasion. In denser collagen, both cell types slowed their invasion, and selective pharmacological inhibitions show that Arp2/3 is required but myosin-II is dispensable for 4T1 invasion. Furthermore, depletion of CDH3 from 4T1s and DDR2 from CAFs reduces their ability to distinguish between collagen densities. For effective invasion, both cell types reorient and redistribute magnetically prealigned collagen fibers. With heterogeneous cell populations of cocultured CAFs and 4T1s, higher percentage of CAFs impeded invasion while increasing collagen fiber alignment. Overall, our findings demonstrate distinctive mechanisms of collective invasion adopted by 4T1 tumor cells and CAFs, one relying more on protrusions and the other on force-based collagen deformation. These results suggest that individually targeting cellular protrusions or contractility may not be universally applicable for all cell types or collagen densities, and a better cell-type-dependent approach could enhance effectiveness of cancer therapies.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Gregory D Longmore
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri; ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
38
|
Li T, Li T, Liang Y, Yuan Y, Liu Y, Yao Y, Lei X. Colorectal cancer cells-derived exosomal miR-188-3p promotes liver metastasis by creating a pre-metastatic niche via activation of hepatic stellate cells. J Transl Med 2025; 23:369. [PMID: 40134019 PMCID: PMC11938777 DOI: 10.1186/s12967-025-06334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/AIM Metastasis is the leading cause of mortality for colorectal cancer (CRC). Cancer-derived exosomes are widely recognized as the primary catalysts behind the development of pre-metastasis niche (PMN) in distal sites. However, the exact mechanism behind this process in CRC remains elusive. This study aimed to investigate the function and mechanisms underlying the role of exosomal miR-188-3p in activating hepatic stellate cells (HSCs) to develop the PMN and promote liver metastasis. METHODS We extracted exosomes from CRC cells using ultracentrifugation. Exosomes were identified using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Exosome uptake was assessed using fluorescence tracing, exosome PKH67 staining, and real-time quantitative PCR. The effects of CRC cell-derived exosomes on HSCs migration were evaluated using Transwell migration and wound healing assays. Key differentially expressed miRNAs were screened from the GEO database, and bioinformatics prediction along with dual-luciferase reporter assays were used to identify downstream target genes of miR-188-3p. Downstream related proteins of the target genes were detected by Western blot. In vivo, the distribution of exosomes and activation of HSCs in the liver were explored by tail vein injection of exosomes into nude mice. Further, the impact of exosomal miR-188-3p on liver metastasis was investigated using a spleen injection liver metastasis model. Finally, the expression levels of miR-188-3p in exosomes from CRC patient plasma were determined by real-time quantitative PCR, and the relationship between the expression of miR-188-3p in plasma exosomes and CRC prognosis was analyzed. RESULTS The expression level of miR-188-3p within plasma exosomes demonstrated a statistically significant increase in CRC with liver metastasis compared to those without liver metastases. We also demonstrated the transferability of miR-188-3p from CRC cells to HSCs cells via the exosomes. Exosomal miR-188-3p plays a pivotal role in orchestrating the establishment of PMN through targeting PHLPP2 to activate HSCs before tumor metastasis. Exosomal miR-188-3p was found to actively foster in vivo metastasis of CRC. Additionally, plasma exosomal miR-188-3p potentially serves as a viable blood-based biomarker for CRLM. CONCLUSION Exosomal miR-188-3p derived from CRC cells can promote liver metastasis by activating HSCs to form a PMN through targeting PHLPP2 to activate the AKT/mTOR pathway. These results offer a new perspective on the mechanisms driving CRLM.
