1
|
Wang JJ, Zheng Y, Li YL, Xiao Y, Ren YY, Tian YQ. Emerging role of mesenchymal stem cell-derived exosomes in the repair of acute kidney injury. World J Stem Cells 2025; 17:103360. [DOI: 10.4252/wjsc.v17.i3.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 03/21/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid deterioration in kidney function and has a significant impact on patient health and survival. Mesenchymal stem cells (MSCs) have the potential to enhance renal function by suppressing the expression of cell cycle inhibitors and reducing the expression of senescence markers and microRNAs via paracrine and endocrine mechanisms. MSC-derived exosomes can alleviate AKI symptoms by regulating DNA damage, apoptosis, and other related signaling pathways through the delivery of proteins, microRNAs, long-chain noncoding RNAs, and circular RNAs. This technique is both safe and effective. MSC-derived exosomes may have great application prospects in the treatment of AKI. Understanding the underlying mechanisms will foster the development of new and promising therapeutic strategies against AKI. This review focused on recent advancements in the role of MSCs in AKI repair as well as the mechanisms underlying the role of MSCs and their secreted exosomes. It is anticipated that novel and profound insights into the functionality of MSCs and their derived exosomes will emerge.
Collapse
Affiliation(s)
- Juan-Juan Wang
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yu Zheng
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yan-Lin Li
- Clinical Laboratory, The First People’s Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yin Xiao
- Department of Medical Imaging, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yang-Yang Ren
- Clinical Laboratory, Xinyi People’s Hospital, Xuzhou 221000, Jiangsu Province, China
| | - Yi-Qing Tian
- Clinical Laboratory, Xuzhou Central Hospital, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
2
|
Ali-Khiavi P, Mohammadi M, Masoumi S, Saffarfar H, Kheradmand R, Mobed A, Hatefnia F. The Therapeutic Potential of Exosome Therapy in Sepsis Management: Addressing Complications and Improving Outcomes". Cell Biochem Biophys 2025; 83:307-326. [PMID: 39363035 DOI: 10.1007/s12013-024-01564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Infection occurs when pathogens penetrate tissues, reproduce, and trigger a host response to both the infectious agents and their toxins. A diverse array of pathogens, including viruses and bacteria, can cause infections. The host's immune system employs several mechanisms to combat these infections, typically involving an innate inflammatory response. Inflammation is a complex biological reaction that can affect various parts of the body and is a key component of the response to harmful stimuli. Sepsis arises when the body's response to infection leads to widespread damage to tissues and organs, potentially resulting in severe outcomes or death. The initial phase of sepsis involves immune system suppression. Early identification and targeted management are crucial for improving sepsis outcomes. Common treatment approaches include antibiotics, intravenous fluids, blood cultures, and monitoring urine output. This study explores the potential of exosome therapy in enhancing the management and alleviation of sepsis symptoms.
