1
|
Fu Y, Han YT, Xie JL, Liu RQ, Zhao B, Zhang XL, Zhang J, Zhang J. Mesenchymal stem cell exosomes enhance the development of hair follicle to ameliorate androgenetic alopecia. World J Stem Cells 2025; 17:102088. [DOI: 10.4252/wjsc.v17.i3.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 02/26/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their secretome have significant potential in promoting hair follicle development. However, the effects of MSC therapy have been reported to vary due to their heterogeneous characteristics. Different sources of MSCs or culture systems may cause heterogeneity of exosomes.
AIM To define the potential of human adipose-derived MSC exosomes (hADSC-Exos) and human umbilical cord-derived MSC exosomes (hUCMSC-Exos) for improving dermal papillary cell proliferation in androgenetic alopecia.
METHODS We conducted liquid chromatography-mass spectrometry proteomic analysis of hADSC-Exos and hUCMSC-Exos. Liquid chromatography-mass spectrometry suggested that hADSC-Exos were related to metabolism and immunity. Additionally, the hADSC-Exo proteins regulated the cell cycle and other 9 functional groups.
RESULTS We verified that hADSC-Exos inhibited glycogen synthase kinase-3β expression by activating the Wnt/β-catenin signaling pathway via cell division cycle protein 42, and enhanced dermal papillary cell proliferation and migration. Excess dihydrotestosterone caused androgenetic alopecia by shortening the hair follicle growth phase, but hADSC-Exos reversed these effects.
CONCLUSION This study indicated that hair development is influenced by hADSC-Exo-mediated cell-to-cell communication via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yao-Ting Han
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Bo Zhao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xing-Liao Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jun Zhang
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai 200092, China
- Research Center for Translational Medicine at East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Zhang
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai 200092, China
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
V G R, Ellur G, A Gaber A, Govindappa PK, Elfar JC. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury in mice. Cell Death Discov 2024; 10:428. [PMID: 39366954 PMCID: PMC11452548 DOI: 10.1038/s41420-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Severe thermal skin burns are complicated by inflammation and apoptosis, which delays wound healing and contributes to significant morbidity. Diverse treatments demonstrate limited success in mitigating these processes to accelerate healing. Agents that alter cell behavior to improve healing would alter treatment paradigms. We repurposed 4-aminopyridine (4-AP), a drug approved by the US FDA for multiple sclerosis, to treat severe burns in mice (10-week-old C57BL/6 J male mice weighing 25 ± 3 g). We found that 4-AP, in the early stages of burn healing, significantly reduced the expression of pro-inflammatory cytokines IL1β and TNFα while increasing the expression of anti-inflammatory markers CD206, ARG-1, and IL10. We demonstrated increased intracellular calcium effects of 4-AP through Orai1-pSTAT6 signaling, where 4-AP significantly mitigated inflammatory effects by promoting M2 macrophage differentiation in in-vitro macrophages and post-skin burn tissues. 4-AP attenuated apoptosis, with decreases in apoptotic markers BAX, caspase-9, and caspase-3 and increases in anti-apoptotic markers BCL2 and BCL-XL. Furthermore, 4-AP promoted angiogenesis through increases in the expression of CD31, VEGF, and eNOS. Together, these likely contributed to accelerated burn wound closure, as demonstrated in increased keratinocyte proliferation (K14) and differentiation (K10) markers. In the later stages of burn healing, 4-AP increased TGFβ and FGF levels, which are known to mark the transformation of fibroblasts to myofibroblasts. This was further demonstrated by an increased expression of α-SMA and vimentin, as well as higher levels of collagen I and III, MMP 3, and 9 in mice treated with 4-AP. Our findings support the idea that 4-AP may have a novel, clinically relevant therapeutic use in promoting burn wound healing.
Collapse
Affiliation(s)
- Rahul V G
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Amir A Gaber
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
3
|
McMenemy CM, Guo D, Quinn JA, Greenhalgh DA. 14-3-3σ/Stratifin and p21 limit AKT-related malignant progression in skin carcinogenesis following MDM2-associated p53 loss. Mol Carcinog 2024; 63:1768-1782. [PMID: 38869281 DOI: 10.1002/mc.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.
Collapse
Affiliation(s)
- Carol M McMenemy
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Dajiang Guo
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - David A Greenhalgh
- Section of Dermatology and Molecular Carcinogenesis, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow, Scotland
| |
Collapse
|
4
|
Govindappa PK, V G R, Ellur G, Gaber AA, Elfar J. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury. RESEARCH SQUARE 2024:rs.3.rs-4669610. [PMID: 39149501 PMCID: PMC11326401 DOI: 10.21203/rs.3.rs-4669610/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Severe thermal skin burns are complicated by inflammation and apoptosis, which delays wound healing and contributes to significant morbidity. Diverse treatments demonstrate limited success with mitigating these processes to accelerate healing. Agents that alter cell behavior to improve healing would alter treatment paradigms. We repurposed 4-aminopyridine (4-AP), a drug approved by the US FDA for multiple sclerosis, to treat severe burns. We found that 4-AP, in the early stages of burn healing, significantly reduced the expression of pro-inflammatory cytokines IL1β and TNFα while increasing the expression of anti-inflammatory markers CD206, ARG-1, and IL10. 4-AP attenuated apoptosis, with decreases in apoptotic markers BAX, caspase-9, and caspase-3 and increases in anti-apoptotic markers BCL2 and BCL-XL. Furthermore, 4-AP promoted angiogenesis through increases in the expression of CD31, VEGF, and eNOS. Together, these likely contributed to accelerated burn wound closure, as demonstrated in increased keratinocyte proliferation (K14) and differentiation (K10) markers. In the later stages of burn healing, 4-AP increased TGFβ and FGF levels, which are known to mark the transformation of fibroblasts to myofibroblasts. This was further demonstrated by an increased expression of α-SMA and vimentin, as well as higher levels of collagen I and III, MMP 3, and 9 in animals treated with 4-AP. Our findings support the idea that 4-AP may have a novel, clinically relevant therapeutic use in promoting burn wound healing.