Collapse
Affiliation(s)
- Tao Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Taiyuan Li
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yahang Liang
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuli Yuan
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Liu
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yao Yao
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiong Lei
- Department of General surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Gastrointestinal Surgical Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
39
|
Qin J, Han C, Li H, Wang Z, Hu X, Liu L, Zhu S, Zhao J, Sun Y, Wei Y. Relationship between PD-L1 expression and [ 18F]FAPI versus [ 18F]FDG uptake on PET/CT in lung cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07201-6. [PMID: 40113644 DOI: 10.1007/s00259-025-07201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE To investigate the correlation between [18F] labeled fibroblast activation protein inhibitor (FAPI) positron emission tomography (PET)/computed tomography (CT) uptake and programmed death ligand 1 (PD-L1) expression in lung cancer and evaluate the predictive value of [18F]FAPI PET/CT for PD-L1 expression compared with [18F]fluorodeoxyglucose ([18F]FDG) PET/CT. METHODS This single-center retrospective study consecutively enrolled patients with pathologically confirmed lung cancer who underwent [18F]FAPI and [18F]FDG PET/CT scans within 2 weeks, with a minimum interval of 20 h. PD-L1 expression was assessed using immunohistochemistry and stratified into three groups. PET/CT uptake parameters included the maximum standard uptake value (SUVmax) in the biopsy tumor or mediastinal metastasis lymph nodes area and the mean SUVs (SUVmean) of normal tissue (lung and blood). The ratios of SUVmax to the SUVmean for each normal tissue were denoted as the tumor-to-background ratios (TBRlung and TBRblood). All statistical analyses were conducted using IBM SPSS Statistics. Normality was assessed, and for non-normally distributed data, the Kruskal-Wallis and Mann-Whitney U tests were applied. Associations between variables were evaluated using Spearman's rank correlation. All tests were two-sided, with a P-value < 0.05 considered statistically significant. RESULTS Among the 75 cases included on the final analysis, the TBRblood and TBRlung derived from [18F]FAPI PET/CT were significantly positively correlated with PD-L1 expression (r = 0.32, P < 0.01; r = 0.26, P < 0.05). Additionally, cases with high PD-L1 expression showed significantly higher [18F]FAPI uptake values (mean TBRlung=36.16; mean TBRblood=10.75) compared with those with low PD-L1 expression (mean TBRlung=25.10; mean TBRblood=8.04). No statistically significant correlation was observed between [18F]FDG uptake values and PD-L1 expression level. Receiver operating characteristic analysis identified TBRblood on [18F]FAPI PET/CT with a cutoff value of 7.76 (area under the curve = 0.68, P < 0.01, sensitivity = 75%, and specificity = 53.49%) as a significant predictor of the level of PD-L1 expression. CONCLUSION [18F]FAPI uptake was positively correlated with PD-L1 expression in lung cancer. The combination of [18F]FAPI PET/CT and PD-L1 expression may offer a more comprehensive approach to assessing the response of lung cancer to immunotherapy. TRIAL REGISTRATION This study was approved by the Clinical Research Ethics Committee of our institution (institutional review board approval no. SDZLEC2021-112-02).
Collapse
Affiliation(s)
- Jingjie Qin
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Chao Han
- Shandong University Cancer Center, Jinan, Shandong, China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoqian Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Lanping Liu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Shouhui Zhu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Jingjing Zhao
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China
| | - Yuhong Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yuchun Wei
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong, 250117, China.
| |
Collapse
|
40
|
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, Cho KS, Dai E, Basi A, Burks JK, Rajapakshe KI, Chu Y, Jiang J, Zhang D, Yan X, Guerrero PA, Serrano A, Li M, Hwang TH, Futreal A, Ajani JA, Solis Soto LM, Jazaeri AA, Kadara H, Maitra A, Wang L. Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell 2025:S1535-6108(25)00083-2. [PMID: 40154487 DOI: 10.1016/j.ccell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a multifaceted cell population essential for shaping the tumor microenvironment (TME) and influencing therapy responses. Characterizing the spatial organization and interactions of CAFs within complex tissue environments provides critical insights into tumor biology and immunobiology. In this study, through integrative analyses of over 14 million cells from 10 cancer types across 7 spatial transcriptomics and proteomics platforms, we discover, validate, and characterize four distinct spatial CAF subtypes. These subtypes are conserved across cancer types and independent of spatial omics platforms. Notably, they exhibit distinct spatial organizational patterns, neighboring cell compositions, interaction networks, and transcriptomic profiles. Their abundance and composition vary across tissues, shaping TME characteristics, such as levels, distribution, and state composition of tumor-infiltrating immune cells, tumor immune phenotypes, and patient survival. This study enriches our understanding of CAF spatial heterogeneity in cancer and paves the way for novel approaches to target and modulate CAFs.
