1
|
Liang Y, Mi Z, Kuo PC. Differential MYC and PROM1 mRNA isoform expression in breast invasive carcinoma as biomarkers for subtyping and prognosis. Surgery 2025; 179:108798. [PMID: 39306567 DOI: 10.1016/j.surg.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 02/02/2025]
Abstract
BACKGROUND Cancer stem cells are a subpopulation of tumor cells with the ability to self-renew; evidence suggests that cancer stem cells are responsible for recurrence, metastasis, and resistance to therapy. MYC and CD133 (PROM1 gene) are clinical biomarkers for cancer stem cells, and their dysregulation is involved in the progression of many cancers. Alternative splicing of these genes may contribute to cancer stem cell differentiation. METHODS Transcriptional and clinical data of PROM1 and MYC mRNA isoforms in breast cancer samples were downloaded from the TCGA Splicing Variants Database site, a web-tool to explore mRNA alternative-splicing based on TCGA samples. Data include RSEM isoform expression, clinical sample types, survival data, and clinical receptor expression. Breast cancer subtypes (luminal A, luminal B, Her2 positive, triple negative) were assigned on the basis of estrogen, progesterone, and HER2 expression. RESULTS Expression of MYC isoforms uc003ysh.1 and uc003ysi.3 was significantly greater in triple-negative breast cancer compared with all other breast cancer subtypes (P < .001). Isoform uc003ysi.3 was associated with greater 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.96; P = .02). PROM1 isoforms uc003gop.2, uc003goq.3, uc003gos.2, and uc003gou.2 were expressed greatest in triple-negative breast cancer (P < .001). PROM1 isoform uc003gou.2 was associated with better 5-year survival in luminal A breast cancer (hazard ratio, 0.79; 95% confidence interval, 0.65-0.97; P = .02). CONCLUSIONS MYC and PROM1 isoforms are differentially expressed in breast cancer subtypes. Certain isoforms confer better survival prognosis. Further work should be done to study alternative splicing in cancer stem cells.
Collapse
Affiliation(s)
- Yifan Liang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Zhiyong Mi
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL; Bay Pines Veterans Affairs Health Care System, Bay Pines, FL.
| |
Collapse
|
2
|
Silva-Hurtado TJ, Inocencio JF, Yong RL. Emerging applications of hypomethylating agents in the treatment of glioblastoma (Review). Mol Clin Oncol 2024; 21:59. [PMID: 39006906 PMCID: PMC11240870 DOI: 10.3892/mco.2024.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 07/16/2024] Open
Abstract
DNA hypomethylating agents (HMAs) such as decitabine and 5-azacytidine have established roles in the treatment paradigms for myelodysplastic syndrome and acute myelogenous leukemia, where they are considered to exert their anticancer effects by restoring the expression of tumor suppressor genes. Due to their relatively favorable adverse effect profile and known ability to pass through the blood-brain barrier, applications in the treatment of glioblastoma (GBM) and other central nervous system malignancies are under active investigation. The present review examines the types of HMAs currently available, their known and less-understood antineoplastic mechanisms, and the evidence to date of their preclinical and clinical efficacy in glioblastoma and other solid malignancies. The present review discusses the potential synergies HMAs may have with established and emerging GBM treatments, including temozolomide, immune checkpoint inhibitors and cancer vaccines. Recent successes and setbacks in clinical trials for newly diagnosed and recurrent GBM are summarized in order to highlight opportunities for HMAs to improve therapeutic responses. Challenges for future clinical trials are also assessed.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julio F. Inocencio
- Leo M. Davidoff Department of Neurosurgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY 10461, USA
| | - Raymund L. Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
4
|
Moreno-Londoño AP, Robles-Flores M. Functional Roles of CD133: More than Stemness Associated Factor Regulated by the Microenvironment. Stem Cell Rev Rep 2024; 20:25-51. [PMID: 37922108 PMCID: PMC10799829 DOI: 10.1007/s12015-023-10647-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/β-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.
Collapse
Affiliation(s)
- Angela Patricia Moreno-Londoño
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Yang J, Aljitawi O, Van Veldhuizen P. Prostate Cancer Stem Cells: The Role of CD133. Cancers (Basel) 2022; 14:5448. [PMID: 36358865 PMCID: PMC9656005 DOI: 10.3390/cancers14215448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Prostate cancer stem cells (PCSCs), possessing self-renewal properties and resistance to anticancer treatment, are possibly the leading cause of distant metastasis and treatment failure in prostate cancer (PC). CD133 is one of the most well-known and valuable cell surface markers of cancer stem cells (CSCs) in many cancers, including PC. In this article, we focus on reviewing the role of CD133 in PCSC. Any other main stem cell biomarkers in PCSC reported from key publications, as well as about vital research progress of CD133 in CSCs of different cancers, will be selectively reviewed to help us inform the main topic.
Collapse
Affiliation(s)
| | - Omar Aljitawi
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Van Veldhuizen
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Carney BC, Dougherty RD, Moffatt LT, Simbulan-Rosenthal CM, Shupp JW, Rosenthal DS. Promoter Methylation Status in Pro-opiomelanocortin Does Not Contribute to Dyspigmentation in Hypertrophic Scar. J Burn Care Res 2021; 41:339-346. [PMID: 31541238 DOI: 10.1093/jbcr/irz168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Burn injuries frequently result in hypertrophic scars (HTSs), specifically when excision and grafting are delayed due to limited resources or patient complications. In patient populations with dark baseline pigmentation, one symptom of HTS that often occurs is dyspigmentation. The mechanism behind dyspigmentation has not been explored, and, as such, prevention and treatment strategies for this morbidity are lacking. The mechanism by which cells make pigment is controlled at the apex of the pathway by pro-opiomelanocortin (POMC), which is cleaved to its products alpha-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropin hormone (ACTH). α-MSH and ACTH secreted by keratinocytes bind to melanocortin 1 receptor (MC1R), expressed on melanocytes, to initiate melanogenesis. POMC protein expression is upregulated in hyperpigmented scar compared to hypopigmented scar by an unknown mechanism in a Duroc pig model of HTS. POMC RNA levels, as well as the POMC gene promoter methylation status were investigated as a possible mechanism. DNA was isolated from biopsies obtained from distinct areas of hyper- or hypopigmented scar and normal skin. DNA was bisulfite-converted, and amplified using two sets of primers to observe methylation patterns in two different CpG islands near the POMC promoter. Amplicons were then sequenced and methylation patterns were evaluated. POMC gene expression was significantly downregulated in hypopigmented scar compared to normal skin, consistent with previously reported protein expression levels. There were significant changes in methylation of the POMC promoter; however, none that would account for the development of hyper- or hypopigmentation. Future work will focus on other areas of POMC transcriptional regulation.
