1
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
2
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
3
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
4
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Moghassemi S, Dadashzadeh A, Lucci CM, Amorim CA. Tumor-Infiltration Mimicking Model of Contaminated Ovarian Tissue as an Innovative Platform for Advanced Cancer Research. AAPS J 2024; 27:7. [PMID: 39586867 DOI: 10.1208/s12248-024-00997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
The development of advanced preclinical models is crucial for the evaluation and validation of novel therapeutic strategies in oncology. Three-dimensional (3D) microtumor models, which incorporate both cancer and stromal cells within biomimetic hydrogels, have emerged as powerful tools that more accurately replicate the complex tumor microenvironment compared to traditional two-dimensional (2D) cell culture systems. In this context, our study aims to develop 3D microtumor models by integrating cancer and stromal cells within an extracellular-matrix-mimetic hydrogel, as a physiologically accurate microtumor model that can serve as an innovative platform for advanced cancer research and drug screening. Microtumors composed of varying ratios of leukemia cells (HL-60) to healthy ovarian stromal cells (SCs) (1:1, 1:10, 1:100, or 1:1000) were encapsulated in PEGylated fibrin hydrogel and cultured for 5 days. The proliferation and dynamics of cancerous and healthy cell populations were evaluated using CD43/Ki67 immunofluorescence double staining. Our findings indicate that tumor development and malignancy progression can be influenced by adjusting cell culture ratios and incubation time. Notably, the HL-60:SCs ratio of 1:100 closely replicated leukemia cell invasion in ovarian tissue, demonstrating detectable malignancy on the third and fifth days without significant changes in total cell density dynamics. This 3D leukemia microtumor model offers superior physiological relevance compared to traditional 2D in vitro assays and shows promising potential for applications in cellular analysis and drug screening.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, Bte B1.55.03, 1200, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, Bte B1.55.03, 1200, Brussels, Belgium
| | - Carolina M Lucci
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, Bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
6
|
Govender M, Indermun S, Choonara YE. 3D bioprinted microneedles: merging drug delivery and scaffold science for tissue-specific applications. Expert Opin Drug Deliv 2024; 21:1559-1572. [PMID: 38722022 DOI: 10.1080/17425247.2024.2351928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 11/10/2024]
Abstract
INTRODUCTION Three-Dimensional (3D) microneedles have recently gained significant attention due to their versatility, biocompatibility, enhanced permeation, and predictable behavior. The incorporation of biological agents into these 3D constructs has advanced the traditional microneedle into an effective platform for wide-ranging applications. AREAS COVERED This review discusses the current state of microneedle fabrication as well as the developed 3D printed microneedles incorporating labile pharmaceutical agents and biological materials for potential biomedical applications. The mechanical and processing considerations for the preparation of microneedles and the barriers to effective 3D printing of microneedle constructs have additionally been reviewed along with their therapeutic applications and potential for tissue engineering and regenerative applications. Additionally, the regulatory considerations for microneedle approval have been discussed as well as the current clinical trial and patent landscapes. EXPERT OPINION The fields of tissue engineering and regenerative medicine are evolving at a significant pace with researchers constantly focused on incorporating advanced manufacturing techniques for the development of versatile, complex, and biologically specific platforms. 3D bioprinted microneedles, fabricated using conventional 3D printing techniques, have resultantly provided an alternative to 2D bioscaffolds through the incorporation of biological materials within 3D constructs while providing further mechanical stability, increased bioactive permeation and improved innervation into surrounding tissues. This advancement therefore potentially allows for a more effective biomimetic construct with improved tissue-specific cellular growth for the enhanced treatment of physiological conditions requiring tissue regeneration and replacement.
Collapse
Affiliation(s)
- Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Sunaina Indermun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
7
|
Dong Y, Zhou X, Ding Y, Luo Y, Zhao H. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Biochem Biophys Res Commun 2024; 730:150339. [PMID: 39032359 DOI: 10.1016/j.bbrc.2024.150339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Collapse
Affiliation(s)
- Yingying Dong
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xue Zhou
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Yunyi Ding
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School, Hangzhou, 310009, China.
| | - Yichen Luo
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhao
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310060, China.
| |
Collapse
|
8
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
9
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Pu X, Wu Y, Liu J, Wu B. 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. CHEM & BIO ENGINEERING 2024; 1:568-592. [PMID: 39974701 PMCID: PMC11835188 DOI: 10.1021/cbe.4c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 02/21/2025]
Abstract
Microorganisms, serving as super biological factories, play a crucial role in the production of desired substances and the remediation of environments. The emergence of 3D bioprinting provides a powerful tool for engineering microorganisms and polymers into living materials with delicate structures, paving the way for expanding functionalities and realizing extraordinary performance. Here, the current advancements in microbial-based 3D-printed living materials are comprehensively discussed from material perspectives, covering various 3D bioprinting techniques, types of microorganisms used, and the key parameters and selection criteria for polymer bioinks. Endeavors on the applications of 3D printed living materials in the fields of energy and environment are then emphasized. Finally, the remaining challenges and future trends in this burgeoning field are highlighted. We hope our perspective will inspire some interesting ideas and accelerate the exploration within this field to reach superior solutions for energy and environment challenges.
