1
|
Schmunk LJ, Call TP, McCartney DL, Javaid H, Hastings WJ, Jovicevic V, Kojadinović D, Tomkinson N, Zlamalova E, McGee KC, Sullivan J, Campbell A, McIntosh AM, Óvári V, Wishart K, Behrens CE, Stone E, Gavrilov M, Thompson R, Jackson T, Lord JM, Stubbs TM, Marioni RE, Martin‐Herranz DE. A novel framework to build saliva-based DNA methylation biomarkers: Quantifying systemic chronic inflammation as a case study. Aging Cell 2025; 24:e14444. [PMID: 39888134 PMCID: PMC11984670 DOI: 10.1111/acel.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 02/01/2025] Open
Abstract
Accessible and non-invasive biomarkers that measure human ageing processes and the risk of developing age-related disease are paramount in preventative healthcare. Here, we describe a novel framework to train saliva-based DNA methylation (DNAm) biomarkers that are reproducible and biologically interpretable. By leveraging a reliability dataset with replicates across tissues, we demonstrate that it is possible to transfer knowledge from blood DNAm to saliva DNAm data using DNAm proxies of blood proteins (EpiScores). We apply these methods to create a new saliva-based epigenetic clock (InflammAge) that quantifies systemic chronic inflammation (SCI) in humans. Using a large blood DNAm human cohort with linked electronic health records and over 18,000 individuals (Generation Scotland), we demonstrate that InflammAge significantly associates with all-cause mortality, disease outcomes, lifestyle factors, and immunosenescence; in many cases outperforming the widely used SCI biomarker C-reactive protein (CRP). We propose that our biomarker discovery framework and InflammAge will be useful to improve understanding of the molecular mechanisms underpinning human ageing and to assess the impact of gero-protective interventions.
Collapse
Affiliation(s)
| | | | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | - Waylon J. Hastings
- Department of Psychiatry and Behavioral SciencesTulane University School of MedicineNew OrleansLouisianaUSA
| | | | | | | | - Eliska Zlamalova
- Hurdle.Bio/Chronomics Ltd.LondonUK
- Present address:
Pale Fire Capital SEPragueCzech Republic
| | - Kirsty C. McGee
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Jack Sullivan
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Andrew M. McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | | | | | | | | | | | | - Thomas Jackson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Janet M. Lord
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals BirminghamBirminghamUK
| | | | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
2
|
Conway J, De Jong EN, White AJ, Dugan B, Rees NP, Parnell SM, Lamberte LE, Sharma‐Oates A, Sullivan J, Mauro C, van Schaik W, Anderson G, Bowdish DME, Duggal NA. Age-related loss of intestinal barrier integrity plays an integral role in thymic involution and T cell ageing. Aging Cell 2025; 24:e14401. [PMID: 39547946 PMCID: PMC11896561 DOI: 10.1111/acel.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The intestinal epithelium serves as a physical and functional barrier against harmful substances, preventing their entry into the circulation and subsequent induction of a systemic immune response. Gut barrier dysfunction has recently emerged as a feature of ageing linked to declining health, and increased intestinal membrane permeability has been shown to promote heightened systemic inflammation in aged hosts. Concurrent with age-related changes in the gut microbiome, the thymic microenvironment undergoes a series of morphological, phenotypical and architectural alterations with age, including disorganisation of the corticomedullary junction, increased fibrosis, increased thymic adiposity and the accumulation of senescent cells. However, a direct link between gut barrier dysbiosis and thymic involution leading to features of immune ageing has not been explored thus far. Herein, we reveal strong associations between enhanced microbial translocation and the peripheral accumulation of terminally differentiated, senescent and exhausted T cells and the compensatory expansion of regulatory T cells in older adults. Crucially, we demonstrate that aged germ-free mice are protected from age-related increases in intestinal permeability, highlighting the direct impact of mucosal permeability on thymic ageing. Together, these findings establish a novel mechanism by which gut barrier dysfunction drives systemic activation of the immune system during ageing through thymic involution. This enhances our understanding of drivers of T cell ageing and opens up the possibility for the use of microbiome-based interventions to restore immune homeostasis and promote healthy ageing in older adults.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | | | - Andrea J. White
- Institute for Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Ben Dugan
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Nia Paddison Rees
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- Institute for Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Lisa E. Lamberte
- Institute of Microbiology and InfectionUniversity of BirminghamUK
| | | | - Jack Sullivan
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Claudio Mauro
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | | | - Graham Anderson
- Institute for Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | - Niharika A. Duggal
- Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Marttila S, Rajić S, Ciantar J, Mak JKL, Junttila IS, Kummola L, Hägg S, Raitoharju E, Kananen L. Biological aging of different blood cell types. GeroScience 2025; 47:1075-1092. [PMID: 39060678 PMCID: PMC11872950 DOI: 10.1007/s11357-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland.