Collapse
Affiliation(s)
| | - Rahul V G
- The University of Arizona College of Medicine
| | | | | | | |
Collapse
|
5
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Zhao Q, Zheng Y, Zhao D, Zhao L, Geng L, Ma S, Cai Y, Liu C, Yan Y, Belmonte JCI, Wang S, Zhang W, Liu GH, Qu J. Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration. Protein Cell 2023; 14:398-415. [PMID: 37285263 PMCID: PMC10246722 DOI: 10.1093/procel/pwac062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/16/2022] [Indexed: 07/21/2023] Open
Abstract
Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.
Collapse
Affiliation(s)
| | | | | | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
7
|
Ren W, Cha X, Xu R, Wang T, Liang C, Chou J, Zhang X, Li F, Wang S, Cai B, Jiang P, Wang H, Liu H, Yu Y. Cisplatin attenuates taste cell homeostasis and induces inflammatory activation in the circumvallate papilla. Theranostics 2023; 13:2896-2913. [PMID: 37284449 PMCID: PMC10240818 DOI: 10.7150/thno.81153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Gustation is important to several biological functions in mammals. However, chemotherapy drugs often harm taste perception in cancer patients, while the underlying mechanism is still unclear for most drugs and there is no effective way to restore taste function. This study investigated the effects of cisplatin on the taste cell homeostasis and gustatory function. Methods: We used both mice and taste organoid models to study the effect of cisplatin on taste buds. Gustometer assay, gustatory nerve recording, RNA-Sequencing, quantitative PCR, and immunohistochemistry was performed to analyze the cisplatin-induced alteration in taste behavior and function, transcriptome, apoptosis, cell proliferation and taste cell generation. Results: Cisplatin inhibited proliferation and promoted apoptosis in the circumvallate papilla, leading to significant impairment in taste function and receptor cell generation. The transcriptional profile of genes associated with cell cycle, metabolic process and inflammatory response was significantly altered after cisplatin treatment. Cisplatin inhibited growth, promoted apoptosis, and deferred taste receptor cell differentiation in taste organoids. LY411575, a γ-secretase inhibitor, reduced the number of apoptotic cells and increased the number of proliferative cells and taste receptor cells, potentially suggesting as a taste tissue protective agent against chemotherapy. LY411575 treatment could offset the increased number of Pax1+ or Pycr1+ cells induced by cisplatin in the circumvallate papilla and taste organoids. Conclusion: This study highlights the inhibitory effects of cisplatin on taste cell homeostasis and function, identifies critical genes and biological processes regulated by chemotherapy, and proposes potential therapeutic targets and strategy for taste dysfunction in cancer patients.
Collapse
Affiliation(s)
- Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Xudong Cha
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Rui Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Tianyu Wang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Caiquan Liang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Janice Chou
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Xiujuan Zhang
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Fengzhen Li
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Shenglei Wang
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Boyu Cai
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, People's Republic of China
| | - Yiqun Yu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
- Olfactory Disorder Diagnosis and Treatment Center, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
8
|
Ievlev V, Lynch TJ, Freischlag KW, Gries CB, Shah A, Pai AC, Ahlers BA, Park S, Engelhardt JF, Parekh KR. Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells. JCI Insight 2023; 8:162041. [PMID: 36512409 PMCID: PMC9977304 DOI: 10.1172/jci.insight.162041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Anit Shah
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany A. Ahlers
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Wu X, Wu J, Wang L, Yang W, Wang B, Yang H. CircRNAs in Malignant Tumor Radiation: The New Frontier as Radiotherapy Biomarkers. Front Oncol 2022; 12:854678. [PMID: 35372031 PMCID: PMC8966018 DOI: 10.3389/fonc.2022.854678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) data show that of the top 20 factors that threaten human life and health, cancer is at the forefront, and the therapeutic approaches for cancer consist of surgery, radiotherapy, chemotherapy and immunotherapy. For most highly metastatic and recurrent cancer, radiation therapy is an essential modality to mitigate tumor burden and improve patient survival. Despite the great accomplishments that have been made in clinical therapy, an inevitable challenge in effective treatment is radioresistance, the mechanisms of which have not yet been completely elucidated. In addition, radiosensitization methods based on molecular mechanisms and targets, and clinical applications are still inadequate. Evidence indicates that circular RNAs (circRNAs) are important components in altering tumor progression, and in influencing resistance and susceptibility to radiotherapy. This review summarizes the reasons for tumor radiotherapy resistance induced by circRNAs, and clarifies the molecular mechanisms and targets of action. Moreover, we determine the potential value of circRNAs as clinical indicators in radiotherapy, providing a theoretical basis for circRNAs-based strategies for cancer radiotherapy.