1
|
Meurs J, Nasir A, Figueredo GP, Burroughs L, Abdelrazig SA, Denning C, Winkler DA, Barrett DA, Kim DH, Alexander MR. High-Throughput Analysis of Protein Adsorption to a Large Library of Polymers Using Liquid Extraction Surface Analysis-Tandem Mass Spectrometry (LESA-MS/MS). Anal Chem 2025. [PMID: 40492276 DOI: 10.1021/acs.analchem.5c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Biomaterials play an important role in medicine from contact lenses to joint replacements. High-throughput screening coupled with machine learning has identified synthetic polymers that prevent bacterial biofilm formation, prevent fungal cell attachment, control immune cell attachment and phenotype, or direct stem cell fate. In-vitro preadsorption of proteins from culture medium plays a pivotal role in controlling cell response. However, there is a paucity of studies on the screening of protein adsorption into material libraries. Here, we show how quantitative analysis of protein adsorption on a 208-member polymer microarray can be achieved using liquid extraction surface analysis, combined with an adaptation of the droplet microarray (DMA) approach and tandem mass spectrometry (LESA-MS/MS) for protein identification. This study uses a fully defined cell culture medium containing only four proteins (Essential 8) to demonstrate the feasibility of the analysis approach. Our findings show that we can generate quantitative and predictive machine learning models of protein adsorption that elucidate key polymer features that describe the relationship between surface chemistry and protein adsorption. This information is of use for the rational design of new materials with bespoke protein attachment properties for biomaterials, medical devices, or in vitro compound screening.
Collapse
Affiliation(s)
- Joris Meurs
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Aishah Nasir
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | | | | | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - David A Winkler
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biochemistry and Chemistry, La Trobe University, Bundoora, Victoria 3042, Australia
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Dong-Hyun Kim
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, U.K
| | | |
Collapse
|
2
|
Clas GS, Marazita M, Pertierra L, Vazquez S, Isaja L, Rodríguez-Varela S, Mucci S, Helou B, Tapajóz F, Magrath N, Bérgamo Y, Allegri R, Sevlever GE, Scassa ME, Surace EI, Romorini L. Generation of human induced pluripotent stem cell lines from two down syndrome patients, including a down syndrome/Alzheimer's disease case (FLENIi002-A) and a beta-amyloid-resistant case (FLENIi003-A). Stem Cell Res 2025; 86:103728. [PMID: 40334312 DOI: 10.1016/j.scr.2025.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/14/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Two human induced pluripotent stem cell (hiPSC) lines, FLENIi002-A and FLENIi003-A, were generated from peripheral blood mononuclear cells (PBMCs) using the lentiviral-hSTEMCCA-loxP vector. FLENIi002-A was derived from a 52-year-old Down syndrome patient with Alzheimer's disease and amyloid-beta brain accumulation. FLENIi003-A was derived from a cognitively unimpaired 51-year-old Down syndrome patient exhibiting no brain amyloid-beta deposition. Both lines retained the trisomy 21 genotype, and their pluripotency and differentiation potential were confirmed.
Collapse
Affiliation(s)
- Giulia S Clas
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Neurociencias, Fleni (LEN-INEU-Fleni-CONICET), CABA, Buenos Aires, Argentina
| | - Mariela Marazita
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina
| | - Lucía Pertierra
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Silvia Vazquez
- Centro de Imágenes Moleculares, Fleni, Escobar, Buenos Aires, Argentina
| | - Luciana Isaja
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina
| | - Soledad Rodríguez-Varela
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina
| | - Sofía Mucci
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina
| | - Belén Helou
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Fernanda Tapajóz
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Nahuel Magrath
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Yanina Bérgamo
- Centro de Imágenes Moleculares, Fleni, Escobar, Buenos Aires, Argentina
| | - Ricardo Allegri
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Gustavo E Sevlever
- Departamento de Neurología Cognitiva, Neuropsicología y Neuropsiquiatría, Fleni, CABA, Buenos Aires, Argentina
| | - Maria E Scassa
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina
| | - Ezequiel I Surace
- Laboratorio de Enfermedades Neurodegenerativas, Instituto de Neurociencias, Fleni (LEN-INEU-Fleni-CONICET), CABA, Buenos Aires, Argentina.
| | - Leonardo Romorini
- Laboratorio de Investigaciones Aplicadas a Neurociencias, Instituto de Neurociencias, Fleni (LIAN-INEU-Fleni-CONICET), Escobar, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
McKenna MJ, Kraus F, Coelho JP, Vasandani M, Zhang J, Adams BM, Paulo JA, Harper JW, Shao S. ARMC1 partitions between distinct complexes and assembles MIRO with MTFR to control mitochondrial distribution. SCIENCE ADVANCES 2025; 11:eadu5091. [PMID: 40203102 PMCID: PMC11980836 DOI: 10.1126/sciadv.adu5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Maintaining an optimal mitochondrial distribution is critical to ensure an adequate supply of energy and metabolites to support important cellular functions. How cells balance dynamic mitochondrial processes to achieve homeostasis is incompletely understood. Here, we show that ARMC1 partitioning between distinct mitochondrial protein complexes is a key determinant of mitochondrial distribution. In one complex, the mitochondrial trafficking adaptor MIRO recruits ARMC1, which mediates the assembly of a mitochondrial fission regulator (MTFR). MTFR stability depends on ARMC1, and MIRO-MTFR complexes specifically antagonize retrograde mitochondrial movement. In another complex, DNAJC11 facilitates ARMC1 release from mitochondria. Disrupting MIRO-MTFR assembly fails to rescue aberrant mitochondrial distributions clustered in the perinuclear area observed with ARMC1 deletion, while disrupting ARMC1 interaction with DNAJC11 leads to excessive mitochondrially localized ARMC1 and distinct mitochondrial defects. Thus, the abundance and trafficking impact of MIRO-MTFR complexes require ARMC1, whose mito-cytoplasmic shuttling balanced by DNAJC11 tunes steady-state mitochondrial distributions.
Collapse
Affiliation(s)
- Michael J. McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Felix Kraus
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - João P.L. Coelho
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Muskaan Vasandani
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M. Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
5
|
van Sprang JF, Aarts JGM, Arts B, Brouns JEP, Komil MI, Bartels PAA, Dankers PYW. Supramolecular Additive Screening to Engineer Microfibrous Rafts for Expansion of Pluripotent Stem Cells in Dynamic Suspension. Adv Healthc Mater 2025; 14:e2404186. [PMID: 40059619 PMCID: PMC12023819 DOI: 10.1002/adhm.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Human induced pluripotent stem cells (hiPSCs) hold the potential to generate any human tissue for transplantation in regenerative therapies. These complex cell therapies require billions of cells, which is challenging to acquire in planar adherent cultures. Transitioning hiPSCs to 3D suspension culture on microcarrier materials, often bead-shaped, improves the total surface area accessible to cells, thereby enabling culture scale-up. However, bead-shaped microcarriers do not have the optimal shape configuration, because it is the lowest surface-to-volume ratio of all geometrical shapes, and it also induces uncontrolled cell clumping. Application of synthetic, microfibrous rafts as a replacement for bead-shaped microcarriers potentially solves these issues. Here, microfibrous rafts are engineered by first screening a supramolecular biomaterial library composed of bisurea (BU)-peptide conjugate additives for its ability to induce hiPSC adhesion and maintenance of its pluripotent state, followed by electrospinning the screening-hit into raft-like structures. The resulting rafts contain cylinder-like microfibers, which have a higher surface-to-volume ratio compared to conventional bead-shaped microcarriers, and the flat configuration of the rafts prevents clumping.