Collapse
Affiliation(s)
- Xingqun Pu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuqi Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Junqiu Liu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Baiheng Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
11
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
12
|
Fareez UNM, Naqvi SAA, Mahmud M, Temirel M. Computational Fluid Dynamics (CFD) Analysis of Bioprinting. Adv Healthc Mater 2024; 13:e2400643. [PMID: 38648623 DOI: 10.1002/adhm.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Regenerative medicine has evolved with the rise of tissue engineering due to advancements in healthcare and technology. In recent years, bioprinting has been an upcoming approach to traditional tissue engineering practices, through the fabrication of functional tissue by its layer-by-layer deposition process. This overcomes challenges such as irregular cell distribution and limited cell density, and it can potentially address organ shortages, increasing transplant options. Bioprinting fully functional organs is a long stretch but the advancement is rapidly growing due to its precision and compatibility with complex geometries. Computational Fluid Dynamics (CFD), a carestone of computer-aided engineering, has been instrumental in assisting bioprinting research and development by cutting costs and saving time. CFD optimizes bioprinting by testing parameters such as shear stress, diffusivity, and cell viability, reducing repetitive experiments and aiding in material selection and bioprinter nozzle design. This review discusses the current application of CFD in bioprinting and its potential to enhance the technology that can contribute to the evolution of regenerative medicine.
Collapse
Affiliation(s)
- Umar Naseef Mohamed Fareez
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Syed Ali Arsal Naqvi
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Makame Mahmud
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Mikail Temirel
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| |
Collapse
|
13
|
Sun W, Wang B, Yang T, Yin R, Wang F, Zhang H, Zhang W. Three-Dimensional Bioprinted Skin Microrelief and Its Role in Skin Aging. Biomimetics (Basel) 2024; 9:366. [PMID: 38921246 PMCID: PMC11202021 DOI: 10.3390/biomimetics9060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Skin aging is a complex physiological process, in which cells and the extracellular matrix (ECM) interreact, which leads to a change in the mechanical properties of skin, which in turn affects the cell secretion and ECM deposition. The natural skin microrelief that exists from birth has rarely been taken into account when evaluating skin aging, apart from the common knowledge that microreliefs might serve as the starting point or initialize micro-wrinkles. In fact, microrelief itself also changes with aging. Does the microrelief have other, better uses? In this paper, owing to the fast-developing 3D printing technology, skin wrinkles with microrelief of different age groups were successfully manufactured using the Digital light processing (DLP) technology. The mechanical properties of skin samples with and without microrelief were tested. It was found that microrelief has a big impact on the elastic modulus of skin samples. In order to explore the role of microrelief in skin aging, the wrinkle formation was numerically analyzed. The microrelief models of different age groups were created using the modified Voronoi algorithm for the first time, which offers fast and flexible mesh formation. We found that skin microrelief plays an important role in regulating the modulus of the epidermis, which is the dominant factor in wrinkle formation. The wrinkle length and depth were also analyzed numerically for the first time, owing to the additional dimension offered by microrelief. The results showed that wrinkles are mainly caused by the modulus change of the epidermis in the aging process, and compared with the dermis, the hypodermis is irrelevant to wrinkling. Hereby, we developed a hypothesis that microrelief makes the skin adaptive to the mechanical property changes from aging by adjusting its shape and size. The native-like skin samples with microrelief might shed a light on the mechanism of wrinkling and also help with understanding the complex physiological processes associated with human skin.
Collapse
Affiliation(s)
- Wenxuan Sun
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.S.); (T.Y.); (R.Y.)
| | - Bo Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650033, China;
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Tianhao Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.S.); (T.Y.); (R.Y.)
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.S.); (T.Y.); (R.Y.)
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650033, China;
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.S.); (T.Y.); (R.Y.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
14
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
15
|
Cetinkaya A, Kaya SI, Budak F, Ozkan SA. Current Analytical Methods for the Sensitive Assay of New-Generation Ovarian Cancer Drugs in Pharmaceutical and Biological Samples. Crit Rev Anal Chem 2024:1-17. [PMID: 38630637 DOI: 10.1080/10408347.2024.2339962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ovarian cancer, which affects the female reproductive organs, is one of the most common types of cancer. Since this type of cancer has a high mortality rate from gynaecological cancers, the scientific community shows great interest in studies on its treatment. Chemotherapy, radiotherapy, and surgical treatment methods are used in its treatment. In the absence of targeted treatments in these treatment methods, side effects occur in patients, and patients show resistance to the drug. In addition, the underlying causes of ovarian cancer are still not fully known. The scientific world thinks that genetic factors, environmental conditions, and consumed foods may cause this cancer. The most important factor in the treatment of ovarian cancer is early diagnosis. Therefore, the drugs used in the treatment of ovarian cancer are platinum-based anticancer drugs. In addition to these drugs, the most preferred treatment method recently is targeted treatment approaches using poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In this review, studies on the sensitive analysis of the treatment methods of these new-generation drugs used in the treatment of ovarian cancer have been comprehensively examined. In addition, the basic features, structural aspects, and biological data of analytical methods used in treatments with new-generation drugs are explained. Analytical studies carried out in the literature in recent years aim to show future developments in how these new-generation drugs are used today and to guide future studies by comprehensively examining and explaining the structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies. Finally, in this study, the methods used in the analysis of drugs used in the treatment of ovarian cancer and the studies conducted between 2015 and 2023 were discussed in detail.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Ruchika, Bhardwaj N, Yadav SK, Saneja A. Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies. Drug Discov Today 2024; 29:103924. [PMID: 38401878 DOI: 10.1016/j.drudis.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
Collapse
Affiliation(s)
- Ruchika
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
18
|
Rapp J, Ness J, Wolf J, Hospach A, Liang P, Hug MJ, Agostini H, Schlunck G, Lange C, Bucher F. 2D and 3D in vitro angiogenesis assays highlight different aspects of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167028. [PMID: 38244944 DOI: 10.1016/j.bbadis.2024.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
In angiogenesis research, scientists need to carefully select appropriate in vitro models to test their hypotheses to minimize the risk for false negative or false positive study results. In this study, we investigate molecular differences between simple two-dimensional and more complex three-dimensional angiogenesis assays and compare them to in vivo data from cancer-associated angiogenesis using an unbiased transcriptomic analysis. Human umbilical vein endothelial cells were treated with VEGF in 2D wound healing and proliferation assays and the 3D spheroid sprouting assay. VEGF-induced transcriptomic shifts were assessed in both settings by bulk RNA sequencing. Immunocytochemistry was used for protein detection. The data was linked to the transcriptomic profile of vascular endothelial cells from a single cell RNA sequencing dataset of various cancer tissue compared to adjacent healthy tissue control. VEGF induced a more diverse transcriptomic shift in vascular endothelial cells in a 3D experimental setting (767 differentially expressed genes) compared to the 2D settings (167 differentially expressed genes). Particularly, VEGF-induced changes in cell-matrix interaction, tip cell formation, and glycolysis were pronounced in the 3D spheroid sprouting experiments. Immunocytochemistry for VCAM1 and CD34 confirmed enhanced expression in response to VEGF-treatment in 3D settings. In vivo, vascular endothelial cells within various cancer tissue were characterized by strong transcriptomic changes in cell-matrix interaction and glycolysis similar to the 3D setting. Consequently, 3D assays may better address certain key aspects of angiogenesis in comparison to fast and scalable 2D assays. This should be taken into consideration within the context of each research question.