Collapse
Affiliation(s)
- Bonnie C Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Ryan D Dougherty
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Lauren T Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC
| | - Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| | - Jeffrey W Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC.,Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC.,The Burn Center, MedStar Washington Hospital Center, Washington, DC.,Department of Surgery, Georgetown University School of Medicine, Washington, DC
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
7
|
Tanabe R, Miyazono K, Todo T, Saito N, Iwata C, Komuro A, Sakai S, Raja E, Koinuma D, Morikawa M, Westermark B, Heldin CH. PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating glioma-initiating cell properties via DNA methyltransferase 3A. Mol Oncol 2021; 16:269-288. [PMID: 34214250 PMCID: PMC8732353 DOI: 10.1002/1878-0261.13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma‐initiating cells (GICs), a major source of glioblastoma recurrence, are characterized by the expression of neural stem cell markers and the ability to grow by forming nonadherent spheres under serum‐free conditions. Bone morphogenetic proteins (BMPs), members of the transforming growth factor‐β family, induce differentiation of GICs and suppress their tumorigenicity. However, the mechanisms underlying the BMP‐induced loss of GIC stemness have not been fully elucidated. Here, we show that paired related homeobox 1 (PRRX1) induced by BMPs decreases the CD133‐positive GIC population and inhibits tumorigenic activity of GICs in vivo. Of the two splice isoforms of PRRX1, the longer isoform, pmx‐1b, but not the shorter isoform, pmx‐1a, induces GIC differentiation. Upon BMP stimulation, pmx‐1b interacts with the DNA methyltransferase DNMT3A and induces promoter methylation of the PROM1 gene encoding CD133. Silencing DNMT3A maintains PROM1 expression and increases the CD133‐positive GIC population. Thus, pmx‐1b promotes loss of stem cell‐like properties of GICs through region‐specific epigenetic regulation of CD133 expression by recruiting DNMT3A, which is associated with decreased tumorigenicity of GICs.
Collapse
Affiliation(s)
- Ryo Tanabe
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Sakai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
8
|
Sasai K, Tabu K, Saito T, Matsuba Y, Saido TC, Tanaka S. Difference in the malignancy between RAS and GLI1-transformed astrocytes is associated with frequency of p27 KIP1-positive cells in xenograft tissues. Pathol Res Pract 2021; 223:153465. [PMID: 33989885 DOI: 10.1016/j.prp.2021.153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
We demonstrate that the introduction of GLI1 is sufficient for immortalized human astrocytes to be transformed whereas FOXM1 fails to induce malignant transformation, suggesting differences between GLI1 and FOXM1 in terms of transforming ability despite both transcription factors being overexpressed in malignant gliomas. Moreover, in investigations of mechanisms underlying relatively less-malignant features of GLI1-transformed astrocytes, we found that p27KIP1-positive cells were frequently observed in xenografts derived from GLI1-transformed astrocytes compared to those from RAS-transformed cells. As shRNA-mediated knockdown of p27KIP1 accelerates tumor progression of GLI1-transformed astrocytes, downregulation of p27KIP1 contributes to malignant features of transformed astrocytes. We propose that the models using immortalized/transformed astrocytes are useful to identify the minimal and most crucial set of changes required for glioma formation.
Collapse
Affiliation(s)
- Ken Sasai
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Kouichi Tabu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
9
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
10
|
Ji J, Zhao L, Zhao X, Li Q, An Y, Li L, Li D. Genome‑wide DNA methylation regulation analysis of long non‑coding RNAs in glioblastoma. Int J Mol Med 2020; 46:224-238. [PMID: 32319552 PMCID: PMC7255472 DOI: 10.3892/ijmm.2020.4579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor associated with high mortality. Long non-coding RNAs (lncRNAs) are increasingly being recognized as its modulators. However, it remains mostly unexplored how lncRNAs are mediated by DNA methylation in GBM. The present study integrated multi-omics data to analyze the epigenetic dysregulation of lncRNAs in GBM. Widely aberrant methylation in the lncRNA promoters was observed, and the lncRNA promoters exhibited a more hypomethylated pattern in GBM. By combining transcriptional datasets, it was possible identify the lncRNAs whose transcriptional changes might be associated with the aberrant promoter methylation. Then, a methylation-mediated lncRNA regulatory network and functional enrichment analysis of aberrantly methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in diverse GBM progression-related biological functions and pathways. Specifically, four lncRNAs whose increased expression may be regulated by the corresponding promoter hypomethylation were evaluated to have an excellent diagnostic effect and clinical prognostic value. Finally, through the construction of drug-target association networks, the present study identified potential therapeutic targets and small-molecule drugs for GBM treatment. The present study provides novel insights for understanding the regulation of lncRNAs by DNA methylation and developing cancer biomarkers in GBM.
Collapse
Affiliation(s)
- Jianghuai Ji
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Qianpeng Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Yi An
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Li Li
- Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
11
|
Hu Z, Liu H, Zhang X, Hong B, Wu Z, Li Q, Zhou C. Promoter hypermethylation of CD133/PROM1 is an independent poor prognosis factor for head and neck squamous cell carcinoma. Medicine (Baltimore) 2020; 99:e19491. [PMID: 32176088 PMCID: PMC7440166 DOI: 10.1097/md.0000000000019491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PROM1 has played a pivotal role in the identification and isolation of tumor stem cells. This study aimed to assess the association between PROM1 promoter methylation and head and neck squamous cell carcinoma (HNSCC), and its diagnostic and prognostic value.Bioinformatic analysis was performed using data from the Cancer Genome Atlas-HNSC and Gene Expression Omnibus datasets.The results showed that PROM1 promoter was hypermethylated in HNSCCs compared with normal head and neck tissues (P = 4.58E-37). The area under the receiver-operating characteristic curve based on methylated PROM1 data was 0.799. In addition, PROM1 hypermethylation independently predicted poor overall survival (hazard ratio [HR]: 1.459, 95% confidence interval [CI]: 1.071-1.987, P = .016) and recurrence-free survival (HR: 1.729, 95% CI: 1.088-2.749, P = .021) in HNSCC patients. Moreover, PROM1 methylation was weakly negatively correlated with its mRNA expression (Pearson r = -0.148, P < .001).In summary, our study reveals that methylated PROM1 might serve as a valuable diagnostic biomarker and predictor of poor survival for HNSCC patients. PROM1 hypermethylation might partially contribute to its downregulation in HNSCC.
Collapse
Affiliation(s)
- Zele Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Xinrong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Bin Hong
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery
- Laboratory of Otorhinolaryngology Head and Neck Surgery
- Diagnosis and Treatment Center of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery
- Laboratory of Otorhinolaryngology Head and Neck Surgery
- Diagnosis and Treatment Center of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
12
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
13
|
Akbari M, Shomali N, Faraji A, Shanehbandi D, Asadi M, Mokhtarzadeh A, Shabani A, Baradaran B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol Int 2019; 44:368-380. [PMID: 31579983 DOI: 10.1002/cbin.11243] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Recently, the role of cancer stem cells (CSCs) has been highlighted as a crucial emerging factor in chemoresistance, cancer relapse, and metastasis. CD133 is a surface marker of CSCs and has been argued to have prognostic and therapeutic values in CRC along with its related pathways such as Wnt, Notch, and hedgehog. Several studies have successfully applied targeted therapies against CD133 in CRC models namely bispecific antibodies (BiAbs) and anti-Wnt and notch pathways agents. These studies have yielded initial promising results in this regard. However, none of the therapeutics have been used in the clinical setting and their efficacy and adverse effects profile are yet to be elucidated. This review aims to gather the old and most recent data on the prognostic and therapeutic values of CD133 and CD133-targeted therapies in CRC.