Collapse
Affiliation(s)
- Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanyuan Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akshay Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kimal I Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae Hyun Hwang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Liu M, Li TZ, Xu C. The role of tumor-associated fibroblast-derived exosomes in chemotherapy resistance of colorectal cancer and its application prospect. Biochim Biophys Acta Gen Subj 2025; 1869:130796. [PMID: 40122307 DOI: 10.1016/j.bbagen.2025.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor in the world. With its increasing incidence and younger age trend, its impact on human health has been paid more and more attention. Currently, we have a variety of chemotherapy drugs that can be used to treat colorectal cancer. However, the drug resistance of colorectal cancer has become a significant factor affecting its cure rate. Some studies have reported that exosomes are related to the occurrence of drug resistance. However, the exact mechanism is not precise. Therefore, we focused on the role of cancer associated-fibroblast-derived (CAFs-derived) exosomes in colorectal progression. It was found that cancer cells transmit information through exosome interaction and induce chemotherapy resistance by promoting epithelial-mesenchymal transition (EMT), up-regulating the Wnt/β-catenin signaling pathway, transforming growth factor-β1 (TGF-β1) pathway, promoting angiogenesis and other possible molecular mechanisms. In addition, in terms of clinical significance and therapeutic strategies, we explore the clinical relevance of CAFs-derived exosomes in colorectal cancer patients and their potential as potential biomarkers for predicting chemotherapy response. We also provide a new possible direction for overcoming chemotherapy resistance in colorectal cancer by targeting CAFs-derived exosomes.
Collapse
Affiliation(s)
- Meichen Liu
- The Second Clinical Medical College, Nanchang University, NanChang, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China.
| |
Collapse
|
42
|
Zheng L, Cai W, Ke Y, Hu X, Yang C, Zhang R, Wu H, Liu D, Yu H, Wu C. Cancer‑associated fibroblasts: a pivotal regulator of tumor microenvironment in the context of radiotherapy. Cell Commun Signal 2025; 23:147. [PMID: 40114180 PMCID: PMC11927177 DOI: 10.1186/s12964-025-02138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND In the course of tumor treatment, radiation therapy (RT) not only kills cancer cells, but also induces complex biological effects in non-malignant cells around cancer cells. These biological effects such as angiogenesis, changes in stromal composition and immune cell infiltration remodel the tumor microenvironment (TME). As one of the major components of the TME, Cancer‑associated fibroblasts (CAFs) are not only involved in tumorigenesis, progression, recurrence, and metastasis but also regulate the tumor-associated immune microenvironment. CAFs and tumor cells or immune cells have complex intercellular communication in the context of tumor radiation. MAIN CONTENT Different cellular precursors, spatial location differences, absence of specific markers, and advances in single-cell sequencing technology have gradually made the abundant heterogeneity of CAFs well known. Due to unique radioresistance properties, CAFs can survive under high doses of ionizing radiation. However, radiation can induce phenotypic and functional changes in CAFs and further act on tumor cells and immune cells to promote or inhibit tumor progression. To date, the effect of RT on CAFs and the effect of irradiated CAFs on tumor progression and TME are still not well defined. CONCLUSION In this review, we review the origin, phenotypic, and functional heterogeneity of CAFs and describe the effects of RT on CAFs, focusing on the mutual crosstalk between CAFs and tumor or immune cells after radiation. We also discuss emerging strategies for targeted CAFs therapy.
Collapse
Affiliation(s)
- Linhui Zheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Wenqi Cai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuan Ke
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Xiaoyan Hu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Chunqian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Runze Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Huachao Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Dong Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China.