Collapse
Affiliation(s)
- Julian Rapp
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan Ness
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alban Hospach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Paula Liang
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin J Hug
- Pharmacy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital Muenster, Muenster, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
19
|
Guimarães CF, Liu S, Wang J, Purcell E, Ozedirne T, Ren T, Aslan M, Yin Q, Reis RL, Stoyanova T, Demirci U. Co-axial hydrogel spinning for facile biofabrication of prostate cancer-like 3D models. Biofabrication 2024; 16:025017. [PMID: 38306674 DOI: 10.1088/1758-5090/ad2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Glandular cancers are amongst the most prevalent types of cancer, which can develop in many different organs, presenting challenges in their detection as well as high treatment variability and failure rates. For that purpose, anticancer drugs are commonly tested in cancer cell lines grown in 2D tissue culture on plastic dishesin vitro, or in animal modelsin vivo. However, 2D culture models diverge significantly from the 3D characteristics of living tissues and animal models require extensive animal use and time. Glandular cancers, such as prostate cancer-the second leading cause of male cancer death-typically exist in co-centrical architectures where a cell layer surrounds an acellular lumen. Herein, this spatial cellular position and 3D architecture, containing dual compartments with different hydrogel materials, is engineered using a simple co-axial nozzle setup, in a single step utilizing prostate as a model of glandular cancer. The resulting hydrogel soft structures support viable prostate cancer cells of different cell lines and enable over-time maturation into cancer-mimicking aggregates surrounding the acellular core. The biofabricated cancer mimicking structures are then used as a model to predict the inhibitory efficacy of the poly ADP ribose polymerase inhibitor, Talazoparib, and the antiandrogen drug, Enzalutamide, in the growth of the cancer cell layer. Our results show that the obtained hydrogel constructs can be adapted to quickly obtain 3D cancer models which combine 3D physiological architectures with high-throughput screening to detect and optimize anti-cancer drugs in prostate and potentially other glandular cancer types.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga and Guimarães, Portugal
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Shiqin Liu
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Emma Purcell
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Tugba Ozedirne
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Tanchen Ren
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Merve Aslan
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Qingqing Yin
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Bio-Acoustic MEMS (BAMM) in Medicine Lab, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
- Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, United States of America
| |
Collapse
|
20
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
22
|
Sun H, Sun L, Ke X, Liu L, Li C, Jin B, Wang P, Jiang Z, Zhao H, Yang Z, Sun Y, Liu J, Wang Y, Sun M, Pang M, Wang Y, Wu B, Zhao H, Sang X, Xing B, Yang H, Huang P, Mao Y. Prediction of Clinical Precision Chemotherapy by Patient-Derived 3D Bioprinting Models of Colorectal Cancer and Its Liver Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304460. [PMID: 37973557 PMCID: PMC10787059 DOI: 10.1002/advs.202304460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Indexed: 11/19/2023]
Abstract
Methods accurately predicting the responses of colorectal cancer (CRC) and colorectal cancer liver metastasis (CRLM) to personalized chemotherapy remain limited due to tumor heterogeneity. This study introduces an innovative patient-derived CRC and CRLM tumor model for preclinical investigation, utilizing 3d-bioprinting (3DP) technology. Efficient construction of homogeneous in vitro 3D models of CRC/CRLM is achieved through the application of patient-derived primary tumor cells and 3D bioprinting with bioink. Genomic and histological analyses affirm that the CRC/CRLM 3DP tumor models effectively retain parental tumor biomarkers and mutation profiles. In vitro tests evaluating chemotherapeutic drug sensitivities reveal substantial tumor heterogeneity in chemotherapy responses within the 3DP CRC/CRLM models. Furthermore, a robust correlation is evident between the drug response in the CRLM 3DP model and the clinical outcomes of neoadjuvant chemotherapy. These findings imply a significant potential for the application of patient-derived 3DP cancer models in precision chemotherapy prediction and preclinical research for CRC/CRLM.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029China
- The First School of Clinical MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Xindi Ke
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lijuan Liu
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Changcan Li
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Bao Jin
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Peipei Wang
- Department of General SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Zhuoran Jiang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Hong Zhao
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Jianmei Liu
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Minghao Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Mingchang Pang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Yinhan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Bin Wu
- Department of General SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Haitao Zhao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Xinting Sang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Huayu Yang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and DevicesEngineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education)Institute of Biomedical EngineeringChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300192China
- Tianjin Institutes of Health ScienceTianjin301600China
| | - Yilei Mao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| |
Collapse
|
23
|
Zhou Z, Pang Y, Ji J, He J, Liu T, Ouyang L, Zhang W, Zhang XL, Zhang ZG, Zhang K, Sun W. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol 2024; 24:18-32. [PMID: 37402992 DOI: 10.1038/s41577-023-00896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/06/2023]
Abstract
In vitro 3D models are advanced biological tools that have been established to overcome the shortcomings of oversimplified 2D cultures and mouse models. Various in vitro 3D immuno-oncology models have been developed to mimic and recapitulate the cancer-immunity cycle, evaluate immunotherapy regimens, and explore options for optimizing current immunotherapies, including for individual patient tumours. Here, we review recent developments in this field. We focus, first, on the limitations of existing immunotherapies for solid tumours, secondly, on how in vitro 3D immuno-oncology models are established using various technologies - including scaffolds, organoids, microfluidics and 3D bioprinting - and thirdly, on the applications of these 3D models for comprehending the cancer-immunity cycle as well as for assessing and improving immunotherapies for solid tumours.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China.