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Northern Finland Laboratory Centre (NordLab), Oulu, Finland
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Laura Kananen
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
- Faculty of Social Sciences (Health Sciences), Tampere University, Tampere, Finland.
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
4
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
5
|
Pereira JL, Arede L, Ferreira F, Matos A, Pereira D, Santos RF, Carmo AM, Oliveira MJ, Machado JC, Duarte D, Dos Santos NR. Antibody blockade of the PSGL-1 immune checkpoint enhances T-cell responses to B-cell lymphoma. Leukemia 2025; 39:178-188. [PMID: 39455852 DOI: 10.1038/s41375-024-02446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Despite advancements in cancer immunotherapy, most lymphomas remain unresponsive to checkpoint inhibitors. P-selectin glycoprotein ligand-1 (PSGL-1), recently identified as a promoter of T-cell exhaustion in murine melanoma models, has emerged as a novel immune checkpoint protein and promising immunotherapeutic target. In this study, we investigated the potential of PSGL-1 antibody targeting in B-cell lymphoma. Using allogeneic co-culture systems, we demonstrated that targeted antibody interventions against human PSGL-1 enhanced T-cell activation and effector cytokine production in response to lymphoma cells. Moreover, in vitro treatment of primary lymphoma cell suspensions with PSGL-1 antibody resulted in increased activation of autologous lymphoma-infiltrating T cells. Using the A20 syngeneic B-cell lymphoma mouse model, we found that PSGL-1 antibody treatment significantly slowed tumor development and reduced the endpoint tumor burden. This antitumoral effect was accompanied by augmented tumor infiltration of CD4+ and CD8+ T cells and reduced infiltration of regulatory T cells. Finally, anti-PSGL-1 administration enhanced the expansion of CAR T cells previously transferred to mice bearing the aggressive Eμ-Myc lymphoma cells and improved disease control. These results demonstrate that PSGL-1 antibody blockade bolsters T-cell activity against B-cell lymphoma, suggesting a potential novel immunotherapeutic approach for treating these malignancies.