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|
43
|
Zhang X, Ren B, Liu B, Wang R, Li S, Zhao Y, Zhou W. Single-cell RNA sequencing and spatial transcriptomics reveal the heterogeneity and intercellular communication of cancer-associated fibroblasts in gastric cancer. J Transl Med 2025; 23:344. [PMID: 40102930 PMCID: PMC11917039 DOI: 10.1186/s12967-025-06376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignancy characterized by a complex tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are a key component of the TME, exhibit significant heterogeneity and play crucial roles in tumor progression. Therefore, a comprehensive understanding of CAFs is essential for developing novel therapeutic strategies for gastric cancer. METHODS This study investigates the characteristics and functional information of CAF subtypes and explores the intercellular communication between CAFs and malignant epithelial cells (ECs) in gastric cancer by analyzing single-cell sequencing data from 24 gastric cancer samples. CellChat was employed to map intercellular communication, and Seurat was used to integrate single-cell sequencing data with spatial transcriptome data to reconstruct a comprehensive single-cell spatial map. The spatial relationship between apCAFs and cancer cells was analyzed using multicolor immunohistochemistry. RESULTS Cells were categorized into nine distinct categories, revealing a positive correlation between the proportions of epithelial cells (ECs) and fibroblasts. Furthermore, six fibroblast subpopulations were identified: inflammatory (iCAFs), pericytes, matrix (mCAFs), antigen-presenting (apCAFs), smooth muscle cells (SMCs), and proliferative CAFs (pCAFs). Each of these subpopulations was linked to various biological processes and immune responses. Malignant ECs exhibited heightened intercellular communication, particularly with CAF subpopulations, through specific ligand-receptor interactions. High-density regions of CAF subpopulations displayed spatial exclusivity, with pericytes serving as a source for iCAFs, mCAFs, and apCAFs. Notably, malignant ECs and apCAFs showed increased interactions, with certain ligand-receptor pairs potentially impacting the prognosis of gastric cancer. Multiplex immunohistochemistry (mIHC) confirmed the close spatial proximity of apCAFs to cancer cells in gastric cancer. CONCLUSION Our study provided a comprehensive characterization of CAF heterogeneity in gastric cancer and revealed the intricate intercellular networks within the TME. The identified CAF subpopulations and their interactions with malignant cells could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Xijie Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Rui Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Sen Li
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuzhou Zhao
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China.
| |
Collapse
|
44
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Cabezón-Gutiérrez L, Palka-Kotlowska M, Custodio-Cabello S, Chacón-Ovejero B, Pacheco-Barcia V. Metabolic mechanisms of immunotherapy resistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002297. [PMID: 40092297 PMCID: PMC11907103 DOI: 10.37349/etat.2025.1002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/22/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yet its efficacy is frequently compromised by metabolic mechanisms that drive resistance. Understanding how tumor metabolism shapes the immune microenvironment is essential for developing effective therapeutic strategies. This review examines key metabolic pathways influencing immunotherapy resistance, including glucose, lipid, and amino acid metabolism. We discuss their impact on immune cell function and tumor progression, highlighting emerging therapeutic strategies to counteract these effects. Tumor cells undergo metabolic reprogramming to sustain proliferation, altering the availability of essential nutrients and generating toxic byproducts that impair cytotoxic T lymphocytes (CTLs) and natural killer (NK) cell activity. The accumulation of lactate, deregulated lipid metabolism, and amino acid depletion contribute to an immunosuppressive tumor microenvironment (TME). Targeting metabolic pathways, such as inhibiting glycolysis, modulating lipid metabolism, and restoring amino acid balance, has shown promise in enhancing immunotherapy response. Addressing metabolic barriers is crucial to overcoming immunotherapy resistance. Integrating metabolic-targeted therapies with immune checkpoint inhibitors may improve clinical outcomes. Future research should focus on personalized strategies to optimize metabolic interventions and enhance antitumor immunity.