| | - Jingyuan Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Tiankun Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Aetiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China.
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
25
|
Li Y, Liu J, Xu S, Wang J. 3D Bioprinting: An Important Tool for Tumor Microenvironment Research. Int J Nanomedicine 2023; 18:8039-8057. [PMID: 38164264 PMCID: PMC10758183 DOI: 10.2147/ijn.s435845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
The tumor microenvironment plays a crucial role in cancer development and treatment. Traditional 2D cell cultures fail to fully replicate the complete tumor microenvironment, while mouse tumor models suffer from time-consuming procedures and complex operations. However, in recent years, 3D bioprinting technology has emerged as a vital tool in studying the tumor microenvironment. 3D bioprinting is a revolutionary biomanufacturing technique that involves layer-by-layer stacking of biological materials, such as cells and biomaterial scaffolds, to create highly precise 3D biostructures. This technology enables the construction of intricate tissue and organ models in the laboratory, which are utilized for biomedical research, drug development, and personalized medicine. The application of 3D bioprinting has brought unprecedented opportunities to fields such as cancer research, tissue engineering, and organ transplantation. It has opened new possibilities for addressing real-world biological challenges and improving medical treatment outcomes. This review summarizes the applications of 3D bioprinting technology in the context of the tumor microenvironment, aiming to explore its potential impact on cancer research and treatment. The use of this cutting-edge technology promises significant advancements in understanding cancer biology and enhancing medical interventions.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
26
|
Li K, Huang W, Guo H, Liu Y, Chen S, Liu H, Gu Q. Advancements in robotic arm-based 3D bioprinting for biomedical applications. LIFE MEDICINE 2023; 2:lnad046. [PMID: 39872062 PMCID: PMC11749708 DOI: 10.1093/lifemedi/lnad046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 01/29/2025]
Abstract
3D bioprinting emerges as a critical tool in biofabricating functional 3D tissue or organ equivalents for regenerative medicine. Bioprinting techniques have been making strides in integrating automation, customization, and digitalization in coping with diverse tissue engineering scenarios. The convergence of robotic arm-based 3D bioprinting techniques, especially in situ 3D bioprinting, is a versatile toolbox in the industrial field, promising for biomedical application and clinical research. In this review, we first introduce conceptualized modalities of robotic arm-based bioprinting from a mechanical perspective, which involves configurative categories of current robot arms regarding conventional bioprinting strategies. Recent advances in robotic arm-based bioprinting in tissue engineering have been summarized in distinct tissues and organs. Ultimately, we systematically discuss relative advantages, disadvantages, challenges, and future perspectives from bench to bedside for biomedical application.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101499, China
| | - WenHui Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101499, China
| | - HaiTao Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101499, China
| | - YanYan Liu
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Shuxian Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101499, China
| | - Heng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Orthopaedics, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101499, China
- Bioinspired Engineering Group, Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
27
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Dabbagh Moghaddam F, Dadgar D, Esmaeili Y, Babolmorad S, Ilkhani E, Rafiee M, Wang XD, Makvandi P. Microfluidic platforms in diagnostic of ovarian cancer. ENVIRONMENTAL RESEARCH 2023; 237:117084. [PMID: 37683792 DOI: 10.1016/j.envres.2023.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The most important reason for death from ovarian cancer is the late diagnosis of this disease. The standard treatment of ovarian cancer includes surgery and chemotherapy based on platinum, which is associated with side effects for the body. Due to the nonspecific nature of clinical symptoms, developing a platform for early detection of this disease is needed. In recent decades, the advancements of microfluidic devices and systems have provided several advantages for diagnosing ovarian cancer. Designing and manufacturing new platforms using specialized technologies can be a big step toward improving the prevention, diagnosis, and treatment of this group of diseases. Organ-on-a-chip microfluidic devices are increasingly used as a promising platform in cancer research, with a focus on specific biological aspects of the disease. This review focusing on ovarian cancer and microfluidic application technologies in its diagnosis. Additionally, it discusses microfluidic platforms and their potential future perspectives in advancing ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy.