Collapse
Affiliation(s)
- Johnick F. van Sprang
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Jasper G. M. Aarts
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Boris Arts
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Joyce E. P. Brouns
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Muhabbat I. Komil
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Paul A. A. Bartels
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systemsand Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612AZThe Netherlands
| |
Collapse
|
6
|
Liu X, Wu J, Peng Y, Qian H, Lv X, Li F, Jin K, Niu Y, Song J, Han W, Chen G, Li B, Zuo Q. Chicken Primordial Germ Cells Do Not Proliferate in Insulin-Lacking Media. Int J Mol Sci 2025; 26:3122. [PMID: 40243906 PMCID: PMC11988930 DOI: 10.3390/ijms26073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Insulin is an important component of stem cell cultures; however, its role in the proliferation of avian primordial germ cells (PGCs) is unknown. The proliferation of PGCs in cultures varies and the growth factors and signaling pathways necessary to induce the proliferation of PGCs in chickens are unknown. Therefore, we conducted the present study to investigate the effect of insulin on the survival and proliferation of PGCs. In this study, we observed that under this culture system, PGCs proliferate in the presence of insulin, but do not proliferate in the absence of insulin. Furthermore, in insulin-lacking media, the expression of pluripotency genes, including LIN28, NANOG, POUV, and SOX2, was markedly decreased. Similarly, the expression of cell adhesion proteins ZO-1, Occludin, and JAM-A was significantly reduced. Elevated levels of ROS, GSSG, and MDA reduced the redox capacity of the cells and induced apoptosis. Subsequent transcriptome analyses revealed that insulin is one of the key factors in the proliferation of chicken PGCs through the regulation of downstream genes by PI3K/AKT, ECM-receptor interaction, Wnt, and P53 signaling, and that these downstream genes may be important for PGCs' proliferation and survival.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoqian Lv
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fan Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Perelli RM, Dewars ER, Cope H, Behura AS, Ponek AQ, Sala AM, Zhang Z, Muralidharan P, Moya-Mendez ME, Berkman A, Monaco GG, Sullivan MC, Ezekian JE, Yang Q, Sun B, Kurzlechner LM, Asokan T, Breglio AM, Jay Campbell M, Spector ZZ, Rehder CW, Undiagnosed Diseases Network, Tang PC, James CA, Calkins H, Shashi V, Landstrom AP. TAX1BP3 Causes TRPV4-Mediated Autosomal Recessive Arrhythmogenic Cardiomyopathy. Circ Res 2025; 136:667-684. [PMID: 39963794 PMCID: PMC11949706 DOI: 10.1161/circresaha.124.325180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is one of the leading causes of sudden cardiac death in children, young adults, and athletes and is characterized by the fibro-fatty replacement of the myocardium, predominantly of the right ventricle. Sixty percent of patients with ACM have a known genetic cause, but for the remainder, the pathogenesis is unknown. This lack of mechanistic understanding has slowed the development of disease-modifying therapies, and children with ACM have a high degree of morbidity and mortality. METHODS Induced pluripotent stem cells (iPSCs) from 3 family members were differentiated into cardiac myocytes (CMs). Calcium imaging was conducted by labeling calcium with CAL-520 and confocal imaging to capture calcium sparks after iPSC-CMs were electrically paced. A cardiac-specific, inducible knockout mouse (Tax1bp3-/-) was made and intracardiac electrophysiology studies conducted to observe arrhythmia inducibility following pacing. RESULTS We identified a kindred with multiple members affected by ACM cosegregating with biallelic variants in the gene TAX1BP3, which encodes the protein TAX1BP3 (Tax1-binding protein 3). iPSC-CMs derived from this kindred demonstrated increased intracellular lipid droplets, induction of TRPV4 (transient receptor potential vanilloid type 4) expression, and inducible TRPV4 current. This was associated with depletion of the intracellular sarcoplasmic reticulum Ca2+ store and increased RyR2 (ryanodine receptor 2)-mediated store Ca2+ leak and delayed afterdepolarizations, a known mechanism of Ca2+-mediated arrhythmogenesis. Similarly, Tax1bp3 cardiac-specific knockout mice had increased Ca2+ leak and were predisposed to ventricular arrhythmias compared with wild-type mice. Ca2+ leak in both the iPSC-CMs and mouse ventricular myocytes was rescued by small molecule TRPV4 inhibition. This strategy also effectively reduced Ca2+ leak in a PKP2 (plakophilin 2) p.His773AlafsX8 iPSC-CM model of ACM. CONCLUSIONS We conclude that TAX1BP3 is associated with rare autosomal recessive ACM through TRPV4-mediated Ca2+ leak from RyR2. Further, TRPV4 current inhibition has the potential to be a new therapeutic target for ACM.
Collapse
Affiliation(s)
- Robin M. Perelli
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Enya R. Dewars
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell and Molecular Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Heidi Cope
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Alexander S. Behura
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Anna Q. Ponek
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Angelina M. Sala
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zhushan Zhang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Padmapriya Muralidharan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mary E. Moya-Mendez
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Amy Berkman
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Gabrielle G. Monaco
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Molly C. Sullivan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jordan E. Ezekian
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Qixin Yang
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Bo Sun
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Leonie M. Kurzlechner
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Tulsi Asokan
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Andrew M. Breglio
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - M. Jay Campbell
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zebulon Z. Spector
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Catherine W. Rehder
- Department of Pathology and Duke University Health Systems Clinical Laboratories, Durham, North Carolina, United States
| | | | - Paul C. Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Cynthia A. James
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Hugh Calkins
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States
| | - Vandana Shashi
- Department of Pediatrics, Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Andrew P. Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
8
|
Schaefer NK, Pavlovic BJ, Pollen AA. CellBouncer, A Unified Toolkit for Single-Cell Demultiplexing and Ambient RNA Analysis, Reveals Hominid Mitochondrial Incompatibilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644821. [PMID: 40166335 PMCID: PMC11957168 DOI: 10.1101/2025.03.23.644821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pooled processing, in which cells from multiple sources are cultured or captured together, is an increasingly popular strategy for droplet-based single cell sequencing studies. This design allows efficient scaling of experiments, isolation of cell-intrinsic differences, and mitigation of batch effects. We present CellBouncer, a computational toolkit for demultiplexing and analyzing single-cell sequencing data from pooled experiments. We demonstrate that CellBouncer can separate and quantify multi-species and multi-individual cell mixtures, identify unknown mitochondrial haplotypes in cells, assign treatments from lipid-conjugated barcodes or CRISPR sgRNAs, and infer pool composition, outperforming existing methods. We also introduce methods to quantify ambient RNA contamination per cell, infer individual donors' contributions to the ambient RNA pool, and determine a consensus doublet rate harmonized across data types. Applying these tools to tetraploid composite cells, we identify a competitive advantage of human over chimpanzee mitochondria across 10 cell fusion lines and provide evidence for inter-mitochondrial incompatibility and mito-nuclear incompatibility between species.