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junying Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Clinical Laboratory, The Children's Hospital of Soochow University, Suzhou, China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Wang S, Wu T, Sun J, Li Y, Yuan Z, Sun W. Single-Cell Transcriptomics Reveals the Molecular Anatomy of Sheep Hair Follicle Heterogeneity and Wool Curvature. Front Cell Dev Biol 2022; 9:800157. [PMID: 34993204 PMCID: PMC8724054 DOI: 10.3389/fcell.2021.800157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Wool is the critical textile raw material which is produced by the hair follicle of sheep. Therefore, it has important implications to investigate the molecular mechanism governing hair follicle development. Due to high cellular heterogeneity as well as the insufficient cellular, molecular, and spatial characterization of hair follicles on sheep, the molecular mechanisms involved in hair follicle development and wool curvature of sheep remains largely unknown. Single-cell RNA sequencing (scRNA-seq) technologies have made it possible to comprehensively dissect the cellular composition of complex skin tissues and unveil the differentiation and spatial signatures of epidermal and hair follicle development. However, such studies are lacking so far in sheep. Here, single-cell suspensions from the curly wool and straight wool lambskins were prepared for unbiased scRNA-seq. Based on UAMP dimension reduction analysis, we identified 19 distinct cell populations from 15,830 single-cell transcriptomes and characterized their cellular identity according to specific gene expression profiles. Furthermore, novel marker gene was applied in identifying dermal papilla cells isolated in vitro. By using pseudotime ordering analysis, we constructed the matrix cell lineage differentiation trajectory and revealed the dynamic gene expression profiles of matrix progenitors' commitment to the hair shaft and inner root sheath (IRS) cells. Meanwhile, intercellular communication between mesenchymal and epithelial cells was inferred based on CellChat and the prior knowledge of ligand–receptor pairs. As a result, strong intercellular communication and associated signaling pathways were revealed. Besides, to clarify the molecular mechanism of wool curvature, differentially expressed genes in specific cells between straight wool and curly wool were identified and analyzed. Our findings here provided an unbiased and systematic view of the molecular anatomy of sheep hair follicle comprising 19 clusters; revealed the differentiation, spatial signatures, and intercellular communication underlying sheep hair follicle development; and at the same time revealed the potential molecular mechanism of wool curvature, which will give important new insights into the biology of the sheep hair follicle and has implications for sheep breeding.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tianyi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yue Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Hamid Q, Hamoudi R. Derangement of cell cycle markers in peripheral blood mononuclear cells of asthmatic patients as a reliable biomarker for asthma control. Sci Rep 2021; 11:11873. [PMID: 34088958 PMCID: PMC8178351 DOI: 10.1038/s41598-021-91087-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
In asthma, most of the identified biomarkers pertain to the Th2 phenotype and no known biomarkers have been verified for severe asthmatics. Therefore, identifying biomarkers using the integrative phenotype-genotype approach in severe asthma is needed. The study aims to identify novel biomarkers as genes or pathways representing the core drivers in asthma development, progression to the severe form, resistance to therapy, and tissue remodeling regardless of the sample cells or tissues examined. Comprehensive reanalysis of publicly available transcriptomic data that later was validated in vitro, and locally recruited patients were used to decipher the molecular basis of asthma. Our in-silicoanalysis revealed a total of 10 genes (GPRC5A, SFN, ABCA1, KRT8, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and RRM2) related to cell cycle and proliferation to be deranged in the severe asthmatic bronchial epithelium and fibroblasts compared to their healthy counterparts. In vitro, RT qPCR results showed that (SERPINE1 and RRM2) were upregulated in severe asthmatic bronchial epithelium and fibroblasts, (SFN, ABCA1, TOP2A, SERPINE1, MKI67, and NEK2) were upregulated in asthmatic bronchial epithelium while (GPRC5A and KRT8) were upregulated only in asthmatic bronchial fibroblasts. Furthermore, MKI76, RRM2, and TOP2A were upregulated in Th2 high epithelium while GPRC5A, SFN, ABCA1 were upregulated in the blood of asthmatic patients. SFN, ABCA1 were higher, while MKI67 was lower in severe asthmatic with wheeze compared to nonasthmatics with wheezes. SERPINE1 and GPRC5A were downregulated in the blood of eosinophilic asthmatics, while RRM2 was upregulated in an acute attack of asthma. Validation of the gene expression in PBMC of locally recruited asthma patients showed that SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2 were downregulated in severe uncontrolled asthma. We have identified a set of biologically crucial genes to the homeostasis of the lung and in asthma development and progression. This study can help us further understand the complex interplay between the transcriptomic data and the external factors which may deviate our understanding of asthma heterogeneity.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, UK