Collapse
Affiliation(s)
- Payam Ali-Khiavi
- Medical faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Masoumi
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Kheradmand
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Faezeh Hatefnia
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Yang T, Yu H, Xie Z. Curcumin-induced exosomal FTO from bone marrow stem cells alleviates sepsis-associated acute kidney injury by modulating the m6A methylation of OXSR1. Kaohsiung J Med Sci 2025; 41:e12923. [PMID: 39739936 PMCID: PMC11827542 DOI: 10.1002/kjm2.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXOCurcumin or BMSCs-EXOControl) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells. Cell proliferation and apoptosis were determined by cell counting kit 8 (CCK8) assay, 5-ethynyl-2-deoxyuridine (EdU) assay, and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for examining inflammatory factors. The levels of SOD, MDA, and ROS were tested to assess oxidative stress. The levels of fat mass and obesity-associated protein (FTO) and oxidative stress responsive 1 (OXSR1) were detected by quantitative real-time PCR and western blot. Methylated RNA immunoprecipitation (MeRIP) assay and RNA immunoprecipitation (RIP) assay were used for measuring the interaction between FTO and OXSR1. BMSCs-EXOCurcumin treatment could inhibit LPS-induced HK2 cell apoptosis, inflammation, and oxidative stress. FTO was downregulated in SA-AKI patients and LPS-induced HK2 cells, while was upregulated in BMSCs-EXOCurcumin. Exosomal FTO from curcumin-induced BMSCs suppressed apoptosis, inflammation, and oxidative stress in LPS-induced HK2 cells. FTO decreased OXSR1 expression through m6A modification, and the inhibitory effect of FTO on LPS-induced HK2 cell injury could be eliminated by OXSR1 overexpression. In animal experiments, BMSCs-EXOCurcumin alleviated kidney injury in SA-AKI mice models by regulating FTO/OXSR1 axis. In conclusion, exosomal FTO from curcumin-induced BMSCs reduced OXSR1 expression to alleviate LPS-induced HK2 cell injury and improve kidney function in CLP-induced mice models, providing a new target for SA-AKI.
Collapse
Affiliation(s)
- Ting Yang
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hui Yu
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Zheng Xie
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
4
|
Yang L, Lu R, Cao K, Chen M, Xu X, Cao X, Zhang Y, Nie G. Regulation of lipid metabolism in grass carp primary hepatocytes by exosomes derived from fatty hepatocytes though GRP78. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2287-2299. [PMID: 39090453 DOI: 10.1007/s10695-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Exosomes regulate lipid metabolism by carrying miRNAs, nucleic acids, and proteins, thereby influencing the function of receptor cells. Glucose-regulated protein 78 (GRP78) is also involved in the regulation of lipid metabolism. However, it remains unclear whether exosomes derived from fatty hepatocytes (OA-Exo) regulate lipid metabolism through the enrichment of GRP78. In this study, we observed the expression of GRP78 was significantly increased in fatty hepatocytes (incubating hepatocytes with oleic acid (OA) for 24 h) and OA-Exo (P < 0.05). In addition, OA-Exo (50 μg/mL) and GRP78 protein (1 μg/mL) significant increased the content of triacylglycerol (TG) and total cholesterol (TC), as well as up-regulated the expression of GRP78 and inositol-requiring enzyme-1alpha (IRE1α) protein (P < 0.05). We further used YUM70 (an inhibitor of GRP78) to inhibit endogenous GRP78, and compared with the YUM70 group, OA-Exo reversed the effect of YUM70 and increased the content of TG, TC, and the expression of GRP78 protein in hepatocytes (P < 0.05). Furthermore, the inhibition of the IRE1α pathway with 4μ8C resulted in a significant decrease in TG content compared to the control group (P < 0.05). However, when compared with the 4μ8C group, OA-Exo and GRP78 reversed the effect of 4μ8C and significantly increased TG content (P < 0.05). Taken together, these results indicated that OA-Exo activated IRE1α to promote lipid accumulation in hepatocytes through the enrichment of GRP78. This study provided a new perspective for further exploration of exosomal lipid metabolism in fish.
Collapse
Affiliation(s)
- Lulu Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China.