Collapse
Affiliation(s)
- Morteza Akbari
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 3514799422, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Afsaneh Faraji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Aliakbar Shabani
- Semnan Biotechnology Research Center, Semnan University of Medical sciences, Semnan, 3514799422, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| |
Collapse
|
14
|
Targeting of replicating CD133 and OCT4/SOX2 expressing glioma stem cells selects a cell population that reinitiates tumors upon release of therapeutic pressure. Sci Rep 2019; 9:9549. [PMID: 31267022 PMCID: PMC6606606 DOI: 10.1038/s41598-019-46014-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
The existence of radio- and chemotherapy-surviving cancer stem cells is currently believed to explain the inefficacy of anti-glioblastoma (GBM) therapies. The aim of this study was to determine if a therapeutic strategy specifically targeting GBM stem cells (GSC) would completely eradicate a GBM tumor. In both the in vitro and the in vivo models, ganciclovir therapy targeting proliferating GSC promotes the survival of a quiescent, stem-like cell pool capable of reproducing the tumor upon release of the therapeutic pressure. Images of small niches of therapy-surviving tumor cells show organized networks of vascular-like structures formed by tumor cells expressing CD133 or OCT4/SOX2. These results prompted the investigation of tumor cells differentiated to endothelial and pericytic lineages as a potential reservoir of tumor-initiating capacity. Isolated tumor cells with pericyte and endothelial cell lineage characteristics, grown under tumorsphere forming conditions and were able to reproduce tumors after implantation in mice.
Collapse
|
15
|
Hansen LJ, Sun R, Yang R, Singh SX, Chen LH, Pirozzi CJ, Moure CJ, Hemphill C, Carpenter AB, Healy P, Ruger RC, Chen CPJ, Greer PK, Zhao F, Spasojevic I, Grenier C, Huang Z, Murphy SK, McLendon RE, Friedman HS, Friedman AH, Herndon JE, Sampson JH, Keir ST, Bigner DD, Yan H, He Y. MTAP Loss Promotes Stemness in Glioblastoma and Confers Unique Susceptibility to Purine Starvation. Cancer Res 2019; 79:3383-3394. [PMID: 31040154 PMCID: PMC6810595 DOI: 10.1158/0008-5472.can-18-1010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Homozygous deletion of methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of PROM1/CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of PROM1/CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM. As a combined consequence of purine production deficiency in MTAP-null GBM and the critical dependence of GSCs on purines, the enriched subset of CD133+ cells in MTAP-null GBM can be effectively depleted by inhibition of de novo purine synthesis. These findings suggest that MTAP loss promotes the pathogenesis of GBM by shaping the epigenetic landscape and stemness of GBM cells while simultaneously providing a unique opportunity for GBM therapeutics. SIGNIFICANCE: This study links the frequently mutated metabolic enzyme MTAP to dysregulated epigenetics and cancer cell stemness and establishes MTAP status as a factor for consideration in characterizing GBM and developing therapeutic strategies.
Collapse
Affiliation(s)
- Landon J Hansen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Ran Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin, China
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Carlee Hemphill
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Austin B Carpenter
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Patrick Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ryan C Ruger
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Chin-Pu J Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Fangping Zhao
- Genetron Health Technologies, Inc., Research Triangle Park, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
17
|
Abstract
In the last decade, epigenetic drugs (such as inhibitors of DNA methyltransferases and histone deacetylases) have been intensively used for cancer treatment. Their applications have shown high anticancer effectivity and tolerable side effects. However, they are unfortunately not effective in the treatment of some types and phenotypes of cancers. Nevertheless, several studies have demonstrated that problems of drug efficacy can be overcome through the combined application of therapeutic modulates. Therefore, combined applications of epigenetic agents with chemotherapy, radiation therapy, immunotherapy, oncolytic virotherapy and hyperthermia have been presented. This review summarizes and discusses the general principles of this approach, as introduced and supported by numerous examples. In addition, predictions of the future potential applications of this methodology are included.
Collapse
|
18
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
19
|
Abstract
Background Malignant glioma is the second leading cause of cancer-related death worldwide, and is known to exhibit a high degree of heterogeneity in its deregulation of different oncogenic pathways. The molecular subclasses of human glioma are not well known. Thus, it is crucial to identify vital oncogenic pathways in glioma with significant relationships to patient survival. Methods In this study, we devised a bioinformatics strategy to map patterns of oncogenic pathway activation in glioma, from the Gene Expression Omnibus (GEO). Bioinformatics analysis revealed that 749 genes were differentially expressed and classified into different glioma grades. Results Using gene expression signatures, we identified three oncogenic pathways (MAPK signaling pathway, Wnt signaling pathway, and ErbB signaling pathway) deregulated in the majority of human glioma. Following gene microarray analysis, the gene expression profile in the differential grade glioma was further validated by bioinformatic analyses, with coexpression network construction. Furthermore, we found that cytochrome c oxidase subunit Vb (COX5B), the terminal enzyme of the electron transport chain, was the central gene in a coexpression network that transfers electrons from reduced cytochrome c to oxygen and, in the process, generates an electrochemical gradient across the mitochondrial inner membrane. The expression level of COX5B was then detected in 87 glioma tissues as well as adjacent normal tissues using immunohistochemistry. We found that COX5B was significantly upregulated in 67 of 87 (77.0%) glioma and glioblastoma tissues, compared with adjacent tissue (p<0.01). Furthermore, statistical analysis showed the COX5B expression level was significantly associated with clinical stage and lymph node status, while there were no correlations between COX5B expression and age or tumor size. Conclusion These data indicate that COX5B may be implicated in glioma pathogenesis and as a biomarker for identification of the pathological grade of glioma.
Collapse
Affiliation(s)
| | - Jiazhuang Xi
- Department of Public Health, The People's Hospital of Dazu District Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
20
|
Abdel-Hafiz HA. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer. Diseases 2017; 5:E16. [PMID: 28933369 PMCID: PMC5622332 DOI: 10.3390/diseases5030016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Department of Medicine/Endocrinology, School of Medicine, University of Colorado, Ms 8106 PO Box 6511, 12801 E 17th Avenue, Aurora, Denver, CO 80010, USA; Tel.: +1-303-724-1013; Fax: +1-303-724-3920.
| |
Collapse
|
21
|
Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci 2017; 18:ijms18071414. [PMID: 28671573 PMCID: PMC5535906 DOI: 10.3390/ijms18071414] [Citation(s) in RCA: 848] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/11/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.
Collapse
|
22
|
Geddert H, Braun A, Kayser C, Dimmler A, Faller G, Agaimy A, Haller F, Moskalev EA. Epigenetic Regulation of CD133 in Gastrointestinal Stromal Tumors. Am J Clin Pathol 2017; 147:515-524. [PMID: 28398518 DOI: 10.1093/ajcp/aqx028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study ascertained the regulation of the stem cell marker CD133 and its potential applicability for prognostication of gastrointestinal stromal tumors (GISTs). METHODS A total of 95 resected GISTs were included in the study. CD133 protein expression was assessed immunohistochemically on tissue microarrays. Methylation percentage was quantified by pyrosequencing. Gene expression in cell lines GIST48b and GIST882 upon treatment with DNA demethylation agent 5-aza-2'-deoxycytidine was analyzed by quantitative polymerase chain reaction. RESULTS The expression of hypermethylated CD133 could be reactivated in the GIST cell line upon hypomethylation with the drug. Similarly, in patient material, CD133 methylation percentage correlated inversely with the protein expression and reflected tumor size with hypermethylation in small (<2 cm) tumors and virtually no methylation in large (>10 cm) GISTs. The gene's methylation percentage and expression level were clearly specific to anatomic sites and distinct driver mutations. KIT -mutant gastric GISTs exhibited significantly lower methylation degrees and concomitant high CD133 protein abundance compared with KIT -mutant GISTs from the small intestine. CD133 hypermethylation was documented in PDGFRA -mutant gastric GISTs along with low CD133 expression compared with KIT -mutant gastric GISTs. High CD133 expression was a prognosticator of shorter disease-free survival in all patients. In a subgroup of KIT -mutant gastric GISTs, low CD133 methylation degree was correlated with a shorter disease-free survival. CONCLUSIONS Our results strongly suggest epigenetic regulation of CD133 expression by promoter methylation in GISTs. Pending further validation studies, high abundance of the protein can serve as a marker for malignant GISTs.