| |
Collapse
|
12
|
Samaha E, Vierlinger K, Weinhappel W, Godnic-Cvar J, Nöhammer C, Koczan D, Thiesen HJ, Yanai H, Fraifeld VE, Ziesche R. Expression Profiling Suggests Loss of Surface Integrity and Failure of Regenerative Repair as Major Driving Forces for Chronic Obstructive Pulmonary Disease Progression. Am J Respir Cell Mol Biol 2021; 64:441-452. [PMID: 33524306 DOI: 10.1165/rcmb.2020-0270oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) poses a major risk for public health, yet remarkably little is known about its detailed pathophysiology. Definition of COPD as nonreversible pulmonary obstruction revealing more about spatial orientation than about mechanisms of pathology may be a major reason for this. We conducted a controlled observational study allowing for simultaneous assessment of clinical and biological development in COPD. Sixteen healthy control subjects and 104 subjects with chronic bronchitis, with or without pulmonary obstruction at baseline, were investigated. Using both the extent of and change in bronchial obstruction as main scoring criteria for the analysis of gene expression in lung tissue, we identified 410 genes significantly associated with progression of COPD. One hundred ten of these genes demonstrated a distinctive expression pattern, with their functional annotations indicating participation in the regulation of cellular coherence, membrane integrity, growth, and differentiation, as well as inflammation and fibroproliferative repair. The regulatory pattern indicates a sequentially unfolding pathology that centers on a two-step failure of surface integrity commencing with a loss of epithelial coherence as early as chronic bronchitis. Decline of regenerative repair starting in Global Initiative for Chronic Obstructive Lung Disease stage I then activates degradation of extracellular-matrix hyaluronan, causing structural failure of the bronchial wall that is only resolved by scar formation. Although they require independent confirmation, our findings provide the first tangible pathophysiological concept of COPD to be further explored.Clinical trial registered with www.clinicaltrials.gov (NCT00618137).
Collapse
Affiliation(s)
- Eslam Samaha
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Klemens Vierlinger
- Department of Health and Environment, Austrian Institute of Technology, Vienna, Austria
| | - Wolfgang Weinhappel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jasminka Godnic-Cvar
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christa Nöhammer
- Department of Health and Environment, Austrian Institute of Technology, Vienna, Austria
| | - Dirk Koczan
- Department of Immunology, University of Rostock, Rostock, Germany; and
| | | | - Hagai Yanai
- Faculty of Health Sciences, Beer-Sheva Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vadim E Fraifeld
- Faculty of Health Sciences, Beer-Sheva Campus, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rolf Ziesche
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Haensel D, Jin S, Sun P, Cinco R, Dragan M, Nguyen Q, Cang Z, Gong Y, Vu R, MacLean AL, Kessenbrock K, Gratton E, Nie Q, Dai X. Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics. Cell Rep 2021; 30:3932-3947.e6. [PMID: 32187560 PMCID: PMC7218802 DOI: 10.1016/j.celrep.2020.02.091] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/07/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal transcriptional states. Our study provides a systematic view of epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis. Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further investigation into the mechanism of skin maintenance and repair.
Collapse
Affiliation(s)
- Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- These authors contributed equally
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- These authors contributed equally
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Morgan Dragan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Zixuan Cang
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Yanwen Gong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Remy Vu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
| | - Adam L. MacLean
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Correspondence: (Q.N.), (X.D.)
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92627, USA
- Lead Contact
- Correspondence: (Q.N.), (X.D.)
| |
Collapse
|
14
|
Discovery of genes and proteins possibly regulating mean wool fibre diameter using cDNA microarray and proteomic approaches. Sci Rep 2020; 10:7726. [PMID: 32382132 PMCID: PMC7206055 DOI: 10.1038/s41598-020-64903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Wool fibre diameter (WFD) is one of the wool traits with higher economic impact. However, the main genes specifically regulating WFD remain unidentified. In this current work we have used Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin, bearing more wool, in Aohan fine wool sheep, a Chinese indigenous breed, and compared them with that of small tail Han sheep, a sheep bread with coarse wool. Microarray analyses showed that most of the genes likely determining wool diameter could be classified into a few categories, including immune response, regulation of receptor binding and growth factor activity. Certain gene families might play a role in hair growth regulation. These include growth factors, immune cytokines, solute carrier families, cellular respiration and glucose transport amongst others. Proteomic analyses also identified scores of differentially expressed proteins.