| | - Delara Dadgar
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Shahrzad Babolmorad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Ilkhani
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences University of Wyoming, 1174 Snowy Range Road Laramie, WY, 82070, USA
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China.
| |
Collapse
|
29
|
Baskar G, Palaniyandi T, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A, Rajendran BK, Natarajan S, Govindasamy G. Recent and advanced therapy for oral cancer. Biotechnol Bioeng 2023; 120:3105-3115. [PMID: 37243814 DOI: 10.1002/bit.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Oral cancer is a common and deadly kind of tissue invasion, has a high death rate, and may induce metastasis that mostly affects adults over the age of 40. Most in vitro traditional methods for studying cancer have included the use of monolayer cell cultures and several animal models. There is a worldwide effort underway to reduce the excessive use of laboratory animals since, although being physiologically adequate, animal models rarely succeed in exactly mimicking human models. 3D culture models have gained great attention in the area of biomedicine because of their capacity to replicate parent tissue. There are many benefits to using a drug delivery approach based on nanoparticles in cancer treatment. Because of this, in vitro test methodologies are crucial for evaluating the efficacy of prospective novel nanoparticle drug delivery systems. This review discusses current advances in the utility of 3D cell culture models including multicellular spheroids, patient-derived explant cultures, organoids, xenografts, 3D bioprinting, and organoid-on-a-chip models. Aspects of nanoparticle-based drug discovery that have utilized 2D and 3D cultures for a better understanding of genes implicated in oral cancers are also included in this review.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Sudhakar Natarajan
- Department of HIV/AIDS, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Gopu Govindasamy
- Department of Surgical Oncology, Rajiv Gandhi Government General Hospital and Madras Medical College, Chennai, India
| |
Collapse
|
30
|
Roman V, Mihaila M, Radu N, Marineata S, Diaconu CC, Bostan M. Cell Culture Model Evolution and Its Impact on Improving Therapy Efficiency in Lung Cancer. Cancers (Basel) 2023; 15:4996. [PMID: 37894363 PMCID: PMC10605536 DOI: 10.3390/cancers15204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Optimizing cell culture conditions is essential to ensure experimental reproducibility. To improve the accuracy of preclinical predictions about the response of tumor cells to different classes of drugs, researchers have used 2D or 3D cell cultures in vitro to mimic the cellular processes occurring in vivo. While 2D cell culture provides valuable information on how therapeutic agents act on tumor cells, it cannot quantify how the tumor microenvironment influences the response to therapy. This review presents the necessary strategies for transitioning from 2D to 3D cell cultures, which have facilitated the rapid evolution of bioengineering techniques, leading to the development of microfluidic technology, including organ-on-chip and tumor-on-chip devices. Additionally, the study aims to highlight the impact of the advent of 3D bioprinting and microfluidic technology and their implications for improving cancer treatment and approaching personalized therapy, especially for lung cancer. Furthermore, implementing microfluidic technology in cancer studies can generate a series of challenges and future perspectives that lead to the discovery of new predictive markers or targets for antitumor treatment.
Collapse
Affiliation(s)
- Viviana Roman
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Stefania Marineata
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania;
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (V.R.); (M.B.)
- Department of Immunology, ‘Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
31
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
32
|
Lee G, Kim SJ, Park JK. Fabrication of a self-assembled and vascularized tumor array via bioprinting on a microfluidic chip. LAB ON A CHIP 2023; 23:4079-4091. [PMID: 37614164 DOI: 10.1039/d3lc00275f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A tumor microenvironment (TME) is a complex system that comprises various components, including blood vessels that play a crucial role in supplying nutrients, oxygen, and growth factors, as well as delivering chemotherapy drugs to the tumor mass through the vascular endothelial barrier. To replicate the TME in vitro, several bioprinting and microfluidic organ-on-a-chip technologies have been developed. However, these technologies have not been fully exploited in terms of potential benefits of bioprinting and microfluidics, such as precise spatial control for biological samples, construction of multiple TMEs per microfluidic device, and the ability to adjust culture environments for better biological similarity. In addition, the complex transport phenomena within the vascular endothelial barrier and the aggregated tumor mass in the TME model should be considered before applying the model to drug treatment and screening. In this study, we describe a novel integrative technology that addresses these issues by introducing a self-organized TME array bioprinted on a microfluidic chip consisting of a vascular endothelial barrier surrounding breast cancer spheroids. To integrate the TME array onto the microfluidic platform, a microfluidic substrate for extrusion bioprinting was developed for a cell culture platform, which enables diffusivity control by microstructures and establishes a perfusion culture environment inside the culture channel. We also analyzed the cellular behaviors within the TME array to investigate the influence of the diffusivity on the self-organization process required to form the vascular endothelial barrier surrounding breast cancer spheroids.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Moghimi N, Hosseini SA, Dalan AB, Mohammadrezaei D, Goldman A, Kohandel M. Controlled tumor heterogeneity in a co-culture system by 3D bio-printed tumor-on-chip model. Sci Rep 2023; 13:13648. [PMID: 37607994 PMCID: PMC10444838 DOI: 10.1038/s41598-023-40680-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Cancer treatment resistance is a caused by presence of various types of cells and heterogeneity within the tumor. Tumor cell-cell and cell-microenvironment interactions play a significant role in the tumor progression and invasion, which have important implications for diagnosis, and resistance to chemotherapy. In this study, we develop 3D bioprinted in vitro models of the breast cancer tumor microenvironment made of co-cultured cells distributed in a hydrogel matrix with controlled architecture to model tumor heterogeneity. We hypothesize that the tumor could be represented by a cancer cell-laden co-culture hydrogel construct, whereas its microenvironment can be modeled in a microfluidic chip capable of producing a chemical gradient. Breast cancer cells (MCF7 and