Collapse
Affiliation(s)
- Helene Geddert
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Alexander Braun
- Institute for Pathology, Albert Ludwigs University, Freiburg, Germany
| | - Claudia Kayser
- Institute for Pathology, Albert Ludwigs University, Freiburg, Germany
| | - Arno Dimmler
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Gerhard Faller
- Institute for Pathology, St Vincentius Hospital, Karlsruhe, Germany
| | - Abbas Agaimy
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Florian Haller
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| | - Evgeny A Moskalev
- Institute for Pathology, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
23
|
Xi G, Li YD, Grahovac G, Rajaram V, Wadhwani N, Pundy T, Mania-Farnell B, James CD, Tomita T. Targeting CD133 improves chemotherapeutic efficacy of recurrent pediatric pilocytic astrocytoma following prolonged chemotherapy. Mol Cancer 2017; 16:21. [PMID: 28137267 PMCID: PMC5282778 DOI: 10.1186/s12943-017-0593-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
Background Pilocytic astrocytomas (PAs) are the most common pediatric central nervous system neoplasms. In the majority of cases these tumors are benign and receive favorable prognosis following gross total surgical resection. In patients with progressive or symptomatic tumors, aggressive surgical resection is generally not feasible, thus radiation or chemotherapy are accepted initial or adjuvant interventions. Due to serious long-lasting side-effects, radiation is limited in young children; therefore, chemotherapy is widely practiced as an adjuvant treatment for these patients. However, chemotherapy can promote the emergence of multidrug resistant tumor cells that are more malignant than those of the original tumor. CD133, a putative stem cell marker in normal tissue and malignant brain tumors, enhances multidrug resistant gene 1 (MDR1) expression following chemotherapy in adult malignant glioblastomas. This study examines the relationship between CD133 and MDR1 in pediatric PAs exposed to chemotherapy, with the goal of identifying therapeutic targets that manifest as a result of chemotherapy. Methods Slides were obtained for 15 recurrent PAs, seven of which had received chemotherapy prior to surgical treatment for the recurrent tumor. These samples, as well as primary tumor tissue slides from the same patients were used to investigate CD133 and MDR1 expression via immunofluorescence. Archived frozen tissue samples from the same patients were used to examine CD133, MDR1 and PI3K-Akt-NF-κB signaling mediators, via western blot. Two drug resistant pediatric PA cell lines Res186 and Res199 were also used to evaluate the role of CD133 on cell response to cytotoxic therapy. Results CD133 and MDR1 were co-expressed and their expression was elevated in recurrent PAs from patients that had received chemotherapy, compared to patients that had not received chemotherapy. PI3K-Akt-NF-κB signaling mediator expression was also elevated in recurrent, chemotherapy-treated PA. Suppressing CD133 expression with siCD133 decreased levels of PI3K-Akt-NF-κB signaling mediators and MDR1, while increasing cell chemosensitivity, as indicated by quantification of apoptotic cells following chemotherapy. Conclusions CD133 contributes to multidrug resistance by regulating MDR1 levels via the PI3K-Akt-NF-κB signal pathway not only in adult glioblastomas, but also in pediatric PAs. Targeting CD133, adjuvant to conventional chemotherapy may improve outcomes for children with recurrent PA. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0593-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guifa Xi
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA. .,Development Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yuping Derek Li
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA
| | - Gordan Grahovac
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA
| | - Veena Rajaram
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Children's Medical Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tatiana Pundy
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA.,Development Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Falk Brain Tumor Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, 225 E Chicago Ave, PO Box #28, Chicago, IL, 60611, USA. .,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
24
|
Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One 2016; 11:e0164079. [PMID: 27701459 PMCID: PMC5049760 DOI: 10.1371/journal.pone.0164079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
Collapse
Affiliation(s)
- Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Sylvi Graupner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
25
|
Verneuil L, Leboeuf C, Bousquet G, Brugiere C, Elbouchtaoui M, Plassa LF, Peraldi MN, Lebbé C, Ratajczak P, Janin A. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Oncotarget 2016; 6:41497-507. [PMID: 26594799 PMCID: PMC4747169 DOI: 10.18632/oncotarget.6359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion. Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. Methods In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells. For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug. The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. Results We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin. The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance. Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker. Conclusion We identified here donor-derived stem cells within skin SCC in kidney-transplant recipients. They were located in invasive areas of SCC and had EMT characteristics.
Collapse
Affiliation(s)
- Laurence Verneuil
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Christophe Leboeuf
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Guilhem Bousquet
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Charlotte Brugiere
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, CHU Caen, Caen, F-14033, France.,Université de Caen Normandie, Medical School, Caen, F-14000, France
| | - Morad Elbouchtaoui
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | | | - Marie-Noelle Peraldi
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Celeste Lebbé
- Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - Philippe Ratajczak
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France
| | - Anne Janin
- INSERM, UMR_S1165, Paris, F-75010, France.,Department of Pathology, Université Paris Diderot, UMR_S1165, F-75010 Paris, France.,Department of Pathology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| |
Collapse
|
26
|
Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma. PLoS One 2016; 11:e0162916. [PMID: 27627801 PMCID: PMC5023141 DOI: 10.1371/journal.pone.0162916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023] Open
Abstract
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
Collapse
|
27
|
Wang X, Chen L, Xiao Z, Wang Y, Liu T, Zhang T, Zhang Y. Screening glioma stem cells in U251 cells based on the P1 promoter of the CD133 gene. Oncol Lett 2016; 12:2457-2462. [PMID: 27698813 PMCID: PMC5038209 DOI: 10.3892/ol.2016.4966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Cluster of differentiation (CD)133 is an important cell surface marker of glioma stem cells (GSCs). The transcription of the CD133 gene is controlled by five alternative promoters (P1, P2, P3, P4 and P5), which are expressed in a tissue-specific manner. In the present study, gene recombination technology was used to construct two types of gene expression vectors that contained the P1 promoter of the CD133 gene, which regulated either the neomycin-resistance gene or the herpes simplex virus thymidine kinase (HSV-TK) gene. Following the stable transfection of U251 glioblastoma cells with these two gene vectors, the cells expressing the P1 promoter that regulated the neomycin-resistance gene were named CD133 (+) cells, while the cells expressing the P1 promoter regulating the HSV-TK gene were called CD133 (−) cells. The expression of CD133 was detected by flow cytometry and reverse transcription-quantitative polymerase chain reaction. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess cell proliferation ability, while the cell cycle was analyzed by flow cytometry, and a clone formation test was performed to evaluate the invasive capability of the cells. The results demonstrated that, due to CD133 expression, the cell proliferation ability and the invasive capability of CD133 (+) cells were significantly higher than those of CD133 (−) cells. In conclusion, the present study successfully established a novel method of screening GSCs in U251 cells based on the P1 promoter of the CD133 gene.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lu Chen
- Department of Tumor and Blood Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Zhongdi Xiao
- Department of General Surgery, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163001, P.R. China
| | - Yali Wang
- Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianfu Zhang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
28
|
Sun B, Wan Z, Shen J, Ni L, Chen J, Cui M, Ni H, Shi W, Shi J. DNA hypomethylation of CD133 promoter is associated with recurrent glioma. Oncol Rep 2016; 36:1062-8. [DOI: 10.3892/or.2016.4880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
|
29
|
Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas. J Neurooncol 2016; 127:221-32. [PMID: 26757925 PMCID: PMC4781890 DOI: 10.1007/s11060-015-2039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/28/2015] [Indexed: 01/06/2023]
Abstract
CD133 has played a pivotal role in the identification and isolation of brain tumor stem cells. The correlation between CD133 expression in tumor tissues with patients survival is still controversial. CD133 expression is determinated by methylation status of the promoter region 1–3. Aberrant methylation of CD133 was observed in glioblastoma. To date, a direct link between CD133 methylation and patient outcome has not been established.To address this question, we studied CD133 expression and promoter methylation in a series of 170 gliomas of various grade and histology, and investigated the correlation of CD133 expression and promoter methylation with patient outcome.We detected five CD133 promoter methylation patterns in 170 glioma samples: methylation only (M+, U−), unmethylation only (M−, U+), both methylation and unmethylation equally (M+, U+), high methylation and low unmethylation (M+, Ul), and low methylation and high unmethylation (Ml, U+). By multivariate survival analysis, we found CD133 promoter methylation status was significant (P < 0.01) prognostic factors for adverse progression-free survival and overall survival independent of tumor grade, extent of resection, or patient age. CD133 immunostaining showed considerable variability among tumors. While, there was lack of correlation between CD133 protein expression and patient’s survival. Furthermore, no correlation between CD133 protein expression and CD133 promoter methylation status was observed (Kw = −0.165).CD133 promoter methylation status in glioma is closely correlated with patient survival, which suggest CD133 promoter methylaiton pattern is a promising tool for diagnostic purposes.