Collapse
|
15
|
Ahlawat S, Arora R, Sharma R, Sharma U, Kaur M, Kumar A, Singh KV, Singh MK, Vijh RK. Skin transcriptome profiling of Changthangi goats highlights the relevance of genes involved in Pashmina production. Sci Rep 2020; 10:6050. [PMID: 32269277 PMCID: PMC7142143 DOI: 10.1038/s41598-020-63023-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Pashmina, the world's finest natural fiber is derived from secondary hair follicles of Changthangi goats which are domesticated in Ladakh region of Jammu and Kashmir by nomadic pastoralists. Complex epithelial-mesenchymal interactions involving numerous signal molecules and signaling pathways govern hair follicle morphogenesis and mitosis across different species. The present study involved transcriptome profiling of skin from fiber type Changthangi goats and meat type Barbari goats to unravel gene networks and metabolic pathways that might contribute to Pashmina development. In Changthangi goats, 525 genes were expressed at significantly higher levels and 54 at significantly lower levels with fold change >2 (padj < 0.05). Functional annotation and enrichment analysis identified significantly enriched pathways to be formation of the cornified envelope, keratinization and developmental biology. Expression of genes for keratins (KRTs) and keratin-associated proteins (KRTAPs) was observed to be much higher in Changthangi goats. A host of transcriptional regulator genes for hair follicle keratin synthesis such as GPRC5D, PADI3, HOXC13, FOXN1, LEF1 and ELF5 showed higher transcript abundance in Pashmina producing goats. Positive regulation of Wnt signaling pathway and negative regulation of Oncostatin M signaling pathway may be speculated to be important contributors to hair follicle development and hair shaft differentiation in Changthangi goats.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | |
Collapse
|
16
|
Joost S, Annusver K, Jacob T, Sun X, Dalessandri T, Sivan U, Sequeira I, Sandberg R, Kasper M. The Molecular Anatomy of Mouse Skin during Hair Growth and Rest. Cell Stem Cell 2020; 26:441-457.e7. [PMID: 32109378 DOI: 10.1016/j.stem.2020.01.012] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 10/24/2022]
Abstract
Skin homeostasis is orchestrated by dozens of cell types that together direct stem cell renewal, lineage commitment, and differentiation. Here, we use single-cell RNA sequencing and single-molecule RNA FISH to provide a systematic molecular atlas of full-thickness skin, determining gene expression profiles and spatial locations that define 56 cell types and states during hair growth and rest. These findings reveal how the outer root sheath (ORS) and inner hair follicle layers coordinate hair production. We found that the ORS is composed of two intermingling but transcriptionally distinct cell types with differing capacities for interactions with stromal cell types. Inner layer cells branch from transcriptionally uncommitted progenitors, and each lineage differentiation passes through an intermediate state. We also provide an online tool to explore this comprehensive skin cell atlas, including epithelial and stromal cells such as fibroblasts, vascular, and immune cells, to spur further discoveries in skin biology.
Collapse
Affiliation(s)
- Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tina Jacob
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaoyan Sun
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tim Dalessandri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Unnikrishnan Sivan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inês Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
17
|
Tacheau C, Weisgerber F, Fagot D, Bastien P, Verdier MP, Liboutet M, Sore G, Bernard BA. Vichy Thermal Spring Water (VTSW), a cosmetic ingredient of potential interest in the frame of skin ageing exposome: anin vitrostudy. Int J Cosmet Sci 2018; 40:377-387. [DOI: 10.1111/ics.12470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - D. Fagot
- L'Oréal R&I; Aulnay-sous-Bois; France
| | | | | | | | | | | |
Collapse
|
18
|
Hwang Y, An HT, Kang M, Ko J. Roles of 14-3-3β and γ in regulation of the glucocorticoid receptor transcriptional activation and hepatic gluconeogenesis. Biochem Biophys Res Commun 2018; 501:800-806. [DOI: 10.1016/j.bbrc.2018.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
19
|
Luan L, Shi J, Yu Z, Andl T. The major miR-31 target genes STK40 and LATS2 and their implications in the regulation of keratinocyte growth and hair differentiation. Exp Dermatol 2018; 26:497-504. [PMID: 28419554 DOI: 10.1111/exd.13355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates that even subtle changes in the expression of key genes of signalling pathways can have profound effects. MicroRNAs (miRNAs) are masters of subtlety and generally have only mild effects on their target genes. The microRNA miR-31 is one of the major microRNAs in many cutaneous conditions associated with activated keratinocytes, such as the hyperproliferative diseases psoriasis, non-melanoma skin cancer and hair follicle growth. miR-31 is a marker of the hair growth phase, and in our miR-31 transgenic mouse model it impairs the function of keratinocytes. This leads to aberrant proliferation, apoptosis, and differentiation that results in altered hair growth, while the loss of miR-31 leads to increased hair growth. Through in vitro and in vivo studies, we have defined a set of conserved miR-31 target genes, including LATS2 and STK40, which serve as new players in the regulation of keratinocyte growth and hair follicle biology. LATS2 can regulate growth of keratinocytes and we have identified a function of STK40 that can promote the expression of key hair follicle programme regulators such as HR, DLX3 and HOXC13.