Collapse
Affiliation(s)
- Nathan K Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2025; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Zheng SL, Fowler JL, Chen JY, Li C, Lin E, Nguyen AT, Chen A, Daley GQ, Ang LT, Loh KM. Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells. STAR Protoc 2025; 6:103592. [PMID: 39864063 PMCID: PMC11969413 DOI: 10.1016/j.xpro.2024.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media. This 10-day protocol enables the manufacturing of blood and immune cells in monolayer cultures. For complete details on the use and execution of this protocol, please refer to Fowler and Zheng et al.1.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Christopher Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA 02138, USA
| | - Elaine Lin
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Yoshida T, Tsukamoto M, Kimura K, Tanaka M, Kuwamura M, Hatoya S. Establishment of feline embryonic stem cells from the inner cell mass of blastocysts produced in vitro. Regen Ther 2025; 28:63-72. [PMID: 39697661 PMCID: PMC11652941 DOI: 10.1016/j.reth.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The rising number of cats as pets and the growing interest in animal welfare have led to an increased need for the latest treatments in feline veterinary medicine. Among these, veterinary regenerative medicine using pluripotent stem cells is gaining significant attention. However, there have been no reports on establishing feline embryonic stem cell (ESC) lines that possess the pluripotent potential and the ability to differentiate into three germ layers. Methods In this study, we isolated three inner cell masses from feline in vitro-derived blastocysts and subcultured them in a chemically defined medium (StemFit AK02N). We assessed the expression of undifferentiated markers, the ability to differentiate into the three germ layers, and the karyotype structure. Results We established three feline ESC lines. Feline ESCs exhibited positive staining for alkaline phosphatase. RT-qPCR analysis revealed that these cells express undifferentiated marker genes in vitro. Immunostaining and flow cytometry analysis demonstrated that feline ESCs express undifferentiated marker proteins in vitro. In the KSR/FBS medium with or without Activin A, feline ESCs differentiated into all three germ layers (ectoderm, endoderm, and mesoderm), expressing specific marker genes and proteins for each germ layer, as evidenced by RT-qPCR, immunostaining, and flow cytometry. Furthermore, we confirmed that feline ESCs formed teratomas comprising all three germ layers in mouse testes, demonstrating de novo pluripotency in vivo. We also verified that the feline ESCs maintained a normal karyotype. Conclusions We successfully established three feline ESC lines, each possessing pluripotent potential and capable of differentiating into all three germ layers, derived from the inner cell masses of blastocysts produced in vitro.
Collapse
Affiliation(s)
- Takumi Yoshida
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Masaya Tsukamoto
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Kazuto Kimura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
12
|
Zou X, He Y, Zhao Z, Li J, Qu H, Liu Z, Chen P, Ji J, Zhao H, Shu D, Luo C. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int J Biol Macromol 2025; 293:139136. [PMID: 39740725 DOI: 10.1016/j.ijbiomac.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Collapse
Affiliation(s)
- Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua He
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhifeng Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianbo Li
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zijing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoyi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
13
|
Pryzhkova MV, Skinner MW, Candelaria JI, Wellard SR, Jordan PW. The use of deidentified organ donor testes for research. Andrology 2025. [PMID: 39912553 DOI: 10.1111/andr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Our knowledge of testis development and function mainly comes from research using mammalian model organisms, primarily the mouse. However, there are integral differences between men and other mammalian species regarding cellular composition and expression profiles during fetal and post-natal testis development and in the mature testis. Therefore, to specifically learn more about human testis development and function, there is a need to use human testis tissue for research. Human testicular tissues that have been donated for research have allowed extensive molecular and cytological assessments, as well as single-cell transcriptome and epigenome analyses. These tissues have also been used for the development of cell technologies and in vitro models that aim to improve infertility treatments and diagnostics. Biopsied material taken from patients and designated for research is usually very small in size and is unsuitable for comprehensive studies. On the other hand, research using whole testes obtained from deceased, deidentified donors has become a valuable resource to assess conservation between humans and other organisms and identify human-specific phenomena. This review discusses the acquisition of donated deidentified human testes and their use for basic science research.
Collapse
Affiliation(s)
- Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Juliana I Candelaria
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Gray OA, Witonsky DB, Jousma J, Sobreira DR, Van Alstyne A, Huang RT, Fang Y, Di Rienzo A. Transcriptomic analysis of iPSC-derived endothelium reveals adaptations to high altitude hypoxia in energy metabolism and inflammation. PLoS Genet 2025; 21:e1011570. [PMID: 39928692 PMCID: PMC11809796 DOI: 10.1371/journal.pgen.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
Tibetan adaptation to high-altitude hypoxia remains a classic example of Darwinian selection in humans. Amongst Tibetan populations, alleles in the EPAS1 gene - whose protein product, HIF-2α, is a central regulator of the hypoxia response - have repeatedly been shown to carry some of the strongest signals of positive selection in humans. However, selective sweep signals alone may only account for some of the phenotypes that differentiate high-altitude adapted populations from closely related lowlanders. Therefore, there is a pressing need to functionally probe adaptive alleles and their impact at both the locus-specific and genome-wide levels and across cell types to uncover the full range of beneficial traits. To this end, we established a library of induced pluripotent stem cells (iPSCs) derived from Tibetan and Han Chinese individuals, a robust model system allowing precise exploration of allelic effects on transcriptional responses, and we differentiated them into vascular endothelium. Using this system, we focus first on a hypoxia-dependent enhancer (ENH5) that contributes to the regulation of EPAS1 to investigate its locus-specific effects in endothelium. Then, to cast a wider net, we harness the same experimental system to compare the transcriptome of Tibetan and Han Chinese cells in hypoxia and find evidence that angiogenesis, energy metabolism and immune pathways differ between these two populations with different histories of long-term residence at high altitude. Coupled with evidence of polygenic adaptations targeting the same pathways, these results suggests that the observed transcriptional differences between the two populations were shaped by natural selection.
Collapse
Affiliation(s)
- Olivia A. Gray
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Jordan Jousma
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Débora R. Sobreira
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Alexander Van Alstyne
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Ru-Ting Huang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| |
Collapse
|
15
|
Edel MJ, Casellas HS, Osete JR, Nieto-Nicolau N, Arnalich-Montiel F, De Miguel MP, McLenachan S, Roshandel D, Casaroli-Marano RP, Alvarez-Palomo B. An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use. Stem Cells Dev 2025; 34:49-60. [PMID: 39689863 DOI: 10.1089/scd.2024.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source. A synthetic mRNA-based protocol to produce human iPSC from bone marrow mesenchymal stem cells has been defined. The results demonstrate a standardizable method that can be easily adaptable for clinical-grade production standards, produce high-purity LSC-like cells in a relatively rapid timeframe of 12 days, and can be successfully seeded on amniotic membrane or a biodegradable fibrin gel for transplantation. In vivo data demonstrated it is feasible to transplant the iPSC-LSC fibrin patch. In conclusion, an efficient method has been developed to produce patient-specific LSC and seed them on a scaffold fibrin gel for future treatment of LSC-deficiency disease.