| | - Kunkun Cao
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Mengdi Chen
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Xinxin Xu
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, China
| |
Collapse
|
5
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
7
|
Aghayan AH, Mirazimi Y, Fateh K, Keshtkar A, Rafiee M, Atashi A. Therapeutic Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in sepsis: a Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cell Rev Rep 2024; 20:1480-1500. [PMID: 38814410 DOI: 10.1007/s12015-024-10741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis is a life-threatening disorder with no definitive cure. Preclinical studies suggest that extracellular vesicles derived from mesenchymal stromal cells (EV-MSCs) can mitigate inflammatory conditions, potentially leading to increased survival and reduced organ dysfunction during sepsis. Our aim to conduct this systematic review and meta-analysis is assessing the EV-MSCs therapeutic efficacy in sepsis. METHODS PubMed, Embase, Scopus, WOS and ProQuest databases and also Google Scholar search engine were searched for published articles. We used hazard ratio (HR) and standardized mean difference (SMD) as effect sizes to evaluate the therapeutic effect of EV-MSCs on survival rate and determine their effect on reducing organ dysfunction, respectively. Finally, we employed GRADE tool for preclinical animal studies to evaluate certainty of the evidence. RESULTS 30 studies met the inclusion criteria for our article. Our meta-analysis results demonstrate that animals treated with MSC-EVs have better survival rate than untreated animals (HR = 0.33; 95% CI: 0.27-0.41). Our meta-analysis suggests that EV-MSCs can reduce organ dysfunctions in sepsis, such as the lung, kidney, and liver. Additionally, EV-MSCs decrease pro-inflammatory mediators like TNF-α, IL-1β, and IL-6. CONCLUSION Our results indicate that EV-MSCs can be as promising therapy for sepsis management in animal models and leading to increased survival rate and reduced organ dysfunction. Furthermore, our study introduces a novel tool for risk of bias assessment and provides recommendations based on various analysis. Future studies with aiming to guide clinical translation can utilize the results of this article to establish stronger evidence for EV-MSC effectiveness.
Collapse
Affiliation(s)
- Amir Hossein Aghayan
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Mirazimi
- Student Research Committee, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
8
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li E, Xu J, Liu N, Xiong Q, Zhang W, Gong Y, Zhang L, He Y, Ge H, Xiao X. Application Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells in Renal Diseases. Stem Cells 2024; 42:216-229. [PMID: 38035715 DOI: 10.1093/stmcls/sxad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
The high prevalence and complex etiology of renal diseases already impose a heavy disease burden on patients and society. In certain kidney diseases such as acute kidney injury and chronic kidney disease, current treatments are limited to slowing rather than stabilizing or reversing disease progression. Therefore, it is crucial to study the pathological mechanisms of kidney disease and discover new therapeutic targets and effective therapeutic drugs. As cell-free therapeutic strategies are continually being developed, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have emerged as a hot topic for research in the field of renal diseases. Studies have demonstrated that MSC-EVs not only reproduce the therapeutic effects of MSCs but also localize to damaged kidney tissue. Compared to MSCs, MSC-EVs have several advantages, including ease of preservation, low immunogenicity, an inability to directly form tumors, and ease of artificial modification. Exploring the detailed mechanisms of MSC-EVs by developing standardized culture, isolation, purification, and drug delivery strategies will help facilitate their clinical application in kidney diseases. Here, we provide a comprehensive overview of studies about MSC-EVs in kidney diseases and discuss their limitations at the human nephrology level.
Collapse
Affiliation(s)
- Enhui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jia Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ning Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qi Xiong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weiwei Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yizi Gong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yikai He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
12
|
Lei L, Zhang S, Hou R, Dong P. LncRNA 152 attenuates lipopolysaccharide-induced acute kidney injury in rats by regulating the FGF23/Klotho/MAPK axis. Nephrology (Carlton) 2023; 28:663-671. [PMID: 37698176 DOI: 10.1111/nep.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
AIM This study aimed to explore the effect and related mechanisms of LncRNA 152 in acute kidney injury (AKI). METHODS QRT-PCR was used to detect the expression of LncRNA 152, FGF23 and Klotho in the serum of patients with AKI. Subsequently, Sprague Dawley (SD) rats were induced into AKI animal model by lipopolysaccharide (LPS). Then, H&E staining was performed to observe the pathological changes in the rat kidney tissues; qRT-PCR to detect the expression of LncRNA 152, FGF23 and Klotho in the rat kidney tissues; biochemical assay and ELISA to assess the levels of renal function indexes and inflammatory factors in rat serum, as well as oxidative stress indexes in kidney tissues; and western blot to measure the protein expressions of FGF23, Klotho, p-p38 and p38 in rat kidney tissues. RESULTS LncRNA 152 was significantly down-regulated in serum of AKI patients and kidney tissues of AKI rats. In AKI patients, LncRNA 152 was negatively correlated with FGF23 expression while positively correlated with Klotho expression. LncRNA 152 overexpression reduced the levels of blood urea nitrogen (BUN), creatinine (Cr) and cystatin C (Cys-C) and inflammatory factors in serum of AKI rats and attenuated pathological damage and oxidative stress of kidney tissues. In addition, LncRNA 152 overexpression also decreased FGF23 expression and p-p38/p38 ratio while up-regulated Klotho expression in the kidney tissues of AKI rats. CONCLUSION LncRNA 152 attenuates oxidative stress and inflammatory responses by regulating the FGF23/Klotho axis and inhibiting the MAPK signalling pathway in rat kidney tissues, thereby ameliorating LPS-induced AKI.