Collapse
Affiliation(s)
- Liming Luan
- Division of Dermatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jianyun Shi
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
20
|
Yang Z, Jin Q, Hu W, Dai L, Xue Z, Man D, Zhou L, Xie H, Wu J, Zheng S. 14-3-3σ downregulation suppresses ICC metastasis via impairing migration, invasion, and anoikis resistance of ICC cells. Cancer Biomark 2018; 19:313-325. [PMID: 28482619 DOI: 10.3233/cbm-160476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND 14-3-3σ protein plays an important role in multiple cellular processes. The role of 14-3-3σ in the progression of intrahepatic cholangiocarcinoma (ICC) has not been well understood. OBJECTIVE We performed this research to explore the relationship between 14-3-3σ level and clinical characteristics and prognosis of ICC patients. Besides, we used ICC cell lines HCCC-9810 and RBE to assess the biological function of 14-3-3σ. METHODS We examined 14-3-3σ expression in 28 ICC tissues and matched paratumor tissues by quantitative real-time PCR and immunohistochemistry. Additionally, ICC tissue array from 100 patients and normal liver tissue array from 24 healthy people were also analyzed by immunohistochemistry. 14-3-3σ was knocked down in ICC cell lines and the functions and mechanisms of 14-3-3σ were assessed. RESULTS 14-3-3σ is highly expressed in ICC tissues and high expression of 14-3-3σ correlates poor overall survival in ICC patients. Knocking down of 14-3-3σ in ICC cell lines reduced cells migration, invasion and anoikis resistance. Furthermore, 14-3-3σ-silenced ICC cells showed significantly decreased invasion-related protein MMP2 and MMP9 expression. CONCLUSIONS Our results demonstrate prognostic value of 14-3-3σ and its role in metastasis, which is associated with ICC cell lines migration, invasion and anoikis resistance.
Collapse
Affiliation(s)
- Zhenjie Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Qianjun Jin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, Zhejiang, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Longfei Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Zhengze Xue
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Da Man
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery , First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, Zhejiang, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
21
|
Min S, Song EAC, Oyelakin A, Gluck C, Smalley K, Romano RA. Functional characterization and genomic studies of a novel murine submandibular gland epithelial cell line. PLoS One 2018; 13:e0192775. [PMID: 29462154 PMCID: PMC5819789 DOI: 10.1371/journal.pone.0192775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 01/10/2023] Open
Abstract
A better understanding of the normal and diseased biology of salivary glands (SG) has been hampered, in part, due to difficulties in cultivating and maintaining salivary epithelial cells. Towards this end, we have generated a mouse salivary gland epithelial cell (mSGc) culture system that is well-suited for the molecular characterization of SG cells and their differentiation program. We demonstrate that mSGc can be maintained for multiple passages without a loss of proliferation potential, readily form 3D-spheroids and importantly express a panel of well-established salivary gland epithelial cell markers. Moreover, mSGc 3D-spheroids also exhibit functional maturation as evident by robust agonist-induced intracellular calcium signaling. Finally, transcriptomic characterization of mSGc by RNA-seq and hierarchical clustering analysis with adult organ RNA-seq datasets reveal that mSGc retain most of the molecular attributes of adult mouse salivary gland. This well-characterized mouse salivary gland cell line will fill a critical void in the field by offering a valuable resource to examine various mechanistic aspects of mouse salivary gland biology.
Collapse
Affiliation(s)
- Sangwon Min
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Eun-Ah Christine Song
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kirsten Smalley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
22
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
23
|
Zhao J, Liu N, Liu K, He J, Yu J, Bu R, Cheng M, De W, Liu J, Li H. Identification of genes and proteins associated with anagen wool growth. Anim Genet 2016; 48:67-79. [PMID: 27611105 DOI: 10.1111/age.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
Identifying genes of major effect for wool growth would offer strategies for improving the quality and increasing the yield of fine wool. In this study, we employed the Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin (more wool growing) in Aohan fine wool sheep (a Chinese indigenous breed) in comparison with groin skin (no wool growing) at the anagen stage of the wool follicle. A microarray study revealed that 4772 probes were differentially expressed, including 2071 upregulated and 2701 downregulated probes, in the comparisons of body side skin vs. groin skin (S/G). The microarray results were verified by means of quantitative PCR. A total of 1099 probes were assigned to unique genes/transcripts. The number of distinct genes/transcripts (annotated) was 926, of which 352 were upregulated and 574 were downregulated. In S/G, 13 genes were upregulated by more than 10 fold, whereas 60 genes were downregulated by more than 10 fold. Further analysis revealed that the majority of the genes possibly related to the wool growth could be assigned to categories including regulation of cell division, intermediate filament, cytoskeletal part and growth factor activity. Several potential gene families may participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Proteomic analysis also revealed 196 differentially expressed protein points, of which 121 were identified as single protein points.