Collapse
Affiliation(s)
- Luis Cabezón-Gutiérrez
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Magda Palka-Kotlowska
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Sara Custodio-Cabello
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Beatriz Chacón-Ovejero
- Department of Pharmacy and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Vilma Pacheco-Barcia
- Medical Oncology, Hospital Universitario De Torrejón, 28850 Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
46
|
Guo R, Wang F, Su H, Meng X, Xie Q, Zhao W, Yang Z, Li N. Superiority of 68Ga-DOTA-FAPI-04 PET/CT to 18F-FDG PET/CT in the evaluation of different cancers with bone metastases. Bone 2025; 196:117426. [PMID: 40086684 DOI: 10.1016/j.bone.2025.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND 68Ga-DOTA-FAPI-04 is a new positron imaging agent, and its application in bone metastasis has been limited. The purpose of this retrospective study was to compare the diagnostic ability of 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT to detect bone metastases in patients with different types of cancer. METHODS A total of 293 patients with pathologically confirmed primary malignancies were examined with 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT within one week. Using pathological examination or follow-up CT or MRI scan as the gold standard, the diagnostic efficacy of the two methods in differentiating bone metastases was compared (p < 0.05, with statistical significance). The maximum standard uptake value (SUVmax) of the two methods for different types of bone metastasis was further compared. The SUVmax was used to compare the differences between the two methods in detecting bone metastases in different tumor types and different sites. RESULTS A total of 48 patients were diagnosed with bone metastasis, and 245 patients without bone metastasis. There were 376 bone metastases and 243 benign bone lesions. 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT detected 376 and 228 metastases, respectively. Sensitivity, specificity, positive and negative predictive value (PPV and NPV) and accuracy of 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT were 100.0 % vs 60.6 %, 93.8 % vs 99.2 %, 96.2 % vs 99.2 %, 100.0 % vs 62.0 % and 97.6 % vs 75.8 %, respectively. Compared with 18F-FDG, 68Ga-DOTA-FAPI-04 uptake was significantly increased in both benign bone lesions and metastases (p = 0.001). The uptake of 68Ga-DOTA-FAPI-04 for osteoblastic metastasis was also significantly higher than that of 18F-FDG (p < 0.001). In bone metastasis of lung cancer and gastric cancer, 68Ga-DOTA-FAPI-04 uptake was higher than that of 18F-FDG PET/CT (p < 0.05). Using SUVmax = 4.1 and SUVmax = 6.2 as the cutoff value by 68Ga-DOTA-FAPI-04 PET/CT and 18F-FDG PET/CT, it was possible to predict the occurrence of metastases (AUC = 0.817,95 % CI: 0.791-0.923 vs AUC =0.751,95%CI:0.626-0.875). CONCLUSIONS 68Ga-DOTA-FAPI-04 as a novel imaging agent, can detect more bone metastases and has a higher tracer uptake level than 18F-FDG. Especially for lung and gastric cancer, 68Ga-DOTA-FAPI-04 PET/CT may be a more reliable means to detect bone metastases.
Collapse
Affiliation(s)
- Rui Guo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxi Meng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qing Xie
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Nan Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
47
|
Wang SH, Chen YL, Huang SH, Fu YK, Lin SF, Jiang SS, Liu SC, Hsiao JR, Chang JY, Chen YW. Tumor cell-derived ISG15 promotes fibroblast recruitment in oral squamous cell carcinoma via CD11a-dependent glycolytic reprogramming. Oncogenesis 2025; 14:6. [PMID: 40069143 PMCID: PMC11897235 DOI: 10.1038/s41389-025-00549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Cancer-associated fibroblast (CAF) recruitment and activation within the tumor microenvironment (TME) are increasingly acknowledged as drivers of oral squamous cell carcinoma (OSCC) tumor growth and metastasis. Therefore, the mechanisms underlying tumor cell and fibroblast crosstalk warrant further investigation. We discovered that ectopic interferon-stimulated gene 15 (ISG15) expression, which is a promising and novel oncoprotein biomarker elevated in a variety of cancers, enhanced OSCC growth and elevated collagen and α-smooth muscle actin (α-SMA) expression in ISG15-expressing tumors. Analysis of immunohistochemistry revealed high ISG15 expression in human oral tissues correlated with high expression of α-SMA and fibroblast activation protein (FAP). Fibroblast migration and recruitment by ISG15-expressing OSCC cells were confirmed by in vitro and in vivo experiments. Exogenous ISG15 induced fibroblast migration, morphological changes, and vimentin expression. Enrichment of glycolysis pathway genes, as well as increased glycolysis-related gene expression, glucose uptake, and lactate production were observed in ISG15-treated fibroblasts. Lactate release and fibroblast migration were blocked by a competitive inhibitor of glucose metabolism. Furthermore, the knockdown of integrin αL (ITGAL)/CD11a, a subunit of ISG15 receptor lymphocyte functional-associated antigen-1 (LFA-1), in immortalized fibroblasts diminished extracellular ISG15-mediated glycolysis and migration. Our findings suggest that ISG15 derived from OSCC cells interacts with fibroblasts through the LFA-1 receptor, leading to glycolytic reprogramming and promotion of fibroblast migration into the TME.