Collapse
|
30
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Su S, Hong F, Liang Y, Zhou J, Liang Y, Chen K, Wang X, Wang Z, Wang Z, Chang C, Han W, Gong W, Qin H, Jiang B, Xiong H, Peng L. Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer. PLoS One 2015; 10:e0143513. [PMID: 26599100 PMCID: PMC4657969 DOI: 10.1371/journal.pone.0143513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5) is a candidate marker for colorectal cancer stem cells (CSC). In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features. METHODS The methylation status within Lgr5 promoter was detected with a methylation-specific PCR in six colorectal cancer cell lines as well as 169 primary colorectal tumor tissues. Differentiation of CSC was examined with immunofluorescence and immunocytochemistry. Down-regulation of lgr5 was achieved with gene-specific siRNA. The associations between lgr5 methylation and the clinicopathological features as well as survival of patients were analyzed with statistical methods. RESULTS The lgr5 promoter was methylated to different degrees for the six colorectal cell lines examined, with complete methylation observed in HCT116 cells in which the lgr5 expression was partially recovered following DAC treatment. The stem-cell sphere formation from HCT116 cells was accompanied by increasing methylation within the lgr5 promoter and decreasing expression of lgr5. Knocking down lgr5 by siRNA also led to stem-cell spheres formation. Among primary colorectal tumors, 40% (67/169) were positive for lgr5 methylation, while none of the normal colon tissues were positive for lgr5 methylation. Furthermore, lgr5 methylation significantly associated with higher tumor grade, and negative distant metastasis (p < 0.05), as well as better prognosis (p = 0.001) in patients with colorectal cancer. CONCLUSIONS Our data suggests that lgr5 methylation, through the regulation of lgr5 expression and colorectal CSC differentiation, may constitute a novel prognostic marker for colorectal cancer patients.
Collapse
Affiliation(s)
- Shasha Su
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Hong
- Institute of liver diseases, Affiliated Hospital of Jining Medical University, Shandong, 273100, China
| | - Yanling Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieqiong Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kequan Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinying Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqiu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cassie Chang
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States of America
| | - Weihua Han
- Second affiliated hospital of XingTai medical college, Hebei, 054002, China
| | - Wei Gong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huabao Xiong
- Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States of America
| | - Liang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- * E-mail:
| |
Collapse
|
32
|
Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death Dis 2015; 6:e1964. [PMID: 26539911 PMCID: PMC4670923 DOI: 10.1038/cddis.2015.313] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
Novel therapeutic strategies are needed to overcome cancer recurrence, metastasis, and resistance to chemo- and radiotherapy. Cancer stem cells (CSCs) are major contributors to the malignant transformation of cells due to their capacity for self-renewal. Although various CSC markers have been identified in several types of tumors, they are primarily used as cancer-prediction markers and for the isolation of CSC populations. CD133, one of the best-characterized CSC markers in distinct solid tumor types, was shown to be correlated with CSC tumor-initiating capacity; however, the regulation of CD133 expression and its function in cancer are poorly understood. Here, we show that CD133 expression is negatively regulated by direct binding of the p53 tumor suppressor protein to a noncanonical p53-binding sequence in the CD133 promoter. Binding of p53 recruits Histone Deacetylase 1 (HDAC1) to the CD133 promoter and subsequently suppresses CD133 expression by reducing histone H3 acetylation. Furthermore, CD133 depletion suppresses tumor cell proliferation, colony formation, and the expression of core stemness transcription factors including NANOG, octamer-binding transcription factor 4 (OCT4), SOX2, and c-MYC. Critically, the anti-proliferative effects of p53 are antagonized by rescue of CD133 expression in a p53 overexpressing cell line, indicating that the tumor suppressive activity of p53 might be mediated by CD133 suppression. Taken together, our results suggest that p53-mediated transcriptional regulation of CD133 is a key underlying mechanism for controlling the growth and tumor-initiating capacity of CSCs and provide a novel perspective on targeting CSCs for cancer therapy.