Collapse
Affiliation(s)
- Michael J Edel
- Autonomous University of Barcelona, Faculty of Medicine, Unit of Anatomy and Embryology, Barcelona, Spain
- Discipline of Medical Sciences and Genetics, School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
| | | | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | | | - María P De Miguel
- Cell Engineering Laboratory, La Paz Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute (LEI), Perth, Western Australia, Australia
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute (LEI), Perth, Western Australia, Australia
| | - Ricardo P Casaroli-Marano
- Department of Surgery, Faculty of Medicine and Health Science & Hospital Clinic de Barcelona (IDIBAPS), Universitat de Barcelona, Spain
| | - Belén Alvarez-Palomo
- Cell Therapy Service, Banc de Sang i Teixits (BST), Passeig Taulat 116, 08005, Barcelona, Spain
| |
Collapse
|
16
|
Kraus F, He Y, Swarup S, Overmyer KA, Jiang Y, Brenner J, Capitanio C, Bieber A, Jen A, Nightingale NM, Anderson BJ, Lee C, Paulo JA, Smith IR, Plitzko JM, Gygi SP, Schulman BA, Wilfling F, Coon JJ, Harper JW. Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST. SCIENCE ADVANCES 2025; 11:eadu5787. [PMID: 39841834 PMCID: PMC11753374 DOI: 10.1126/sciadv.adu5787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in NPC1-/- and NPC2-/- mutants, where lysosomes accumulate cholesterol. Autophagic and endocytic cargo delivery failures correlated with elevated lysophosphatidylcholine species and multilamellar structures visualized by cryo-electron tomography. Loss of mitochondrial cristae, MICOS complex components, and OXPHOS components rich in iron-sulfur cluster proteins in NPC2-/- cells was largely alleviated when iron was provided through the transferrin system. This study reveals how lysosomal dysfunction affects mitochondrial homeostasis and underscores nMOST as a valuable discovery tool for identifying molecular phenotypes across LSDs.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yuchen He
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Sharan Swarup
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Cristina Capitanio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anna Bieber
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nicole M. Nightingale
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Benton J. Anderson
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chan Lee
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ian R. Smith
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen M. Plitzko
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - J. Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
17
|
Shi J, Wu M, Fang S, Liu Z, Liu H, Zhao Y, Liu L, Shao Z. Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:3. [PMID: 39836295 PMCID: PMC11751367 DOI: 10.1186/s13619-024-00220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods. Moreover, organoids derived from hESCs using this medium were successfully established and expanded for at least one month, exhibiting differentiation into cortical organoids, GABAergic precursor organoids and heart-forming organoids. This innovative system offers a robust tool for preserving hESC homeostasis and modeling the nervous system in vitro.
Collapse
Affiliation(s)
- Jingyi Shi
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mei Wu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shi Fang
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhuo Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Huihui Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Linlin Liu
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhicheng Shao
- Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Wang Z, Wu J, Lv Z, Liang P, Li Q, Li Y, Guo Y. LMNA-related cardiomyopathy: From molecular pathology to cardiac gene therapy. J Adv Res 2025:S2090-1232(25)00001-3. [PMID: 39827909 DOI: 10.1016/j.jare.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The genetic variants of LMNA cause an array of diseases that often affect the heart. LMNA-related cardiomyopathy exhibits high-penetrance and early-onset phenotypes that lead to late-stage heart failure or lethal arrhythmia. As a subtype of dilated cardiomyopathy and arrhythmogenic cardiomyopathy, LMNA-related cardiac dysfunction is resistant to existing cardiac therapeutic strategies, leaving a major unmet clinical need in cardiomyopathy management. AIM OF REVIEW Here we comprehensively summarize current knowledge about the genetic basis, disease models and pathological mechanisms of LMNA-related cardiomyopathy. Recent translational studies were highlighted to indicate new therapeutic modalities such as gene supplementation, gene silencing and genome editing therapy, which offer potential opportunities to overcome the difficulties in the development of specific drugs for this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW LMNA-related cardiomyopathy involves many diverse disease mechanisms that preclude small-molecule drugs that target only a small fraction of the mechanisms. Agreeing to this notion, the first-in-human clinical trial for this disease recently reported futility. By contrast, gene therapy offers the new hope to directly intervene LMNA variants and demonstrates a tremendous potential for breakthrough therapy for this disease. Concepts in this review are also applicable to studies of other genetic diseases that lack effective therapeutics.
Collapse
Affiliation(s)
- Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jiahao Wu
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyuan Lv
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Qirui Li
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Yifei Li
- Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
19
|
Risner D, Negulescu P, Kim Y, Nguyen C, Siegel JB, Spang ES. Environmental Impacts of Cultured Meat: A Cradle-to-Gate Life Cycle Assessment. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:61-74. [PMID: 39840401 PMCID: PMC11744764 DOI: 10.1021/acsfoodscitech.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Interest in animal cell-based meat (ACBM) as an environmentally conscious replacement for livestock production has been increasing; however, a life cycle assessment (LCA) for the existing production methods of ACBM has not been conducted. Currently, ACBM products are being produced at a small scale, but ACBM companies are intending to scale-up production. Updated findings from recent technoeconomic assessments (TEAs) of ACBM were utilized to perform an LCA of near-term ACBM production. A scenario analysis was conducted utilizing the metabolic requirements examined in the TEAs of ACBM, and a purification factor was utilized to account for growth medium component processing. The results indicate that the environmental impact of near-term ACBM production has the potential to be significantly higher than beef if a highly refined growth medium is utilized for ACBM production. This study highlights the need to develop a sustainable animal cell growth medium that is optimized for high-density animal cell proliferation for ACBM to generate positive economic and environmental benefits.
Collapse
Affiliation(s)
- Derrick Risner
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Patrick Negulescu
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yoonbin Kim
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
| | - Cuong Nguyen
- Division
of Agriculture and Natural Resources, University
of California, Holtville, California 92250, United States
| | - Justin B. Siegel
- Genome Center, University of California, Davis, California 95616, United States
- Departments
of Chemistry, Biochemistry and Molecular Medicine, University of California, Davis, California 95616, United States
- Innovation
Institute for Food and Health, University
of California, Davis, California 95616, United States
- USDA, AI
Institute for Next Generation Food Systems (AIFS), University of California, Davis, California 95616, United States
| | - Edward S. Spang
- Department
of Food Science and Technology, University
of California, Davis, California 95616, United States
- USDA, AI
Institute for Next Generation Food Systems (AIFS), University of California, Davis, California 95616, United States
| |
Collapse
|
20
|
Pozner T, Grandizio C, Mitchell MW, Turan N, Scheinfeldt L. Human iPSC Reprogramming Success: The Impact of Approaches and Source Materials. Stem Cells Int 2025; 2025:2223645. [PMID: 39850337 PMCID: PMC11756937 DOI: 10.1155/sci/2223645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Since their discovery, human induced pluripotent stem cells (hiPSCs) have been instrumental in biomedical research, particularly in the fields of disease modelling, drug screening and regenerative therapies. Their use has significantly increased over recent years driven by the ability of hiPSCs to provide differentiated cell models without requiring embryonic stem cells. Furthermore, the transition from integrating to non-integrating reprogramming methodologies has contributed to the increase in utilisation. This shift minimises the risk of genomic alterations, enhancing the safety and reliability of hiPSCs. However, the factors that contribute to reprogramming success are still not well understood. In this study, we conducted a comparative analysis of the most prevalent non-integrating reprogramming methods across a range of starting source materials to assess their impact on reprogramming success rates. We found that while source material does not significantly impact success rates, the Sendai virus reprogramming method yields significantly higher success rates relative to the episomal reprogramming method. Our findings offer important insights from a biobanking perspective, for which long-term reliability, integrity and reproducibility of hiPSCs are crucial.