MDA-MB-231) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded in the alginate-gelatine hydrogels and printed using a multi-cartridge extrusion bioprinter. Our approach allows for precise control over position and arrangements of cells in a co-culture system, enabling the design of various tumor architectures. We created samples with two different types of cells at specific initial locations, where the density of each cell type was carefully controlled. The cells were either randomly mixed or positioned in sequential layers to create cellular heterogeneity. To study cell migration toward chemoattractant, we developed a chemical microenvironment in a chamber with a gradual chemical gradient. As a proof of concept, we studied different migration patterns of MDA-MB-231 cells toward the epithelial growth factor gradient in presence of MCF10A cells in different ratios using this device. Our approach involves the integration of 3D bioprinting and microfluidic devices to create diverse tumor architectures that are representative of those found in various patients. This provides an excellent tool for studying the behavior of cancer cells with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Nafiseh Moghimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Seied Ali Hosseini
- Electrical Engineering Department, University of Waterloo, Waterloo, Canada
| | - Altay Burak Dalan
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
34
|
Zhang GP, Xie ZL, Jiang J, Zhao YT, Lei K, Lin ZL, Chen SL, Su TH, Tan L, Peng S, Wang J, Liu C, Kuang M. Mechanical confinement promotes heat resistance of hepatocellular carcinoma via SP1/IL4I1/AHR axis. Cell Rep Med 2023; 4:101128. [PMID: 37478857 PMCID: PMC10439175 DOI: 10.1016/j.xcrm.2023.101128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
Mechanical stress can modulate the fate of cells in both physiological and extreme conditions. Recurrence of tumors after thermal ablation, a radical therapy for many cancers, indicates that some tumor cells can endure temperatures far beyond physiological ones. This unusual heat resistance with unknown mechanisms remains a key obstacle to fully realizing the clinical potential of thermal ablation. By developing a 3D bioprinting-based thermal ablation system, we demonstrate that hepatocellular carcinoma (HCC) cells in this 3D model exhibit enhanced heat resistance as compared with cells on plates. Mechanistically, the activation of transcription factor SP1 under mechanical confinement enhances the transcription of Interleukin-4-Induced-1, which catalyzes tryptophan metabolites to activate the aryl hydrocarbon receptor (AHR), leading to heat resistance. Encouragingly, the AHR inhibitor prevents HCC recurrence after thermal ablation. These findings reveal a previously unknown role of mechanical confinement in heat resistance and provide a rationale for AHR inhibitors as neoadjuvant therapy.
Collapse
Affiliation(s)
- Guo-Pei Zhang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zong-Lin Xie
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Tong Zhao
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Kai Lei
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Long Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Ling Chen
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian-Hong Su
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Chun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Rani P, Yadav V, Pandey P, Yadav K. Recent patent-based review on the role of three-dimensional printing technology in pharmaceutical and biomedical applications. Pharm Pat Anal 2023; 12:159-175. [PMID: 37882734 DOI: 10.4155/ppa-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional printing (3DP) is emerging as an innovative manufacturing technology for biomedical and pharmaceutical applications, since the US FDA approval of Spritam as a 3D-printed drug. In the present review, we have highlighted the potential benefits of 3DP technology in healthcare, such as the ability to create patient-specific medical devices and implants, as well as the possibility of on-demand production of drugs and personalized dosage forms. We have further discussed future research to optimize 3DP processes and materials for pharmaceutical and biomedical applications. Cohesively, we have put forward the current state of active patents and applications related to 3DP technology in the healthcare and pharmaceutical industries including hearing aids, prostheses, medical devices and drug-delivery systems.
Collapse
Affiliation(s)
- Palak Rani
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, 140307, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, Malmö SE-20213, Sweden
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, Haryana, India
| | - Kiran Yadav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, 140307, Punjab, India
| |
Collapse
|
36
|
Zhang YS, Alvarez MM, Trujillo-de Santiago G. Placing biofabrication into the context of human disease modeling. Biofabrication 2023; 15. [PMID: 37191315 DOI: 10.1088/1758-5090/acd27b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The field of biofabrication has seen tremendous advances in the past decade. More recently, the emerging role of biofabrication in allowing faithful generation of models of human tissues in their healthy and diseased states has been demonstrated and has rapidly expanded. These biomimetic models are potentially widely applicable in a range of research and translational areas including but not limited to fundamental biology studies as well as screening of chemical compounds, such as therapeutic agents. The United States Food and Drug Administration Modernization Act 2.0, which now no longer requires animal tests before approving human drug trials, will likely further boost the field in the years to come. This Special Issue, with a collection of 11 excellent research articles, thus focuses on showcasing the latest developments of biofabrication towards human disease modeling, spanning from 3D (bo)printing to organ-on-a-chip as well as their integration.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL 64849, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, México
| |
Collapse
|
37
|
Abstract
Bioprinting as an extension of 3D printing offers capabilities for printing tissues and organs for application in biomedical engineering. Conducting bioprinting in space, where the gravity is zero, can enable new frontiers in tissue engineering. Fabrication of soft tissues, which usually collapse under their own weight, can be accelerated in microgravity conditions as the external forces are eliminated. Furthermore, human colonization in space can be supported by providing critical needs of life and ecosystems by 3D bioprinting without relying on cargos from Earth, e.g., by development and long-term employment of living engineered filters (such as sea sponges-known as critical for initiating and maintaining an ecosystem). This review covers bioprinting methods in microgravity along with providing an analysis on the process of shipping bioprinters to space and presenting a perspective on the prospects of zero-gravity bioprinting.