Collapse
Affiliation(s)
- João L Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Liliana Arede
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Master´s Program in Bioengineering, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Ecogenetics and Human Health, Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Dulcineia Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS-IPP, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Delfim Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
6
|
Li W, Liu H, Gao L, Hu Y, Zhang A, Li W, Liu G, Bai W, Xu Y, Xiao C, Deng J, Lei W, Chen G. In-depth human immune cellular profiling from newborn to frail. J Leukoc Biol 2024; 117:qiae046. [PMID: 38447557 DOI: 10.1093/jleuko/qiae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune functional decline and remodeling accompany aging and frailty. It is still largely unknown how changes in the immune cellular composition differentiate healthy individuals from those who become frail at a relatively early age. Our aim in this exploratory study was to investigate immunological changes from newborn to frailty and the association between health statute and various immune cell subtypes. The participants analyzed in this study covered human cord blood cells and peripheral blood cells collected from young adults and healthy and frail old individuals. A total of 30 immune cell subsets were performed by flow cytometry based on the surface markers of immune cells. Furthermore, frailty was investigated for its relations with various leukocyte subpopulations. Frail individuals exhibited a higher CD4/CD8 ratio; a higher proportion of CD4+ central memory T cells, CD8+ effector memory T cells, CD27- switched memory B (BSM) cells, CD27+ BSM cells, age-associated B cells, and CD38-CD24- B cells; and a lower proportion of naïve CD8+ T cells and progenitor B cells. The frailty index score was found to be associated with naïve T cells, CD4/CD8 ratio, age-associated B cells, CD27- BSM cells, and CD4+ central memory T cells. Our findings conducted a relatively comprehensive and extensive atlas of age- and frailty-related changes in peripheral leukocyte subpopulations from newborn to frailty. The immune phenotypes identified in this study can contribute to a deeper understanding of immunosenescence in frailty and may provide a rationale for future interventions and diagnosis.
Collapse
Affiliation(s)
- Wangchun Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Hangyu Liu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Lijuan Gao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, No.17, Meidong Road, Yuexiu District, Guangzhou 510632, China
| | - Anna Zhang
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Wenfeng Li
- Intensive Care Unit, Affiliated Shunde Hospital, Jinan University, No.50, East Guizhou Avenue, Foshan 528000, China
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, No.1, Panfu Road, Yuexiu District, Guangzhou 510180, China
| | - Weibin Bai
- Department of Food Science and Engineering, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Institute of Food Safety and Nutrition, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yudai Xu
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Chanchan Xiao
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Jieping Deng
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Wen Lei
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, No.466, Xingang Middle Road, Haizhu District, Guangzhou 510632, China
| | - Guobing Chen
- Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Jinan University, No.601, West Huangpu Avenue, Tianhe District, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No.601, West Huangpu Avenue, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
7
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Vakili ME, Mashhadi N, Ataollahi MR, Meri S, Kabelitz D, Kalantar K. Hepatitis B vaccine responders show higher frequencies of CD8 + effector memory and central memory T cells compared to non-responders. Scand J Immunol 2024; 100:e13402. [PMID: 39189677 DOI: 10.1111/sji.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Hepatitis B (HB) infection is a major global health problem. There is limited knowledge about HB vaccination-induced immune memory responses. We compared the frequency of CD8+ memory T cell subsets between responders (RSs) and non-responders (NRs) to HB vaccination. Blood samples were collected from RSs and NRs. PBMCs were cultured in the presence of Hepatitis B surface antigens (HBsAg) and PHA for 48 h to restimulate CD8+ memory T cells and T cell memory subsets were detected by flow cytometry using memory cell markers. The frequency of TEM, TCM, and TCM hi was significantly higher in responders compared to non-responders (p = 0.024, 0.022, and 0.047, respectively). Additionally, we report a positive correlation between the frequency of TEM cells in RSs with age and anti-HBsAb level (p = 0.03 and rs = 0.5; p = 0.01 and rs = 0.06). Responders display a higher level of CD8+ T cell-mediated immunity. Therefore, we suggest a possible defect in the formation of immunological CD8+ memory T cells in NRs and it may reduce antibody production compared to the RSs, although more experiments are needed.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ataollahi
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), Helsinki University Hospital, The University of Helsinki and HUSLAB, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Wu H, Li J, Zhang Z, Zhang Y. Characteristics and mechanisms of T-cell senescence: A potential target for cancer immunotherapy. Eur J Immunol 2024; 54:e2451093. [PMID: 39107923 DOI: 10.1002/eji.202451093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 11/08/2024]
Abstract
Immunosenescence, the aging of the immune system, leads to functional deficiencies, particularly in T cells, which undergo significant changes. While numerous studies have investigated age-related T-cell phenotypes in healthy aging, senescent T cells have also been observed in younger populations during pathological conditions like cancer. This review summarizes the recent advancements in age-associated alterations and markers of T cells, mechanisms, and the relationship between senescent T cells and the tumor microenvironment. We also discuss potential strategies for targeting senescent T cells to prevent age-related diseases and enhance tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Han Wu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junru Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Sun M, Yang H, Hu Y, Fan J, Duan M, Ruan J, Li S, Xu Y, Han Y. Differential white blood cell count and epigenetic clocks: a bidirectional Mendelian randomization study. Clin Epigenetics 2024; 16:118. [PMID: 39192327 DOI: 10.1186/s13148-024-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic factors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal effects between epigenetic clocks and WBC count have not been fully examined. METHODS This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individuals. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR was applied to investigate independent effects of WBC count on epigenetic age acceleration. RESULTS In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count markedly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E-03 < 0.01). Reverse MR revealed no significant causal impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal association between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E-07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E-06; HannumAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E-04). Likewise, eosinophil cell count demonstrated significant association with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E-03 < 0.01). CONCLUSION These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune parameters when interpreting epigenetic age.