Collapse
Affiliation(s)
- Tatyana Pozner
- Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA
| | - Christine Grandizio
- Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA
| | - Matthew W. Mitchell
- Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA
| | - Nahid Turan
- Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA
| | - Laura Scheinfeldt
- Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA
| |
Collapse
|
21
|
Zhao Z, Zeng F, Nie Y, Lu G, Xu H, En H, Gu S, Chan WY, Cao N, Wang J. Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells. Stem Cell Reports 2025; 20:102382. [PMID: 39729989 PMCID: PMC11784501 DOI: 10.1016/j.stemcr.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Zhiju Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - He Xu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - He En
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
22
|
Manstein F, Halloin C, Zweigerdt R. Human Pluripotent Stem Cell Expansion in Stirred Tank Bioreactors. Methods Mol Biol 2025; 2924:59-71. [PMID: 40307635 DOI: 10.1007/978-1-0716-4530-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This paper describes a detailed protocol for human pluripotent stem cells (hPSCs) cultivation as matrix-free cell-only aggregates in defined and xeno-free culture medium in stirred tank bioreactors (STBRs). Starting with a frozen stock pre-expanded on conventional culture dishes (2D), the ultimate process is performed in 150 mL culture scale in stirred tank bioreactors (3D) and is designed to produce up to 500 million pluripotent hPSC within 7 days. The culture strategy includes perfusion-based cell feeding facilitating process control, automation, and higher cell yields. Ultimately, this detailed protocol describes an important step for generating a defined starting cell population for directed lineage differentiation and subsequently fueling human cell-based assays and regenerative medicine approaches.
Collapse
Affiliation(s)
- Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Naderlinger E, Murphy C, Feifel E, Jennings P, Gstraunthaler G, Wilmes A. One-Step Differentiation of Human-Induced Pluripotent Stem Cells into Podocytes. Methods Mol Biol 2025; 2924:45-57. [PMID: 40307634 DOI: 10.1007/978-1-0716-4530-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Within the glomerulus, podocytes are highly specialized visceral epithelial cells, that are part of the glomerular filtration barrier. Human podocyte cell culture is rather challenging for primary or immortalized cells, due to the non-proliferative state of the cells. In addition, de-differentiation is often observed rapidly. Hence, iPSC-derived podocytes offer an exciting alternative to culture podocyte-like cells from different donors over a prolonged time. Here we report an improved protocol of a simple and rapid one-step differentiation that drives iPSC into podocyte-like cells in 10 days and offers the possibility to transfer the podocyte-like cells into another plate format once.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cormac Murphy
- Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and Computational Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Borah R, O'Sullivan J, Suku M, Spurling D, Diez Clarke D, Nicolosi V, Caldwell MA, Monaghan MG. Electrically Conductive Injectable Silk/PEDOT: PSS Hydrogel for Enhanced Neural Network Formation. J Biomed Mater Res A 2025; 113:e37859. [PMID: 39719872 DOI: 10.1002/jbm.a.37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue. Given these considerations, we report a novel ECH prepared through self-assembly facilitated in situ gelation of natural silk fibroin (SF) derived from mulberry Bombyx mori silk and electrically conductive PEDOT:PSS. PEDOT:PSS was pre-stabilized to prevent the potential delamination of its hydrophilic PSS chain under aqueous environment using 3% (v/v) (3-glycidyloxypropyl)trimethoxysilane (GoPS) and 3% (w/v) poly(ethylene glycol)diglycidyl ether (PeGDE). The resultant ECH formulations are easily injectable with standard hand force with flow point below 100 Pa and good shear-thinning properties. The ECH formulations with unmodified and GoPS-modified PEDOT:PSS, that is, SF/PEDOT and SF/PEDOTGoP maintain comparable elastic modulus to spinal cord (~10-60 kPa) under physiological condition, indicating their flexibility. The GoPS-modified ECHs also display improved structural recoverability (~70%-90%) as compared to the unmodified versions of the ECHs (~30%-80%), as indicated by the three interval time thixotropy (3ITT) test. Additionally, these ECHs possess electrical conductivity in the range of ~0.2-1.2 S/m comparable to spinal cord (1-10 S/m), indicating their ability to mimic native bioelectrical environment. Approximately 80% or more cell survival was observed when hiPSC-derived cortical neurons and astrocytes were encapsulated within these ECHs. These ECHs support the maturation of cortical neurons when embedded for 7 days, fostering the development of a complex, interconnected network of long axonal processes and promoting synaptogenesis. These results underline the potential of silk ECHs in cell transplantation therapy for spinal cord regeneration.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Meenakshi Suku
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Dahnan Spurling
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Valeria Nicolosi
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michael G Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Huang Y, Zhang Y, Wang Z, Miao L, Tan P, Guan Y, Ran Y, Feng X, Wang Y, Guo Y, Guo X. Modified mRNA-based gene editing reveals sarcomere-based regulation of gene expression in human induced-pluripotent stem cell-derived cardiomyocytes. Int Immunopharmacol 2024; 143:113378. [PMID: 39423657 DOI: 10.1016/j.intimp.2024.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.
Collapse
Affiliation(s)
- Yuqing Huang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yueyang Zhang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Ze Wang
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pingping Tan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Guan
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxuan Guo
- School of Basic Medical Sciences, Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
26
|
Thakur A, Rai D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100278. [PMID: 40027307 PMCID: PMC11863704 DOI: 10.1016/j.jlb.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
Extracellular vesicles (EVs) are nanovesicles released from different cell types from biofluids such as blood, urine, and cerebrospinal fluid. They vary in size and biomarkers, and their biogenesis pathways allow them to be divided into three major types: exosomes, micro-vesicles, and apoptotic bodies. EVs have been studied in the context of diagnosis and therapeutic intervention of various pathological conditions such as cancer, neurodegenerative diseases, and pulmonary diseases. However, the production of EV-based therapeutics can be affected by the source, heterogeneity, or disease, raising questions about the manufacturing and validation of EVs of clinical grade and their scope regarding good manufacturing practice (GMP) in the industry. To address this, we have discussed the state-of-the-art requirements for EV production that must occur in a GMP-compliant environment with a reliable and traceable source. Additionally, EVs' homogeneity and the therapeutics' purity and stability must be analyzed and validated. Quality control measures must also be established to ensure the safety and efficacy of EVs. In conclusion, these considerations must be weighed carefully when manufacturing and validating EVs of clinical grade to ensure their safety and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepika Rai
- Smidt Heart Institute, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| |
Collapse
|
27
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
28
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
29
|
Alsehli HS, Roy E, Williams T, Kuziola A, Guo Y, Dreiss CA, Green JB, Gentleman E, Danovi D. Morphogen-driven differentiation is precluded by physical confinement in human iPSCs spheroids. Front Bioeng Biotechnol 2024; 12:1467412. [PMID: 39588360 PMCID: PMC11586224 DOI: 10.3389/fbioe.2024.1467412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Cell lineage specification is tightly associated with profound morphological changes in the developing human embryo, particularly during gastrulation. The interplay between mechanical forces and biochemical signals is poorly understood. Methods Here, we dissect the effects of biochemical cues and physical confinement on a 3D in vitro model based on spheroids formed from human induced pluripotent stem cells (hiPSCs). Results First, we compare self-renewing versus differentiating media conditions in free-floating cultures and observe the emergence of tri-germ layers. In these unconfined conditions, BMP4 exposure induces polarised expression of SOX17 in conjunction with spheroid elongation. We then physically confine spheroids using PEG-peptide hydrogels and observe dramatically reduced SOX17 expression, albeit rescued if gels that soften over time are used instead. Discussion Our study combines high-content imaging, synthetic hydrogels, and hiPSCs-derived models of early development to define the drivers that cause changes in the shape and the emergence of germ layers.