Collapse
Affiliation(s)
- J Zhao
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China.,China Agricultural University, Beijing, 100193, China
| | - N Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - K Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - J He
- Qingdao Agricultural University, Qingdao, 266109, China
| | - J Yu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - R Bu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - M Cheng
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - W De
- Nanjing Medical University, Nanjing, 210029, China
| | - J Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - H Li
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| |
Collapse
|
24
|
Zhao J, Li H, Liu K, Zhang B, Li P, He J, Cheng M, De W, Liu J, Zhao Y, Yang L, Liu N. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray. Mol Med Rep 2016; 14:3823-31. [DOI: 10.3892/mmr.2016.5728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
|
25
|
Deletion of 14-3-3σ sensitizes mice to DMBA/TPA-induced papillomatosis. Oncotarget 2016; 7:46862-46870. [PMID: 27409835 PMCID: PMC5216908 DOI: 10.18632/oncotarget.10478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/25/2016] [Indexed: 11/25/2022] Open
Abstract
The p53-inducible cell cycle regulator 14-3-3σ exhibits tumor suppressive functions and is highly expressed in differentiating layers of the epidermis and hair follicles. 14-3-3σ/SFN/stratifin is frequently silenced in human epithelial cancers, and experimental down-regulation of 14-3-3σ expression immortalizes primary human keratinocytes. In the repeated-epilation (ER) mouse model, a heterozygous nonsense mutation of 14-3-3σ causes repeated hair-loss, hyper-proliferative epidermis, and spontaneous development of papillomas and squamous cell carcinomas in aging mice. Therefore, loss of 14-3-3σ function might contribute to epithelial tumor development. Here, we generated mice with loxP sites surrounding the single 14-3-3σ exon which allowed Cre-mediated deletion of the gene. 14-3-3σ-deficient mice are viable, but demonstrate a permanently disheveled fur. However, histological analyses of the skin did not reveal obvious defects in the hair follicles or the epidermis. Deletion of 14-3-3σ did not enhance spontaneous epidermal tumor development, whereas it increased the frequency and size of DMBA/TPA-induced papillomas. In conclusion, 14-3-3σ is dispensable for normal epidermal homeostasis but critical for suppression of chemically-induced skin carcinogenesis. In addition, these results suggest that the ER mutation of 14-3-3σ is not equivalent to loss of 14-3-3σ, but may represent a gain-of-function variant, which does not reflect the organismal function of wild-type 14-3-3σ.
Collapse
|
26
|
14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization. J Invest Dermatol 2015; 135:1621-1628. [PMID: 25668240 PMCID: PMC4430425 DOI: 10.1038/jid.2015.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis.
Collapse
|
27
|
Park JY, An YR, Kanda N, An CM, An HS, Kang JH, Kim EM, An DH, Jung H, Joung M, Park MH, Yoon SH, Lee BY, Lee T, Kim KW, Park WC, Shin DH, Lee YS, Kim J, Kwak W, Kim HJ, Kwon YJ, Moon S, Kim Y, Burt DW, Cho S, Kim H. Cetaceans evolution: insights from the genome sequences of common minke whales. BMC Genomics 2015; 16:13. [PMID: 25609461 PMCID: PMC4311506 DOI: 10.1186/s12864-015-1213-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Background Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water. Results We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 – 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales. Conclusions This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1213-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jung Youn Park
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea.
| | - Yong-Rock An
- Cetacean Research Institute, National Fisheries Research & Development Institute, Nam-gu, Ulsan, 680-050, Republic of Korea.
| | - Naohisa Kanda
- The Institute of Cetacean Research, Toyomi 4-5, Chuo-ku, Tokyo, 104-0055, Japan.
| | - Chul-Min An
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea.
| | - Hye Suck An
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea.
| | - Jung-Ha Kang
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea.
| | - Eun Mi Kim
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea.
| | - Du-Hae An
- Cetacean Research Institute, National Fisheries Research & Development Institute, Nam-gu, Ulsan, 680-050, Republic of Korea.
| | - Hojin Jung
- Codes division, Insilicogen,Inc., Suwon, Gyeonggi-do, 441-813, Republic of Korea.
| | - Myunghee Joung
- Codes division, Insilicogen,Inc., Suwon, Gyeonggi-do, 441-813, Republic of Korea.
| | - Myung Hum Park
- TNT Research, #924 Doosan Venture Digm, Anyang, Gyeonggi-do, 431-755, Republic of Korea.
| | - Sook Hee Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Bo-Young Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Taeheon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Kyu-Won Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Won Cheoul Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Dong Hyun Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Young Sub Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Jaemin Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea. .,C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea. .,C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
| | - Hyeon Jeong Kim
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
| | - Young-Jun Kwon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Sunjin Moon
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA.
| | - Yuseob Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - David W Burt
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9GR, UK.
| | - Seoae Cho
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
| | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea. .,C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
| |
Collapse
|
28
|
Abstract
Over the past decade, discoveries on Hippo signaling have revealed a complex signaling network integrating various signaling pathways to modulate tissue homeostasis, organ size control, tissue repair, and regeneration. Malfunction of the Hippo pathway is associated with tumor and cancer development. Moreover, Hippo signaling has been proposed to act in numerous stem cells in a variety of organisms. Recently, more attention has been paid to define the functions of the Hippo pathway in tissue-specific stem cells, which have great potential to be used in cell-based therapies. Here we provide an overview of its roles in regulating stem cells in epithelial tissues and its potential implications in related cancers.