Collapse
Affiliation(s)
- Misagh Rezapour Sarabi
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Turkey 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey 34684
| |
Collapse
|
38
|
Sun H, Yang H, Mao Y. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering. Front Pharmacol 2023; 14:1150151. [PMID: 37214451 PMCID: PMC10198383 DOI: 10.3389/fphar.2023.1150151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health burden, causing approximately 8.3 million deaths each year, and it is the third leading cause of cancer-related death worldwide, with a relative 5-year survival rate of around 18%. Due to the advanced stage of diagnosis in most patients, systemic treatment based on targeted therapy has become the only feasible option. Genomic studies have established a profile of molecular alterations in hepatocellular carcinoma with potentially actionable mutations, but these mutations have yet to be translated into clinical practice. The first targeted drug approved for systemic treatment of patients with advanced hepatocellular carcinoma was Sorafenib, which was a milestone. Subsequent clinical trials have identified multiple tyrosine kinase inhibitors, such as Lenvatinib, Cabozantinib, and Regorafenib, for the treatment of hepatocellular carcinoma, with survival benefits for the patient. Ongoing systemic therapy studies and trials include various immune-based combination therapies, with some early results showing promise and potential for new therapy plans. Systemic therapy for hepatocellular carcinoma is complicated by the significant heterogeneity of the disease and its propensity for developing drug resistance. Therefore, it is essential to choose a better, individualized treatment plan to benefit patients. Preclinical models capable of preserving in vivo tumor characteristics are urgently needed to circumvent heterogeneity and overcome drug resistance. In this review, we summarize current approaches to targeted therapy for HCC patients and the establishment of several patient-derived preclinical models of hepatocellular carcinoma. We also discuss the challenges and opportunities of targeted therapy for hepatocellular carcinoma and how to achieve personalized treatment with the continuous development of targeted therapies and bioengineering technologies.
Collapse
Affiliation(s)
| | - Huayu Yang
- *Correspondence: Huayu Yang, ; Yilei Mao,
| | - Yilei Mao
- *Correspondence: Huayu Yang, ; Yilei Mao,
| |
Collapse
|
39
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
40
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication 2023; 15. [PMID: 36716498 DOI: 10.1088/1758-5090/acb73d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.
Collapse
Affiliation(s)
- Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ozum Sehnaz Caliskan
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, NC 27157, United States of America
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| |
Collapse
|
42
|
Flores-Torres S, Jiang T, Kort-Mascort J, Yang Y, Peza-Chavez O, Pal S, Mainolfi A, Pardo LA, Ferri L, Bertos N, Sangwan V, Kinsella JM. Constructing 3D In Vitro Models of Heterocellular Solid Tumors and Stromal Tissues Using Extrusion-Based Bioprinting. ACS Biomater Sci Eng 2023; 9:542-561. [PMID: 36598339 DOI: 10.1021/acsbiomaterials.2c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant tumor tissues exhibit inter- and intratumoral heterogeneities, aberrant development, dynamic stromal composition, diverse tissue phenotypes, and cell populations growing within localized mechanical stresses in hypoxic conditions. Experimental tumor models employing engineered systems that isolate and study these complex variables using in vitro techniques are under development as complementary methods to preclinical in vivo models. Here, advances in extrusion bioprinting as an enabling technology to recreate the three-dimensional tumor milieu and its complex heterogeneous characteristics are reviewed. Extrusion bioprinting allows for the deposition of multiple materials, or selected cell types and concentrations, into models based upon physiological features of the tumor. This affords the creation of complex samples with representative extracellular or stromal compositions that replicate the biology of patient tissue. Biomaterial engineering of printable materials that replicate specific features of the tumor microenvironment offer experimental reproducibility, throughput, and physiological relevance compared to animal models. In this review, we describe the potential of extrusion-based bioprinting to recreate the tumor microenvironment within in vitro models.
Collapse
Affiliation(s)
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | | | - Yun Yang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sanjima Pal
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Alisia Mainolfi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lucas Antonio Pardo
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lorenzo Ferri
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Nicholas Bertos
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec H4A 3J1, Canada
| | - Veena Sangwan
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
43
|
Utilizing Additive Manufacturing to Produce Organ Mimics and Imaging Phantoms. SURGERIES 2023. [DOI: 10.3390/surgeries4010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complex geometries and material properties necessary for generating accurate organ mimics require new procedures and methods to fully utilize current technologies. The increased accessibility of 3D printers, along with more specialized bioprinters, allow the creation of highly tunable models of various body parts. Three-dimensional printing can reduce lead-time on custom parts, produce structures based on imaging data in patients, and generate a test bench for novel surgical methods. This technical note will cover three unique case studes and offer insights for how 3D printing can be used for lab research. Each case follows a unique design process in comparison to traditional manufacturing workflows as they required significantly more iterative design. The strengths of different printing technologies, design choices, and structural/chemical requirements all influence the design process. Utilization of in-house manufacturing allows for greater flexibility and lower lead-times for novel research applications. Detailed discussions of these design processes will help reduce some of the major barriers to entry for these technologies and provide options for researchers working in the field.