Collapse
Affiliation(s)
- Li Lei
- Department of Nephrology, The Second People's Hospital of Three Gorges University (Yichang Second People's Hospital), Yichang, China
- Institute of Nephrology of Integrated Chinese and Western Medicine of Three Gorges University, Yichang, China
| | - Sheng Zhang
- Department of Nephrology, The Second People's Hospital of Three Gorges University (Yichang Second People's Hospital), Yichang, China
- Institute of Nephrology of Integrated Chinese and Western Medicine of Three Gorges University, Yichang, China
| | - Rui Hou
- Department of Nephrology, The Second People's Hospital of Three Gorges University (Yichang Second People's Hospital), Yichang, China
- Institute of Nephrology of Integrated Chinese and Western Medicine of Three Gorges University, Yichang, China
| | - Pei Dong
- Department of Nephrology, The Second People's Hospital of Three Gorges University (Yichang Second People's Hospital), Yichang, China
- Institute of Nephrology of Integrated Chinese and Western Medicine of Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Jin X, Sun H, Yang L. How Extracellular Nano-Vesicles Can Play a Role in Sepsis? An Evidence-Based Review of the Literature. Int J Nanomedicine 2023; 18:5797-5814. [PMID: 37869065 PMCID: PMC10588718 DOI: 10.2147/ijn.s427116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Severe sepsis can lead to multiple organ dysfunction, with a high incidence rate and mortality. The molecular pathogenesis of sepsis is complex and diverse. In recent years, with further study of the role of extracellular vesicles (EVs) in inflammatory diseases, it has been found that EVs play a dual role in the imbalance of inflammatory response in sepsis. Due to the great advantages such as lower toxicity, lower immunogenicity compared with stem cells and better circulation stability, EVs are increasingly used for the diagnosis and treatment of sepsis. The roles of EVs in the pathogenesis, diagnosis and treatment of sepsis were summarized to guide further clinical studies.