Collapse
Affiliation(s)
- Meng-Xin Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Roberts BJ, Reddy R, Wahl JK. Stratifin (14-3-3 σ) limits plakophilin-3 exchange with the desmosomal plaque. PLoS One 2013; 8:e77012. [PMID: 24124604 PMCID: PMC3790753 DOI: 10.1371/journal.pone.0077012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
Desmosomes are prominent cell-cell adhesive junctions in stratified squamous epithelia and disruption of desmosomal adhesion has been shown to have dramatic effects on the function and integrity of these tissues. During normal physiologic processes, such as tissue development and wound healing, intercellular adhesion must be modified locally to allow coordinated cell movements. The mechanisms that control junction integrity and adhesive strength under these conditions are poorly understood. We utilized a proteomics approach to identify plakophilin-3 associated proteins and identified the 14-3-3 family member stratifin. Stratifin interacts specifically with plakophilin-3 and not with other plakophilin isoforms and mutation analysis demonstrated the binding site includes serine 285 in the amino terminal head domain of plakophilin-3. Stratifin interacts with a cytoplasmic pool of plakophilin-3 and is not associated with the desmosome in cultured cells. FRAP analysis revealed that decreased stratifin expression leads to an increase in the exchange rate of cytoplasmic plakophilin-3/GFP with the pool of plakophilin-3/GFP in the desmosome resulting in decreased desmosomal adhesion and increased cell migration. We propose a model by which stratifin plays a role in regulating plakophilin-3 incorporation into the desmosomal plaque by forming a plakophilin-3 stratifin complex in the cytosol and thereby affecting desmosome dynamics in squamous epithelial cells.
Collapse
Affiliation(s)
- Brett J. Roberts
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - Roopa Reddy
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
| | - James K. Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zou J, Mi L, Yu XF, Dong J. Interaction of 14-3-3σ with KCMF1 suppresses the proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol 2013; 19:3770-3780. [PMID: 23840115 PMCID: PMC3703518 DOI: 10.3748/wjg.v19.i24.3770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/01/2013] [Accepted: 03/23/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological function of 14-3-3σ protein and to look for proteins that interact with 14-3-3σ protein in colon cancer stem cells.
METHODS: Reverse transcription polymerase chain reaction was performed to amplify the 14-3-3σ gene from the mRNA of colon cancer stem cells. The gene was then cloned into the pGEM-T vector. After being sequenced, the target gene 14-3-3σ was cut from the pGEM-T vector and cloned into the pGBKT7 yeast expression plasmid. Then, the bait plasmid pGBKT7-14-3-3σ was transformed into the yeast strain AH109. After the expression of the pGBKT7-14-3-3σ fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening assay was performed by mating AH109 with Y187 that contained a HeLa cDNA library plasmid. The interaction between the 14-3-3σ protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybrid screen. After extracting and sequencing the plasmids from the positive colonies, we performed a bioinformatics analysis. A coimmunoprecipitation assay was performed to confirm the interaction between 14-3-3σ and the proteins obtained from the positive colonies. Finally, we constructed 14-3-3σ and potassium channel modulatory factor 1 (KCMF1) siRNA expression plasmids and transfected them into colon cancer stem cells.
RESULTS: The bait plasmid pGBKT7-14-3-3σ was constructed successfully, and the 14-3-3σ protein had no toxic or autonomous activation effect on the yeast. Nineteen true-positive colonies were selected and sequenced, and their full-length sequences were obtained. We searched for homologous DNA sequences for these sequences from GenBank. Among the positive colonies, four coding genes with known functions were obtained, including KCMF1, quinone oxidoreductase (NQO2), hydroxyisobutyrate dehydrogenase (HIBADH) and 14-3-3σ. For the subsequent coimmunoprecipitation assay, the plasmids PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH were successfully constructed, and the sequences were further confirmed by DNA sequencing. The Fugene 6 reagent was used to transfect the plasmids, and fluorescence-activated cell sorting analysis showed the transfection efficiency was 97.8% after 48 h. The HEK 293FT cells showed the stable expression of the PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH plasmids. After anti-Myc antibody immunoprecipitation with Myc-KCMF1, Myc-NQO2 and Myc-HIBADH from cell lysates, the presence of Flag-14-3-3σ protein in the immunoprecipitated complex was determined by western blot analysis. The knock-down expression of the 14-3-3σ and KCMF1 proteins significantly inhibited cell proliferation and colony formation of SW1116csc.
CONCLUSION: Genes of the proteins that interacted with 14-3-3σ were successfully screened from a HeLa cDNA library. KCMF1 and 14-3-3σ protein may affect the proliferation and colony formation of human colon cancer stem cells.
Collapse
|
31
|
Barry ER, Camargo FD. The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 2013; 25:247-53. [PMID: 23312716 DOI: 10.1016/j.ceb.2012.12.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 01/08/2023]
Abstract
Tissue regeneration is vital to the form and function of an organ. At the core of an organs' ability to self-renew is the stem cell, which maintains homeostasis, and repopulates injured or aged tissue. Tissue damage can dramatically change the dimensions of an organ, and during regeneration, an organ must halt growth once the original tissue dimensions have been restored. Therefore, stem cells must give rise to the appropriate number of differentiated progeny to achieve homeostasis. How this tissue-size checkpoint is regulated and how tissue size information relayed to stem cell compartments is unclear, however, it is likely that these mechanisms are altered during the course of tumorigenesis. An emerging signaling cascade, the Hippo Signaling Pathway, is a broadly conserved potent organ size regulator [1]. However, this pathway does not act alone. A number of examples demonstrate crosstalk between Hippo and other signaling pathways including Wnt, Tgfβ and Notch, with implications for stem cell biology. Here, we focus on these interactions primarily in the context of well characterized stem cell populations.
Collapse
Affiliation(s)
- Evan R Barry
- Stem Cell Program, Chidren's Hospital, Boston, MA 02115, United States
| | | |
Collapse
|