Collapse
Affiliation(s)
- Haneen S. Alsehli
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
- Centre for Stem Cell Biology, University of Sheffield, Sheffield, United Kingdom
| | - Errin Roy
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Thomas Williams
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Alicja Kuziola
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Yunzhe Guo
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Cecile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Jeremy B.A. Green
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Davide Danovi
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
- Migration Biotherapeutics, Cardiff, United Kingdom
| |
Collapse
|
30
|
Yehya H, Wells A, Majcher M, Nakhwa D, King R, Senturk F, Padmanabhan R, Jensen J, Bukys MA. Identifying and optimizing critical process parameters for large-scale manufacturing of iPSC derived insulin-producing β-cells. Stem Cell Res Ther 2024; 15:408. [PMID: 39522051 PMCID: PMC11550522 DOI: 10.1186/s13287-024-03973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 1 diabetes, an autoimmune disorder leading to the destruction of pancreatic β-cells, requires lifelong insulin therapy. Islet transplantation offers a promising solution but faces challenges such as limited availability and the need for immunosuppression. Induced pluripotent stem cells (iPSCs) provide a potential alternative source of functional β-cells and have the capability for large-scale production. However, current differentiation protocols, predominantly conducted in hybrid or 2D settings, lack scalability and optimal conditions for suspension culture. METHODS We examined a range of bioreactor scaleup process parameters and quality target product profiles that might affect the differentiation process. This investigation was conducted using an optimized High Dimensional Design of Experiments (HD-DoE) protocol designed for scalability and implemented in 0.5L (PBS-0.5 Mini) vertical wheel bioreactors. RESULTS A three stage suspension manufacturing process is developed, transitioning from adherent to suspension culture, with TB2 media supporting iPSC growth during scaling. Stage-wise optimization approaches and extended differentiation times are used to enhance marker expression and maturation of iPSC-derived islet-like clusters. Continuous bioreactor runs were used to study nutrient and growth limitations and impact on differentiation. The continuous bioreactors were compared to a Control media change bioreactor showing metabolic shifts and a more β-cell-like differentiation profile. Cryopreserved aggregates harvested from the runs were recovered and showed maintenance of viability and insulin secretion capacity post-recovery, indicating their potential for storage and future transplantation therapies. CONCLUSION This study demonstrated that stage time increase and limited media replenishing with lactate accumulation can increase the differentiation capacity of insulin producing cells cultured in a large-scale suspension environment.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Alexandra Wells
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael Majcher
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Dhruv Nakhwa
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Ryan King
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Faruk Senturk
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
31
|
Liu L, Henry J, Liu Y, Jouve C, Hulot JS, Georges A, Bouatia-Naji N. LRP1 Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases. Circ Res 2024; 135:1084-1097. [PMID: 39355906 PMCID: PMC11542979 DOI: 10.1161/circresaha.124.325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS Our findings support allele-specific LRP1 expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Yingwei Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Song HW, Solomon JN, Masri F, Mack A, Durand N, Cameau E, Dianat N, Hunter A, Oh S, Schoen B, Marsh M, Bravery C, Sumen C, Clarke D, Bharti K, Allickson JG, Lakshmipathy U. Bioprocessing considerations for generation of iPSCs intended for clinical application: perspectives from the ISCT Emerging Regenerative Medicine Technology working group. Cytotherapy 2024; 26:1275-1284. [PMID: 38970614 DOI: 10.1016/j.jcyt.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.
Collapse
Affiliation(s)
- Hannah W Song
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Emmanuelle Cameau
- Cytiva, Pall Life Sciences 24-26 avenue de Winchester, CS5005, 78100 St. Germain-en-Laye, France
| | | | | | - Steve Oh
- Cellvec Pte. Ltd. 100 Pasir Panjang, #04-01/02, Singapore 118518 Singapore
| | - Brianna Schoen
- Charles River Laboratories Cell Solutions, Inc. 8500 Balboa Blvd. Suite 230 Northridge, CA 91320, USA
| | | | | | | | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethsda, MD, USA
| | - Julie G Allickson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
33
|
Gursky VV, Chabina AS, Krasnova OA, Kovaleva AA, Kriger DV, Zadorsky MS, Kozlov KN, Neganova IE. Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype. Life (Basel) 2024; 14:1402. [PMID: 39598200 PMCID: PMC11595361 DOI: 10.3390/life14111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) are an important tool in the field of regenerative medicine due to their ability to differentiate towards all tissues of the adult organism. An important task in the study of hPSCs is to understand the factors that influence the maintenance of pluripotent and clonal characteristics of colonies represented by their morphological phenotype. Such factors include the ability of colonies to migrate during growth. In this work, we measured and analyzed the migration trajectories of hPSC colonies obtained from bright-field images of three cell lines, including induced hPSC lines AD3 and HPCASRi002-A (CaSR) and human embryonic stem cell line H9. To represent the pluripotent status, the colonies were visually phenotyped into two classes having a "good" or "bad" morphological phenotype. As for the migration characteristics, we calculated the colony speed and distance traveled (mobility measures), meandering index (motion persistence measures), outreach ratio (trajectory tortuosity characteristic), as well as the velocity autocorrelation function. The analysis revealed that the discrimination of phenotypes by the migration characteristics depended on both the cell line and growth environment. In particular, when the mTESR1/Matrigel culture environment was used, "good" AD3 colonies demonstrated a higher average migration speed than the "bad" ones. The reverse relationship between average speeds of "good" and "bad" colonies was found for the H9 line. The CaSR cell line did not show significant differences in the migration speed between the "good" and "bad" phenotypes. We investigated the type of motion exhibited by the colonies by applying two diffusion models to the mean squared displacement dynamics, one model corresponding to normal and the other to anomalous diffusion. The type of diffusion and diffusion parameter values resulting from the model fitting to data demonstrated a similar cell line, environment, and phenotype dependency. Colonies mainly showed a superdiffusive behavior for the mTESR1/Matrigel culture conditions, characterized by longer migration steps compared to the normal random walk. The specific properties of migration features and the patterns of their variation demonstrated in our work can be useful for the development and/or improvement of automated solutions for quality control of hPSCs.
Collapse
Affiliation(s)
- Vitaly V. Gursky
- Institute of Cytology, 194064 Saint Petersburg, Russia
- Ioffe Institute, 194021 Saint Petersburg, Russia
| | | | | | | | | | | | - Konstantin N. Kozlov
- Institute of Cytology, 194064 Saint Petersburg, Russia
- Mathematical Biology and Bioinformatics Lab, Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | | |
Collapse
|
34
|
Jang J, Jung H, Jeong J, Jeon J, Lee K, Jang HR, Han JW, Lee J. Modeling doxorubicin-induced-cardiotoxicity through breast cancer patient specific iPSC-derived heart organoid. Heliyon 2024; 10:e38714. [PMID: 39640743 PMCID: PMC11620051 DOI: 10.1016/j.heliyon.2024.e38714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Heart organoid (HO) technology has successfully overcome the limitations of two-dimensional (2D) disease modeling and drug testing, thereby emerging as a valuable tool in drug discovery for assessing toxicity and efficacy. However, its ability to distinguish drug responses among individuals remain unclear, which is crucial for developing predictive models. We addressed this gap by comparing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with human induced pluripotent stem cell-derived heart organoids (hiPSC-HOs) in the context of doxorubicin-induced cardiotoxicity (DIC). For this study, we utilized hiPSCs generated from breast cancer patients who had previously been treated with doxorubicin. By comparing groups with and without DIC, we examined various parameters, including cell viability, mRNA expression, protein expression and electrophysiological variations. The results of our analysis revealed significant differences between these groups, providing insights into hiPSC-HOs as a potential platform for testing differences in drug responses among patients.