Collapse
|
33
|
Choudhury SR, Cui Y, Milton JR, Li J, Irudayaraj J. Selective increase in subtelomeric DNA methylation: an epigenetic biomarker for malignant glioma. Clin Epigenetics 2015; 7:107. [PMID: 26451167 PMCID: PMC4597615 DOI: 10.1186/s13148-015-0140-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background Subtelomeric regions dynamically change their epigenetic pattern during development and progression of several malignancies and degenerative disorders. However, DNA methylation of human subtelomeres and their correlation to telomere length (TL) remain undetermined in glioma. Results Herein, we report on the selective changes in subtelomeric DNA methylation at the end of five chromosomes (Chr.) (7q, 8q. 18p, 21q, and XpYp) and ascertain their correlation with TL in patients with glioma. Subtelomeric methylation level was invariably higher in glioma patients compared to the control group, irrespective of their age and tumor grade. In particular, a significant increase in methylation was observed at the subtelomeric CpG sites of Chr. 8q, 21q, and XpYp in tissues, obtained from the brain tumor of glioma patients. In contrast, no significant change in methylation was observed at the subtelomere of Chr. 7q and 18p. Selective changes in the subtelomeric methylation level, however, did not show any significant correlation to the global TL. This observed phenomenon was validated in vitro by inducing demethylation in a glioblastoma cell line (SF-767) using 5-azacytidine (AZA) treatment. AZA treatment caused significant changes in the subtelomeric methylation pattern but did not alter the TL, which supports our hypothesis. Conclusions DNA methylation level dramatically increased at the subtelomere of Chr.8q, 21q, and XpYp in malignant glioma, which could be used as an early epigenetic diagnostic biomarker of the disease. Alterations in subtelomeric methylation, however, have no effects on the TL. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0140-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Yi Cui
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| | - Jacob R Milton
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906 USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Joseph Irudayaraj
- Department of Biological Engineering, Center for Cancer Research, Purdue University, West Lafayette, IN 47906 USA
| |
Collapse
|
34
|
Fan H, Zhao H, Pang L, Liu L, Zhang G, Yu F, Liu T, Xu C, Xiao Y, Li X. Systematically Prioritizing Functional Differentially Methylated Regions (fDMRs) by Integrating Multi-omics Data in Colorectal Cancer. Sci Rep 2015; 5:12789. [PMID: 26239918 PMCID: PMC4523937 DOI: 10.1038/srep12789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
While genome-wide differential DNA methylation regions (DMRs) have been extensively identified, the comprehensive prioritization of their functional importance is still poorly explored. Here, we aggregated multiple data resources rooted in the genome, epigenome and transcriptome to systematically prioritize functional DMRs (fDMRs) in colorectal cancer (CRC). As demonstrated, the top-ranked fDMRs from all of the data resources showed a strong enrichment for known methylated genes. Additionally, we analyzed those top 5% DMR-coupled coding genes using functional enrichment, which resulted in significant disease-related biological functions in contrast to the tail 5% genes. To further confirm the functional importance of the top-ranked fDMRs, we applied chromatin modification alterations of CRC cell lines to characterize their functional regulation. Specifically, we extended the utility of the top-ranked DMR-coupled genes to serve as classification and survival biomarkers, which showed a robust performance across diverse independent data sets. Collectively, our results established an integrative framework to prioritize fDMRs, which could help characterize aberrant DNA methylation-induced potential mechanisms underlying tumorigenesis and uncover epigenome-based biomarkers for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ling Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Tingting Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
35
|
Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics 2015; 7:847-62. [PMID: 25689414 DOI: 10.2217/epi.15.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Luminal breast cancers represent approximately 75% of cases. Explanations into the causes of endocrine resistance are complex and are generally ascribed to genomic mechanisms. Recently, attention has been drawn to the role of epigenetic modifications in hormone resistance. We review these here. Epigenetic modifications are reversible, heritable and include changes in DNA methylation patterns, modification of histones and altered microRNA expression levels that target the receptors or their signaling pathways. Large-scale analyses indicate distinct epigenomic profiles that distinguish breast cancers from normal and benign tissues. Taking advantage of the reversibility of epigenetic modifications, drugs that target epigenetic modifiers, given in combination with chemotherapies or endocrine therapies, may represent promising approaches to restoration of therapy responsiveness in these cases.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Shukla S, Meeran SM. Epigenetics of cancer stem cells: Pathways and therapeutics. Biochim Biophys Acta Gen Subj 2014; 1840:3494-3502. [PMID: 25240776 DOI: 10.1016/j.bbagen.2014.09.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC. SCOPE OF REVIEW The distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs. MAJOR CONCLUSION CSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs. GENERAL SIGNIFICANCE Characterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
37
|
Raggi C, Factor VM, Seo D, Holczbauer A, Gillen MC, Marquardt JU, Andersen JB, Durkin M, Thorgeirsson SS. Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology 2014; 59:2251-62. [PMID: 24449497 PMCID: PMC4043911 DOI: 10.1002/hep.27026] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Reversal of DNA hypermethylation and associated gene silencing is an emerging cancer therapy approach. Here we addressed the impact of epigenetic alterations and cellular context on functional and transcriptional reprogramming of hepatocellular carcinoma (HCC) cells. Our strategy employed a 3-day treatment of established and primary human HCC-derived cell lines grown as a monolayer at various cell densities with the DNMT1 inhibitor zebularine (ZEB) followed by a 3D culture to identify cells endowed with self-renewal potential. Differences in self-renewal, gene expression, tumorigenicity, and metastatic potential of spheres at generations G1-G5 were examined. Transient ZEB exposure produced differential cell density-dependent responses. In cells grown at low density, ZEB caused a remarkable increase in self-renewal and tumorigenicity associated with long-lasting gene expression changes characterized by a stable overexpression of cancer stem cell-related and key epithelial-mesenchymal transition genes. These effects persisted after restoration of DNMT1 expression. In contrast, at high cell density, ZEB caused a gradual decrease in self-renewal and tumorigenicty, and up-regulation of apoptosis- and differentiation-related genes. A permanent reduction of DNMT1 protein using short hairpin RNA (shRNA)-mediated DNMT1 silencing rendered HCC cells insensitive both to cell density and ZEB effects. Similarly, WRL68 and HepG2 hepatoblastoma cells expressing low DNMT1 basal levels also possessed a high self-renewal, irrespective of cell density or ZEB exposure. Spheres formed by low-density cells treated with ZEB or shDNMT1 displayed a high molecular similarity which was sustained through consecutive generations, confirming the essential role of DNMT1 depletion in the enhancement of cancer stem cell properties. CONCLUSION These results identify DNA methylation as a key epigenetic regulatory mechanism determining the pool of cancer stem cells in liver cancer and possibly other solid tumors.
Collapse
Affiliation(s)
- Chiara Raggi
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Agnes Holczbauer
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Matthew C. Gillen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Jens U. Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Jesper B. Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Marian Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH,Corresponding author: Snorri S. Thorgeirsson
| |
Collapse
|
38
|
Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 2014; 55:7-20. [PMID: 24874578 DOI: 10.1007/s12031-014-0329-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with limited effective treatment options. Cancer stem cells (CSCs), a subpopulation of cancer cells with stem cell properties found in GBMs, have been shown to be extremely resistant to radiation and chemotherapeutic agents and have the ability to readily reform tumors. Therefore, the development of therapeutic agents targeting CSCs is extremely important. In this study, we isolated glioblastoma-derived stem cells (GDSCs) from GBM tissue removed from patients during surgery and analyzed their gene expression using quantitative real-time PCR and immunocytochemistry. We examined the effects of histone deacetylase inhibitors trichostatin A (TSA) and valproic acid (VPA) on the proliferation and gene expression profiles of GDSCs. The GDSCs expressed significantly higher levels of both neural and embryonic stem cell markers compared to GBM cells expanded in conventional monolayer cultures. Treatment of GDSCs with histone deacetylase inhibitors, TSA and VPA, significantly reduced proliferation rates of the cells and expression of the stem cell markers, indicating differentiation of the cells. Since differentiation into GBM makes them susceptible to the conventional cancer treatments, we posit that use of histone deacetylase inhibitors may increase efficacy of the conventional cancer treatments for eliminating GDSCs.