Collapse
|
44
|
Bowles B, Muwaffak Z, Hilton S. 3D printed pharmaceutical products. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
45
|
Budhwani KI, Patel ZH, Guenter RE, Charania AA. A hitchhiker's guide to cancer models. Trends Biotechnol 2022; 40:1361-1373. [PMID: 35534320 PMCID: PMC9588514 DOI: 10.1016/j.tibtech.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/21/2023]
Abstract
Cancer is a complex and uniquely personal disease. More than 1.7 million people in the United States are diagnosed with cancer every year. As the burden of cancer grows, so does the need for new, more effective therapeutics and for predictive tools to identify optimal, personalized treatment options for every patient. Cancer models that recapitulate various aspects of the disease are fundamental to making advances along the continuum of cancer treatment from benchside discoveries to bedside delivery. In this review, we use a thought experiment as a vehicle to arrive at four broad categories of cancer models and explore the strengths, weaknesses, opportunities, and threats for each category in advancing our understanding of the disease and improving treatment strategies.
Collapse
Affiliation(s)
- Karim I Budhwani
- CerFlux, Inc., Birmingham, AL, USA; Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Physics, Coe College, Cedar Rapids, IA, USA.
| | | | | | | |
Collapse
|
46
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
47
|
Singh G, Singh S, Kumar R, Parkash C, Pruncu C, Ramakrishna S. Tissues and organ printing: An evolution of technology and materials. Proc Inst Mech Eng H 2022; 236:1695-1710. [DOI: 10.1177/09544119221125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its beginnings, three-dimensional printing (3DP) technology has been successful because of ongoing advances in operating principles, the range of materials and cost-saving measures. However, the 3DP technological progressions in the biomedical sector have majorly taken place in the last decade after the evolution of novel 3DP systems, generally categorised as bioprinters and biomaterials to provide a replacement, transplantation or regeneration of the damaged organs and tissue constructs of the human body. There is now substantial scientific literature accessible to support the benefits of digital healthcare procedures with the help of bioprinters. It is of the highest significance to know the fundamental principles of the available printers and the compatibility of biomaterials as their feedstock, notwithstanding the huge potential of bioprinting systems to manufacture organs and other human body components. This paper provides a precise and helpful reading of the different categories of bioprinters, suitable biomaterials, numerical simulations and modelling and examples of much acknowledged clinical practices. The paper will also cite the prominent issues that still have not received desired solutions. Overall, the article will be of great use for all the professionals, scholars and engineers concerned with the 3DP, bioprinting and biomaterials.
Collapse
Affiliation(s)
- Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanical Engineering Department, Chandigarh University, Punjab
| | - Raman Kumar
- Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Chander Parkash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Catalin Pruncu
- Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Machine learning-enabled optimization of extrusion-based 3D printing. Methods 2022; 206:27-40. [PMID: 35963502 DOI: 10.1016/j.ymeth.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/02/2023] Open
Abstract
Machine learning (ML) and three-dimensional (3D) printing are among the fastest-growing branches of science. While ML can enable computers to independently learn from available data to make decisions with minimal human intervention, 3D printing has opened up an avenue for modern, multi-material, manufacture of complex 3D structures with a rapid turn-around ability for users with limited manufacturing experience. However, the determination of optimum printing parameters is still a challenge, increasing pre-printing process time and material wastage. Here, we present the first integration of ML and 3D printing through an easy-to-use graphical user interface (GUI) for printing parameter optimization. Unlike the widely held orthogonal design used in most of the 3D printing research, we, for the first time, used nine different computer-aided design (CAD) images and in order to enable ML algorithms to distinguish the difference between designs, we devised a self-designed method to calculate the "complexity index" of CAD designs. In addition, for the first time, the similarity of the print outcomes and CAD images are measured using four different self-designed labeling methods (both manually and automatically) to figure out the best labeling method for ML purposes. Subsequently, we trained eight ML algorithms on 224 datapoints to identify the best ML model for 3D printing applications. The "gradient boosting regression" model yields the best prediction performance with an R-2 score of 0.954. The ML-embedded GUI developed in this study enables users (either skilled or unskilled in 3D printing and/or ML) to simply upload a design (desired to print) to the GUI along with desired printing temperature and pressure to obtain the approximate similarity in the case of actual 3D printing of the uploaded design. This ultimately can prevent error-and-trial steps prior to printing which in return can speed up overall design-to-end-product time with less material waste and more cost-efficiency.
Collapse
|
49
|
Li C, Jin B, Sun H, Wang Y, Zhao H, Sang X, Yang H, Mao Y. Exploring the function of stromal cells in cholangiocarcinoma by three-dimensional bioprinting immune microenvironment model. Front Immunol 2022; 13:941289. [PMID: 35983036 PMCID: PMC9378822 DOI: 10.3389/fimmu.2022.941289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor immune microenvironment significantly affects tumor progression, metastasis, and clinical therapy. Its basic cell components include tumor-associated endothelial cells, fibroblasts, and macrophages, all of which constitute the tumor stroma and microvascular network. However, the functions of tumor stromal cells have not yet been fully elucidated. The three-dimensional (3D) model created by 3D bioprinting is an efficient way to illustrate cellular interactions in vitro. However, 3D bioprinted model has not been used to explore the effects of stromal cells on cholangiocarcinoma cells. In this study, we fabricated 3D bioprinted models with tumor cells and stromal cells. Compared with cells cultured in two-dimensional (2D) environment, cells in 3D bioprinted models exhibited better proliferation, higher expression of tumor-related genes, and drug resistance. The existence of stromal cells promoted tumor cell activity in 3D models. Our study shows that 3D bioprinting of an immune microenvironment is an effective way to study the effects of stromal cells on cholangiocarcinoma cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huayu Yang
- *Correspondence: Huayu Yang, ; Yilei Mao,
| | - Yilei Mao
- *Correspondence: Huayu Yang, ; Yilei Mao,
| |
Collapse
|
50
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|