Collapse
Affiliation(s)
- Xiaolin Jin
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shengyang, People’s Republic of China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, People’s Republic of China
| | - Lina Yang
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shengyang, People’s Republic of China
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
15
|
He Y, Li X, Huang B, Yang Y, Luo N, Song W, Huang B. EXOSOMAL CIRCVMA21 DERIVED FROM ADIPOSE-DERIVED STEM CELLS ALLEVIATES SEPSIS-INDUCED ACUTE KIDNEY INJURY BY TARGETING MIR-16-5P. Shock 2023; 60:419-426. [PMID: 37493568 DOI: 10.1097/shk.0000000000002179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT Background: Exosome from adipose-derived stem cells (ADSCs-Exo) has been shown to inhibit the progression of human diseases, including sepsis-related acute kidney injury (AKI). CircVMA21 is considered to be an important regulator for sepsis-related AKI. However, whether ADSCs-Exo affected sepsis-induced AKI by delivering circVMA21 is not clear. Methods: Adipose-derived stem cells were identified by alizarin red staining, oil red O staining, and flow cytometry. Exosome from adipose-derived stem cells was authenticated by transmission electron microscopy, nanoparticle tracking analysis, western blot analysis, and immunofluorescence assay. Cell apoptosis was assessed by flow cytometry, and inflammation cytokine levels were determined by ELISA. Lactate production was assessed using Lactate Acid Content Assay Kit. The expression levels of aerobic glycolysis-related markers, circVMA21 and miR-16-5p, was evaluated by quantitative real time-polymerase chain reaction. Dual-luciferase reporter assay and RIP assay were employed to detect RNA interaction. Animal experiments were used to evaluate the role of ADSCs-Exo on renal function and cell injury in LPS-induced AKI mice model. Results: Exosome from adipose-derived stem cells inhibited LPS-induced HK-2 cell apoptosis, inflammation, and aerobic glycolysis. Knockdown of exosomal circVMA21 derived from ADSCs enhanced HK-2 cell injury induced by LPS. In terms of mechanism, circVMA21 could serve as sponge for miR-16-5p. Besides, miR-16-5p inhibitor reversed the promotion effect of Exo-sh-circVMA21 on LPS-induced cell injury. In addition, ADSCs-Exo protected LPS-induced AKI in mice by increasing circVMA21 expression and decreasing miR-16-5p expression. Conclusion: Exosomal circVMA21 derived by ADSCs relieved LPS-induced AKI through targeting miR-16-5p, which provided a potential molecular target for treating sepsis-related AKI.
Collapse
Affiliation(s)
- Yuexian He
- Department of PICU, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Xiaoyue Li
- Department of ICU, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai City, People's Republic of China
| | - Bolun Huang
- Department of PICU, Guangzhou Women and Children's Medical Center, Guangzhou City, People's Republic of China
| | - Yiyu Yang
- Department of PICU, Guangzhou Women and Children's Medical Center, Guangzhou City, People's Republic of China
| | - Nandu Luo
- Zunyi Medical University, Zunyi City, People's Republic of China
| | - Wenxiu Song
- Department of PICU, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Bo Huang
- Department of PICU, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, People's Republic of China
| |
Collapse
|
16
|
Li CY, Liu SP, Dai XF, Lan DF, Song T, Wang XY, Kong QH, Tan J, Zhang JD. The emerging role of exosomes in the development of testicular. Asian J Androl 2023; 25:547-555. [PMID: 37040218 PMCID: PMC10521952 DOI: 10.4103/aja2022126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 04/12/2023] Open
Abstract
The mechanisms of testicular development in mammals are complex. Testis is an organ that produces sperm and secretes androgens. It is rich in exosomes and cytokines that mediate signal transduction between tubule germ cells and distal cells, promoting testicular development and spermatogenesis. Exosomes are nanoscale extracellular vesicles that transmit information between cells. By transmitting information, exosomes play an important role in male infertility diseases such as azoospermia, varicocele, and testicular torsion. However, due to the wide range of sources of exosomes, extraction methods are numerous and complex. Therefore, there are many difficulties in studying the mechanisms of exosomal effects on normal development and male infertility. Therefore, in this review, first, we introduce the formation of exosomes and methods for culturing testis and sperm. Then, we introduce the effects of exosomes on different stages of testicular development. Finally, we summarize the prospects and shortcomings of exosomes when used in clinical applications. We lay the theoretical foundation for the mechanism of the influence of exosomes on normal development and male infertility.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Song-Po Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Fang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dong-Feng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xian-Yao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Qing-Hong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Ji-Dong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