Collapse
|
39
|
Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Mol Cell Biochem 2014; 394:23-30. [PMID: 24833465 DOI: 10.1007/s11010-014-2077-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/03/2014] [Indexed: 01/24/2023]
Abstract
Epigenetic modification is crucial to keep the self-renewal and the "stemness" states of stem cells, not letting them to differentiate. The actual roles of Histone 3 Lysine 9 dimethylation (H3K9me2) and its methyltransferase G9a in this process are still unclear, especially in cancer stem cells. In our study, we found an interesting observation that most CD133-positive cells were H3K9me2 negative, both in glioma tissues and in cultured cells, although most cancer cells were detected to be H3K9me2 immunopositive. This implied that the G9a-dependent H3K9me2 was one of the crucial barriers of cancer stem cell self-renewal. To test the hypothesis, we examined the loss-of-function and gain-of-function of G9a. We found that bix01294, the selective inhibitor of G9a, can stimulate the sphere formation rate of glioma cancer stem cells, together with increasing Sox2 and CD133 expressions. The increase of CD133-active stem cells was confirmed by flow cytometry. On the other aspect, overexpression of G9a increased the H3K9me2 and decreased the sphere formation rate as well as the CD133 and Sox2 expressions. Since H3K9me2 modification is the major repressive switch, we predict that the repressive H3K9me2 modification may happen at the CD133 promoter regions. By chromatin precipitation assay, we confirmed that the CD133 and Sox2 promoter regions were modified by the H3K9me2. Therefore, we concluded that the G9a-dependent H3K9me2 repression on CD133 and Sox2 was one of the main switches of the self-renewal in glioma cancer stem cells.
Collapse
|
40
|
Friesen C, Hormann I, Roscher M, Fichtner I, Alt A, Hilger R, Debatin KM, Miltner E. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle 2014; 13:1560-70. [PMID: 24626197 PMCID: PMC4050161 DOI: 10.4161/cc.28493] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells.
Collapse
Affiliation(s)
- Claudia Friesen
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Inis Hormann
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Mareike Roscher
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Iduna Fichtner
- Max Delbrueck Center for Molecular Medicine; Berlin, Germany
| | - Andreas Alt
- Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Ralf Hilger
- Department of Internal Medicine; University of Essen; West German Cancer Center; Essen, Germany
| | | | - Erich Miltner
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| |
Collapse
|
41
|
Sompallae R, Hofmann O, Maher CA, Gedye C, Behren A, Vitezic M, Daub CO, Devalle S, Caballero OL, Carninci P, Hayashizaki Y, Lawlor ER, Cebon J, Hide W. A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. Front Genet 2013; 4:209. [PMID: 24194746 PMCID: PMC3810939 DOI: 10.3389/fgene.2013.00209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/30/2013] [Indexed: 12/02/2022] Open
Abstract
PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1.
Collapse
|
42
|
Mak AB, Moffat J. RNA interference screens to uncover membrane protein biology. Brief Funct Genomics 2013; 12:422-9. [PMID: 23793263 DOI: 10.1093/bfgp/elt022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this review, we discuss the use of RNA interference screens to identify genes involved in the regulation and function of membrane proteins. Briefly, cells expressing the membrane protein of interest can be transduced with a pooled lentiviral short-hairpin RNA (shRNA) library containing tens of thousands of unique shRNAs. Transduced cells are then selected or fractionated based on specific critera, such as membrane protein expression or function. shRNAs from selected cell populations are then deconvoluted and quantified using microarray analyses or high-throughput sequencing technologies. This allows individual shRNAs to be scored and cutoffs can be made to generate a list of shRNA hits. Bioinformatic analyses of gene targets of shRNA hits can be used to identify pathways and processes associated with membrane protein biology. To illustrate this functional genomics approach, we discuss pooled lentiviral shRNA screens that were performed to identify genes that regulate the transcription and cell-surface expression of the cancer stem cell marker CD133. This approach can be adapted to study other membrane proteins, as well as specific aspects of membrane proteins, such as their function or downstream signaling effects.
Collapse
Affiliation(s)
- Anthony B Mak
- Donnelly Centre and Banting and Best Department of Medical Research/Department of Molecular Genetics, University of Toronto, 830-160 College Street, Toronto, ON M5S 3E1, Canada.
| | | |
Collapse
|
43
|
Ohnishi S, Maehara O, Nakagawa K, Kameya A, Otaki K, Fujita H, Higashi R, Takagi K, Asaka M, Sakamoto N, Kobayashi M, Takeda H. hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors. PLoS One 2013; 8:e66255. [PMID: 23840432 PMCID: PMC3688781 DOI: 10.1371/journal.pone.0066255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
CD133 is a cellular surface protein that has been reported to be a cancer stem cell marker, and thus it is considered to be a potential target for cancer treatment. However, the mechanism regulating CD133 expression is not yet understood. In this study, we analyzed the activity of five putative promoters (P1–P5) of CD133 in human embryonic kidney (HEK) 293 cells and colon cancer cell line WiDr, and found that the activity of promoters, particularly of P5, is elevated by overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α). Deletion and mutation analysis identified one of the two E-twenty six (ETS) binding sites (EBSs) in the P5 region as being essential for its promoter activity induced by HIF-1α and HIF-2α. In addition, a chromatin imunoprecipitation assay demonstrated that HIF-1α and HIF-2α bind to the proximal P5 promoter at the EBSs. The immunoprecipitation assay showed that HIF-1α physically interacts with Elk1; however, HIF-2α did not bind to Elk1 or ETS1. Furthermore, knockdown of both HIF-1α and HIF-2α resulted in a reduction of CD133 expression in WiDr. Taken together, our results revealed that HIF-1α and HIF-2α activate CD133 promoter through ETS proteins.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Response to stress in early tumor colonization modulates switching of CD133-positive and CD133-negative subpopulations in a human metastatic colon cancer cell line, SW620. PLoS One 2013; 8:e61133. [PMID: 23577199 PMCID: PMC3618272 DOI: 10.1371/journal.pone.0061133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
According to the cancer stem cell (CSC) model, higher CD133 expression in tumor tissue is associated with metastasis and poor prognosis in colon cancer. As such, the CD133-positive (CD133+) subpopulation of cancer cells is believed to play a central role in tumor development and metastatic progression. Although CD133+ cells are believed to display more CSC-like behavior and be solely responsible for tumor colonization, recent research indicates that CD133− cells from metastatic colon tumors not only also possess colonization capacity but also promote the growth of larger tumors in a mouse model than CD133+ cells, suggesting that an alternative mechanism of metastasis exists. This study investigated this possibility by examining the cell viability, tumorigenicity, and proliferation and growth capacity of the CD133+ and CD133− subpopulations of the SW620 cell line, a human metastatic colon cancer cell line, in both an in vitro cell model and an in vivo mouse model. While both SW620 CD133− and SW620CD133+ cells were found to engage in bidirectional cell-type switching in reaction to exposure to environmental stressors, including hypoxia, a cell adhesion-free environment, and extracellular matrix stimulation, both in vitro and in vivo, CD133− cells were found to have a growth advantage during early colonization due to their greater resistance to proliferation inhibition. Based on these findings, a hypothetical model in which colon cancer cells engage in cell-type switching in reaction to exposure to environmental stressors is proposed. Such switching may provide a survival advantage during early colonization, as well as that explain previous conflicting observations.