Collapse
Affiliation(s)
- Jiye Jang
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyewon Jung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Cell and Gene Therapy Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Epigenome Dynamics Control Research Center (EDCRC), School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
35
|
Rosochowicz MA, Lach MS, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The iPSC secretome is beneficial for in vitro propagation of primary osteoarthritic chondrocytes cell lines. Biochem Biophys Res Commun 2024; 730:150392. [PMID: 39003867 DOI: 10.1016/j.bbrc.2024.150392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND One of the obstacles to autologous chondrocyte implantation (ACI) is obtaining a large quantity of chondrocytes without depletion of their properties. The conditioned medium (CM) from different subpopulations of stem cells (mesenchymal stromal cells (MSC) or induced pluripotent stem cells (iPSC)) could be a gamechanger. MSCs' potential is related to the donor's health and age, which could be omitted when, as a source, iPSCs are used. There is a lack of data regarding their use in the chondrocyte culture expansion. Thus, we wanted to verify whether iPSC-CM could be beneficial for the cell culture of primary chondrocyte cells. METHODS We added the iPSC-CMs from GPCCi001-A and ND 41658*H cells to the culture of primary chondrocyte cell lines isolated from OA patients (n = 6) for other two passages. The composition of the CM was evaluated using Luminex technology. Then, we analysed the senescence, proliferation rate and using flow cytometry: viability, distribution of cell cycle phases, production of reactive oxygen species (ROS) and double-strand breaks. The cartilage-related markers were evaluated using Western blot and immunofluorescence. Additionally, a three-dimensional cell culture was used to determine the potential to form cartilage particles. RESULTS iPSC-CM increased proliferation and diminished cell ROS production and senescence. CM influenced the cartilage-related protein expression and promoted the growth of cartilage particles. The cell exposed to CM did not lose the ECM proteins, suggesting the chondroprotective effect for prolonged culture time. CONCLUSION Our preliminary results suggest a beneficial effect on maintaining chondrocyte biology during in vitro expansion.
Collapse
Affiliation(s)
- Monika A Rosochowicz
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland.
| | - Michał S Lach
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| | - Inga Jagiełło
- Department of Tumour Pathology, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland; Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Street, 61-866, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| |
Collapse
|
36
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
37
|
Brien H, Lee JC, Sharma J, Hamann CA, Spetz MR, Lippmann ES, Brunger JM. Templated Pluripotent Stem Cell Differentiation via Substratum-Guided Artificial Signaling. ACS Biomater Sci Eng 2024; 10:6465-6482. [PMID: 39352143 PMCID: PMC11480943 DOI: 10.1021/acsbiomaterials.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.
Collapse
Affiliation(s)
- Hannah
J. Brien
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joanne C. Lee
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jhanvi Sharma
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Catherine A. Hamann
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Madeline R. Spetz
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ethan S. Lippmann
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jonathan M. Brunger
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
38
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
39
|
Whye D, Norabuena EM, Srinivasan GR, Wood D, Polanco TJ, Makhortova NR, Sahin M, Buttermore ED. A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs. Curr Protoc 2024; 4:e70022. [PMID: 39400999 DOI: 10.1002/cpz1.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Erika M Norabuena
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Gayathri Rajaram Srinivasan
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Taryn J Polanco
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Bulut S, Günther D, Bund M, Haats C, Bissing T, Bastard C, Wessling M, De Laporte L, Pich A. Cellular Architects at Work: Cells Building their Own Microgel Houses. Adv Healthc Mater 2024; 13:e2302957. [PMID: 37988182 DOI: 10.1002/adhm.202302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface. Additionally, the interlinked microgel network limits the ability of cells to remodel their environment, which contradicts native tissue dynamics. In this work, a cell-induced interlinking method for MAP scaffold formation is established, which avoids the necessity of chemical crosslinkers and pre-engineered pores to achieve micro- or macropores in these 3D frameworks. This method enables cells to self-organize with microgels into dynamic tissue constructs, which can be further controlled by altering the microgel properties, the cell/microgel ratio, and well shape. To form a cell-induced interlinked scaffold, the cells are mixed with dextran-based microgels and function as a glue between the microgels, resulting in a more homogenous cell distribution throughout the scaffold with efficient cell-cell interactions.
Collapse
Affiliation(s)
- Selin Bulut
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Daniel Günther
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Michelle Bund
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Christina Haats
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thomas Bissing
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Matthias Wessling
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Department of Chemical Process Engineering (AVT.CVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials e. V, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| |
Collapse
|
41
|
Lu X, Perr E, Naqvi T, Galitz D, Andersen M, Grabowski D, Person A, Kalyuzhny A, Flynn KC. A Novel Recombinant Vitronectin Variant Supports the Expansion and Differentiation of Pluripotent Stem Cells in Defined Animal-Free Workflows. Cells 2024; 13:1566. [PMID: 39329750 PMCID: PMC11429963 DOI: 10.3390/cells13181566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
An essential aspect of harnessing the potential of pluripotent stem cells (PSCs) and their derivatives for regenerative medicine is the development of animal-free and chemically defined conditions for ex vivo cultivation. PSCs, including embryonic and induced PSCs (iPSCs), are in the early stages of clinical trials for various indications, including degenerative diseases and traumatic injury. A key step in the workflows generating these cells for more widespread clinical use is their safe and robust ex vivo cultivation. This entails optimization of cell culture media and substrates that are safe and consistent while maintaining robust functionality. Here, we describe the design of a human vitronectin (hVTN) variant with improved manufacturability in a bacterial expression system along with improved function in comparison to wild-type VTN and other previously characterized polypeptide fragments. In conjunction with an animal component-free media formulation, our hVTN fragment provides animal-free conditions for the enhanced expansion of iPSCs. This hVTN variant also supports the reprogramming of PBMCs into iPSCs. Furthermore, we show that these iPSCs can be efficiently differentiated into the three major germ layers and cortical neurons, thereby closing the loop on a completely defined animal-free workflow for cell types relevant for regenerative medicine.
Collapse
Affiliation(s)
- Xi Lu
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Eli Perr
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Tahmina Naqvi
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - David Galitz
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Marnelle Andersen
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - David Grabowski
- Protein Development, Bio-Techne, Minneapolis, MN 55413, USA; (D.G.); (A.P.)
| | - Anthony Person
- Protein Development, Bio-Techne, Minneapolis, MN 55413, USA; (D.G.); (A.P.)
| | - Alex Kalyuzhny
- Antibody Applications, Bio-Techne, Minneapolis, MN 55413, USA;
| | - Kevin C. Flynn
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
42
|
Abraham BD, Gysel E, Kallos MS, Hu J. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. ACS APPLIED BIO MATERIALS 2024; 7:5956-5964. [PMID: 39190068 DOI: 10.1021/acsabm.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.