17
|
Ceccotti E, Saccu G, Herrera Sanchez MB, Bruno S. Naïve or Engineered Extracellular Vesicles from Different Cell Sources: Therapeutic Tools for Kidney Diseases. Pharmaceutics 2023; 15:1715. [PMID: 37376163 DOI: 10.3390/pharmaceutics15061715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Renal pathophysiology is a multifactorial process involving different kidney structures. Acute kidney injury (AKI) is a clinical condition characterized by tubular necrosis and glomerular hyperfiltration. The maladaptive repair after AKI predisposes to the onset of chronic kidney diseases (CKD). CKD is a progressive and irreversible loss of kidney function, characterized by fibrosis that could lead to end stage renal disease. In this review we provide a comprehensive overview of the most recent scientific publications analyzing the therapeutic potential of Extracellular Vesicles (EV)-based treatments in different animal models of AKI and CKD. EVs from multiple sources act as paracrine effectors involved in cell-cell communication with pro-generative and low immunogenic properties. They represent innovative and promising natural drug delivery vehicles used to treat experimental acute and chronic kidney diseases. Differently from synthetic systems, EVs can cross biological barriers and deliver biomolecules to the recipient cells inducing a physiological response. Moreover, new methods for improving the EVs as carriers have been introduced, such as the engineering of the cargo, the modification of the proteins on the external membrane, or the pre-conditioning of the cell of origin. The new nano-medicine approaches based on bioengineered EVs are an attempt to enhance their drug delivery capacity for potential clinical applications.
Collapse
Affiliation(s)
- Elena Ceccotti
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Gabriele Saccu
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- 2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Torino, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| |
Collapse
|
18
|
Liu W, Hu C, Zhang B, Li M, Deng F, Zhao S. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9. Biol Proced Online 2023; 25:10. [PMID: 37085762 PMCID: PMC10120132 DOI: 10.1186/s12575-023-00198-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Sepsis-related acute kidney injury (AKI) is an inflammatory disease associated with extremely high mortality and health burden. This study explored the possibility of exosomes secreted by adipose-derived mesenchymal stem cells (AMSCs) serving as a carrier for microRNA (miR)-342-5p to alleviate sepsis-related AKI and investigated the possible mechanism. METHODS Serum was obtained from 30 patients with sepsis-associated AKI and 30 healthy volunteers for the measurement of miR-342-5p, blood urea nitrogen (BUN), and serum creatinine (SCr) levels. For in vitro experiments, AMSCs were transfected with LV-miR-342-5p or LV-miR-67 to acquire miR-342-5p-modified AMSCs and miR-67-modified AMSCs, from which the exosomes (AMSC-Exo-342 and AMSC-Exo-67) were isolated. The human renal proximal tubular epithelial cell line HK-2 was induced by lipopolysaccharide (LPS) to construct a cellular model of sepsis. The expression of Toll-like receptor 9 (TLR9) was also detected in AKI cells and mouse models. The interaction between miR-342-5p and TLR9 was predicted by dual luciferase reporter gene assay. RESULTS Detection on clinical serum samples showed that BUN, SCr, and TLR9 were elevated and miR-342-5p level was suppressed in the serum of patients with sepsis-associated AKI. Transfection with LV-miR-342-5p reinforced miR-342-5p expression in AMSCs and AMSC-secreted exosomes. miR-342-5p negatively targeted TLR9. LPS treatment enhanced TLR9 expression, reduced miR-342-5p levels, suppressed autophagy, and increased inflammation in HK-2 cells, while the opposite trends were observed in LPS-induced HK-2 cells exposed to AMSC-Exo-342, Rapa, miR-342-5p mimic, or si-TLR9. Additionally, the effects of AMSC-Exo-342 on autophagy and inflammation in LPS-induced cells could be weakened by 3-MA or pcDNA3.1-TLR9 treatment. Injection of AMSC-Exo-342 enhanced autophagy, mitigated kidney injury, suppressed inflammation, and reduced BUN and SCr levels in sepsis-related AKI mouse models. CONCLUSION miR-342-5p transferred by exosomes from miR-342-5p-modified AMSCs ameliorated AKI by inhibiting TLR9 to accelerate autophagy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Buyao Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxia Li
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangping Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|