Collapse
Affiliation(s)
- Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Han Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ke Fu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- Taipei Cancer Center, Taipei Medical University Hospital, TMU Research Center of Cancer Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
- Ph.D. Program for Aging, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
48
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
49
|
Liang L, Yang X, Yao S, Li X, Wang F. Identification of lactylation-associated fibroblast subclusters predicting prognosis and cancer immunotherapy response in colon cancer. Gene 2025; 940:149220. [PMID: 39765285 DOI: 10.1016/j.gene.2025.149220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs). METHODS Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets. Significant lactylation-associated genes were acquired by differential analysis and used to construct a prognostic model via Cox and LASSO regression analyses. Next, single-cell analysis, enrichment and pathway analysis, pseudotemporal trajectory and survival analysis were used to identify significant lactylation-associated fibroblast subclusters in colon cancer. IMvigor210 and PRJEB23709 cohorts were applied to assess the response to immunotherapy. In vitro experiments were conducted to explore how lactylation affect fibroblasts. RESULTS We established a lactylation-associated prognostic model with 17 risk genes in TCGA and further validated it in GEO datasets. Single-cell analysis revealed the lactylation level of fibroblasts in colon cancer was greater than that in normal tissues. Moreover, five lactylation-associated fibroblast subclusters were identified via the NMF algorithm. Patients with lower scores of FB_2_CALD1, FB_3_TPM4 and FB_4_AHNAK subclusters had better clinical prognosis in colon cancer and were more likely to benefit from immunotherapy. Further experiments demonstrated that lactylation could enhance the proliferation, migration and invasion ability of fibroblasts and up-regulate the expression of COL1A1, which was similar to the effect of colon cancer cells. CONCLUSION This study identified key fibroblast subclusters with prognostic value and implied that lactylation might help transform fibroblasts into CAFs in colon cancer for the first time, which provides new paths for understanding the evolution of CAFs and cancer therapeutic strategies.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Shuoyi Yao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
50
|
Wang Y, Shi Y, Hu X, Wang C. Targeting glycolysis in esophageal squamous cell carcinoma: single-cell and multi-omics insights for risk stratification and personalized therapy. Front Pharmacol 2025; 16:1559546. [PMID: 40115255 PMCID: PMC11922847 DOI: 10.3389/fphar.2025.1559546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is closely linked to aberrant glycolytic metabolism, a hallmark of cancer progression, immune evasion, and therapy resistance. This study employs single-cell transcriptomics and multi-omics approaches to unravel glycolysis-mediated mechanisms in ESCC, with a focus on risk stratification and therapeutic opportunities. Methods Data from TCGA and GEO databases were integrated with single-cell RNA sequencing, bulk RNA sequencing, as well as clinical datasets to investigate glycolysis-associated cell subtypes and their clinical implications in ESCC. Analytical approaches encompassed cell subtype annotation, cell-cell communication network analysis, and gene regulatory network modeling. A glycolysis-related risk score model was built via non-negative matrix factorization (NMF) and Cox regression, and then experimentally verified through Western blotting. Drug sensitivity analyses were carried out to explore potential therapeutic strategies. Results Single-cell analysis identified epithelial cells as the dominant glycolysis-active subtype, and tumor tissues showed significantly higher glycolytic activity than adjacent normal tissues. Among malignant epithelial subpopulations, IGFBP3+Epi (IGFBP3-expressing epithelial cells) and LHX9+Epi (LHX9-expressing epithelial cells) had elevated glycolysis levels, which correlated with poor prognosis, immune suppression, and changes in the tumor microenvironment. The seven-gene glycolysis-based risk score model divided patients into high- and low-risk groups, demonstrating strong prognostic performance. Drug sensitivity analysis showed high-risk patients were more responsive to Navitoclax as well as Rapamycin, but low-risk ones were more sensitive to Afatinib and Erlotinib, highlighting the model's usefulness in guiding personalized treatment. Conclusion This research emphasizes the crucial role of glycolysis in ESCC progression a well as immune modulation, offering a novel glycolysis-related risk score model with significant prognostic and therapeutic implications. These findings provide a basis for risk-based stratification and tailored therapeutic strategies, advancing precision medicine in ESCC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yunjie Shi
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiao Hu
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenfang Wang
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|