Collapse
Affiliation(s)
- Brett D Abraham
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Emilie Gysel
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael S Kallos
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
43
|
Song C, Zhang Z, Leng D, He Z, Wang X, Liu W, Zhang W, Wu Q, Zhao Q, Chen G. ERK5 promotes autocrine expression to sustain mitogenic balance for cell fate specification in human pluripotent stem cells. Stem Cell Reports 2024; 19:1320-1335. [PMID: 39151429 PMCID: PMC11411316 DOI: 10.1016/j.stemcr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor β (TGF-β), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-β. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.
Collapse
Affiliation(s)
- Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhaoying Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dongliang Leng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ziqing He
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wensheng Zhang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| |
Collapse
|
44
|
McCreery KP, Stubb A, Stephens R, Fursova NA, Cook A, Kruse K, Michelbach A, Biggs LC, Keikhosravi A, Nykänen S, Hydén-Granskog C, Zou J, Lackmann JW, Niessen CM, Vuoristo S, Miroshnikova YA, Wickström SA. Mechano-osmotic signals control chromatin state and fate transitions in pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611779. [PMID: 39372762 PMCID: PMC11451594 DOI: 10.1101/2024.09.07.611779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aki Stubb
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Rebecca Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda A. Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Andrew Cook
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Kruse
- Bioinformatics Service Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anja Michelbach
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Leah C. Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
| | - Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - Sonja Nykänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
| | - Christel Hydén-Granskog
- Helsinki University Hospital, Reproductive Medicine Unit, P.O. Box 150, 00029 HUS, Helsinki, Finland
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Gynecology and Obstetrics, Clinicum, University of Helsinki, 00290 Helsinki, Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Yekaterina A. Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
45
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Sun S, Motazedian A, Li JY, Wijanarko K, Zhu JJ, Tharmarajah K, Strumila KA, Shkaruta A, Nigos LR, Schiesser JV, Yu Y, Neeson PJ, Ng ES, Elefanty AG, Stanley EG. Efficient generation of human NOTCH ligand-expressing haemogenic endothelial cells as infrastructure for in vitro haematopoiesis and lymphopoiesis. Nat Commun 2024; 15:7698. [PMID: 39227582 PMCID: PMC11371830 DOI: 10.1038/s41467-024-51974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Arterial endothelial cells (AECs) are the founder cells for intraembryonic haematopoiesis. Here, we report a method for the efficient generation of human haemogenic DLL4+ AECs from pluripotent stem cells (PSC). Time-series single-cell RNA-sequencing reveals the dynamic evolution of haematopoiesis and lymphopoiesis, generating cell types with counterparts present in early human embryos, including stages marked by the pre-haematopoietic stem cell genes MECOM/EVI1, MLLT3 and SPINK2. DLL4+ AECs robustly support lymphoid differentiation, without the requirement for exogenous NOTCH ligands. Using this system, we find IL7 acts as a morphogenic factor determining the fate choice between the T and innate lymphoid lineages and also plays a role in regulating the relative expression level of RAG1. Moreover, we document a developmental pathway by which human RAG1+ lymphoid precursors give rise to the natural killer cell lineage. Our study describes an efficient method for producing lymphoid progenitors, providing insights into their endothelial and haematopoietic ontogeny, and establishing a platform to investigate the development of the human blood system.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Changping Laboratory, Beijing, China.
| | - Ali Motazedian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kevin Wijanarko
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kothila Tharmarajah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kathleen A Strumila
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Anton Shkaruta
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - L Rayburn Nigos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacqueline V Schiesser
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Yi Yu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
47
|
Juchem M, Lehmann N, Behrens YL, Bär C, Thum T, Hoepfner J. CRISPR/Cas9-based GLA knockout to generate the female Fabry disease human induced pluripotent stem cell line MHHi001-A-15. Stem Cell Res 2024; 79:103478. [PMID: 38905814 DOI: 10.1016/j.scr.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
The X-linked lysosomal storage disorder Fabry disease originates from GLA gene mutations causing α-galactosidase A enzyme deficiency. Here we generated the GLA knockout hiPSC line MHHi001-A-15 (GLA-KOhiPSC) as an in vitro Fabry disease model by targeting exon 2 of the GLA gene by CRISPR/Cas9 in the established control hiPSC line MHHi001-A. GLA-KOhiPSCs retained the expression of pluripotency markers, trilineage differentiation potential, as well as normal karyotype and stem cell morphology but lacked α-galactosidase A enzyme activity. The GLA-KOhiPSCs represent a potent resource to not only study the Fabry disease manifestation but also screen for novel treatment options.
Collapse
Affiliation(s)
- Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Nele Lehmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | | | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
48
|
Zehra B, Mohamed N, Farhat A, Bru-Mercier G, Satsangi D, Tambi R, Kamarudheen R, Kumail M, Khalil R, Pessia M, D'Adamo MC, Berdiev BK, Uddin M. Integrative analysis of long isoform sequencing and functional data identifies distinct cortical layer neuronal subtypes derived from human iPSCs. J Neurophysiol 2024; 132:653-665. [PMID: 38988287 DOI: 10.1152/jn.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, β tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).
Collapse
Affiliation(s)
- Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Gilles Bru-Mercier
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Rihana Kamarudheen
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Muhammad Kumail
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Toronto, Ontario, Canada
| |
Collapse
|
49
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539283. [PMID: 37205540 PMCID: PMC10187244 DOI: 10.1101/2023.05.03.539283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Collapse
|
50
|
Mojares E, Nadal C, Hayler D, Kanso H, Chrysanthou A, Neri Cruz CE, Gautrot JE. Strong Elastic Protein Nanosheets Enable the Culture and Differentiation of Induced Pluripotent Stem Cells on Microdroplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406333. [PMID: 39036832 DOI: 10.1002/adma.202406333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/30/2024] [Indexed: 07/23/2024]
Abstract
Advances in stem cell technologies, revolutionizing regenerative therapies and advanced in vitro testing, require novel cell manufacturing pipelines able to cope with scale up and parallelization. Microdroplet technologies, which have transformed single cell sequencing and other cell-based assays, are attractive in this context, but the inherent soft mechanics of liquid-liquid interfaces is typically thought to be incompatible with the expansion of induced pluripotent stem cells (iPSCs), and their differentiation. In this work, the design of protein nanosheets stabilizing liquid-liquid interfaces and enabling the adhesion, expansion and retention of stemness by iPSCs is reported. Microdroplet microfluidic chips are used to control the formulation of droplets with defined dimensions and size distributions. The resulting emulsions sustain high expansion rates, with excellent retention of stem cell marker expression. iPSCs cultured in such conditions retain the capacity to differentiate into cardiomyocytes. This work provides clear evidence that local nanoscale mechanics, associated with interfacial viscoelasticity, provides strong cues able to regulate and maintain pluripotency, as well as to support commitment in defined differentiation conditions. Microdroplet technologies appear as attractive candidates to transform cell manufacturing pipelines, bypassing significant hurdles paused by solid substrates and microcarriers.
Collapse
Affiliation(s)
- Elijah Mojares
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Clemence Nadal
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Daniel Hayler
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Hassan Kanso
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alexandra Chrysanthou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Carlos E Neri Cruz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Julien E Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|