Collapse
|
45
|
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC. Capacity of N4-methyl-2'-deoxycytidine 5'-triphosphate to sustain the polymerase chain reaction using various thermostable DNA polymerases. Anal Biochem 2013; 438:73-81. [PMID: 23548504 DOI: 10.1016/j.ab.2013.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The dCTP analog N4-methyl-2'-deoxycytidine 5'-triphosphate (N4medCTP) was evaluated for its performance in the polymerase chain reaction (PCR). Using the HotStart Taq DNA polymerase with a standard thermal protocol, test segments 85 or 200 bp long were amplified equally well using dCTP or N4medCTP:dCTP mixtures ranging in molar ratio from 3:1 to 10:1, while complete replacement of dCTP by N4medCTP gave clearly lower amplicon yields and higher Cq values. Comparable yields with N4medCTP or dCTP were achieved only by using a slowdown protocol. Post-PCR melting analyses showed decreasing Tm values for amplicons obtained with increasing N4medCTP:dCTP input ratios; for the 200-bp amplicon, complete replacement of dCTP by N4medCTP in the reaction reduced the Tm by 11 °C; for the 85-bp amplicon the Tm reduction was 7 °C. In experiments aiming at the 200-bp amplicon, Pfu exo(-) DNA polymerase did not sustain PCR when dCTP was fully replaced by N4medCTP, even with the slowdown protocol, except at elevated N4medCTP concentrations, and, compared to PCR conducted exclusively with dCTP, the use of N4medCTP:dCTP mixtures gave reduced yields and distinctly higher Cq values, regardless of the thermal program employed. PCR experiments with 9°N DNA polymerase using N4medCTP in the conventional thermal protocol failed to produce the 200-bp amplicon.
Collapse
|
46
|
Mia-Jan K, Jung SY, Kim IY, Oh SS, Choi E, Chang SJ, Kang TY, Cho MY. CD133 expression is not an independent prognostic factor in stage II and III colorectal cancer but may predict the better outcome in patients with adjuvant therapy. BMC Cancer 2013; 13:166. [PMID: 23537343 PMCID: PMC3621413 DOI: 10.1186/1471-2407-13-166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/21/2013] [Indexed: 02/07/2023] Open
Abstract
Background Cancer stem cells (CSCs) are notorious for their capacity of tumor progression, metastasis or resistance to chemo-radiotherapy. However, the undisputed role of cancer stem marker, CD133, in colorectal cancers (CRCs) is not clear yet. Methods We assessed 271 surgically-resected stage II and III primary CRCs with (171) and without (100) adjuvant therapy after surgery. CD133 expression was analyzed by immunohistochemical (IHC) staining and real-time RT-PCR. CD133 promoter methylation was quantified by pyrosequencing. Results The CD133 IHC expression was significantly correlated with mRNA expression (p=0.0257) and inversely correlated with the promoter methylation (p=0.0001). CD133 was expressed more frequently in rectal cancer (p=0.0035), and in moderately differentiated tumors (p=0.0378). In survival analysis, CD133 expression was not significantly correlated with overall survival (OS) (p=0.9689) as well as disease-free survival (DFS) (p=0.2103). However, CD133+ tumors were significantly associated with better OS in patients with adjuvant therapy compared to those without adjuvant therapy (p<0.0001, HR 0.125, 95% CI 0.052-0.299). But the patients with CD133- tumors did not show any significant difference of survival according to adjuvant therapy (p=0.055, HR 0.500, 95% CI 0.247-1.015). Conclusions In stage II and III CRCs, CD133 IHC expression may signify the benefit for adjuvant therapy although it is not an independent prognostic factor.
Collapse
Affiliation(s)
- Khalilullah Mia-Jan
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng PP, van der Weiden M, van der Spek PJ, Vincent AJ, Kros JM. Intratumoral, not circulating, endothelial progenitor cells share genetic aberrations with glial tumor cells. J Cell Physiol 2013; 228:1383-90. [DOI: 10.1002/jcp.24309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/07/2012] [Indexed: 12/26/2022]
|
48
|
Kwon OH, Park JL, Baek SJ, Noh SM, Song KS, Kim SY, Kim YS. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 2013; 104:391-397. [PMID: 23181270 PMCID: PMC7657231 DOI: 10.1111/cas.12076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/23/2022] Open
Abstract
Achaete scute-like 2 (ASCL2), a basic helix-loop-helix transcription factor, plays an essential role in the maintenance of adult intestinal stem cells. However, the function of ASCL2 in gastric cancer (GC) is poorly understood. Therefore, we investigated the roles and regulatory transcription mechanisms of ASCL2 in GC. Gene expression and methylation data analysis showed that ASCL2 was upregulated and hypomethylated in GC tissues. Using real-time RT-PCR and pyrosequencing analysis, we confirmed that ASCL2 was overexpressed and hypomethylated in GC tissues compared to adjacent normal tissues. We then investigated the mechanisms underlying the aberrant expression of ASCL2 in GC and found that treatment with a methylation inhibitor induced ASCL2 expression in GC cell lines. MBD-sequencing assay also revealed hypermethylation of the promoter region of ASCL2 in GC cell lines, which barely expressed the ASCL2 gene. Furthermore, ASCL2 expression levels were inversely correlated with GC patient survival. Ectopic overexpression of ASCL2 showed that ASCL2 increased cell growth and promoted resistance to 5-fluorouracil in GC cells. These results suggest that ASCL2 might play an important role in gastric tumor growth and chemoresistance, and could be a useful prognostic marker for GC patients.
Collapse
Affiliation(s)
- Oh-Hyung Kwon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Barteneva NS, Ketman K, Fasler-Kan E, Potashnikova D, Vorobjev IA. Cell sorting in cancer research--diminishing degree of cell heterogeneity. Biochim Biophys Acta Rev Cancer 2013; 1836:105-22. [PMID: 23481260 DOI: 10.1016/j.bbcan.2013.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/18/2022]
Abstract
Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
50
|
Chen H, Luo Z, Dong L, Tan Y, Yang J, Feng G, Wu M, Li Z, Wang H. CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One 2013; 8:e56878. [PMID: 23437259 PMCID: PMC3577658 DOI: 10.1371/journal.pone.0056878] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
CD133/Prominin-1 is a pentaspan transmembrane protein that has been frequently used as a biomarker for cancer stem cells, although its biological function is unclear. The aim of our study was to explore the intrinsic functions of CD133 membrane protein in hepatoma cells during autophagy, apoptosis, tumorigenesis and cell survival through expression or downregulation of CD133. In this study, CD133 was found to be dynamically released from plasma membrane into cytoplasm in both of complete medium(CM) and low glucose medium (LGM), and LGM promoted this translocation. Expression of CD133 enhanced autophagic activity in LGM, while silencing CD133 attenuated this activity in HCC LM3 and Huh-7 cells, suggesting that CD133 is associated with autophagy. Immunofluorescence and time-lapsed confocal techniques confirmed that CD133 was associated with autophagy marker, microtubule-associated protein light chain3 (LC3) and lysosome marker during the glucose starvation. We further found that Huh-7 cells with stable expression of shCD133 (Huh-7sh133) impaired the ability of cell proliferation and formation of xenograft tumors in the NOD/SCID mice. Although loss of CD133 did not affect the rates of glucose uptake in Huh-7con and Huh-7sh133 cells under the CM, Huh-7sh133 cells obviously died fast than Huh-7con cells in the LGM and decreased the rate of glucose uptake and ATP production. Furthermore, targeting CD133 by CD133mAb resulted in cell death in HepG2 cells, especially in the LGM, via inhibition of autophagic activity and increase of apoptosis. The results demonstrated that CD133 is involved in cell survival through regulation of autophagy and glucose uptake, which may be necessary for cancer stem cells to survive in tumor microenvironment.
Collapse
Affiliation(s)
- Haiyang Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zaili Luo
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yexiong Tan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jiamei Yang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Gensheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mengchao Wu
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhong Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
- The 3 Affiliated Hospital and Medical College, Zhengzhou University, Zhengzhou, China
- * E-mail: (Z. Li); (HW)
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
- State Key Laboratory of Oncogenes and related Genes, Shanghai Cancer Institute, Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (Z. Li); (HW)
| |
Collapse
|