Collapse
Affiliation(s)
- Manli Sun
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Huan Yang
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jiaqi Fan
- College of Public Health, Harbin Medical University, Harbin, China
| | - Mingjing Duan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Jingqi Ruan
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Shichang Li
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yang Xu
- Drug Clinical Trail Center, The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China
| | - Yue Han
- The Second Hospital of Heilongjiang Province, 209 Jiangdu Street, Harbin, China.
| |
Collapse
|
11
|
Quin C, DeJong EN, McNaughton AJM, Buttigieg MM, Basrai S, Abelson S, Larché MJ, Rauh MJ, Bowdish DME. Chronic TNF in the aging microenvironment exacerbates Tet2 loss-of-function myeloid expansion. Blood Adv 2024; 8:4169-4180. [PMID: 38924753 PMCID: PMC11334836 DOI: 10.1182/bloodadvances.2023011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
ABSTRACT Somatic mutations in the TET2 gene occur more frequently with age, imparting an intrinsic hematopoietic stem cells (HSCs) advantage and contributing to a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). Individuals with TET2-mutant CHIP have a higher risk of developing myeloid neoplasms and other aging-related conditions. Despite its role in unhealthy aging, the extrinsic mechanisms driving TET2-mutant CHIP clonal expansion remain unclear. We previously showed an environment containing tumor necrosis factor (TNF) favors TET2-mutant HSC expansion in vitro. We therefore postulated that age-related increases in TNF also provide an advantage to HSCs with TET2 mutations in vivo. To test this hypothesis, we generated mixed bone marrow chimeric mice of old wild-type (WT) and TNF-/- genotypes reconstituted with WT CD45.1+ and Tet2-/- CD45.2+ HSCs. We show that age-associated increases in TNF dramatically increased the expansion of Tet2-/- cells in old WT recipient mice, with strong skewing toward the myeloid lineage. This aberrant myelomonocytic advantage was mitigated in old TNF-/- recipient mice, suggesting that TNF signaling is essential for the expansion Tet2-mutant myeloid clones. Examination of human patients with rheumatoid arthritis with clonal hematopoiesis revealed that hematopoietic cells carrying certain mutations, including in TET2, may be sensitive to reduced TNF bioactivity following blockade with adalimumab. This suggests that targeting TNF may reduce the burden of some forms of CHIP. To our knowledge, this is the first evidence to demonstrate that TNF has a causal role in driving TET2-mutant CHIP in vivo. These findings highlight TNF as a candidate therapeutic target to control TET2-mutant CHIP.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Amy J. M. McNaughton
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Salman Basrai
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie J. Larché
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Dawn M. E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
12
|
Zhang L, Woltering I, Holzner M, Brandhofer M, Schaefer CC, Bushati G, Ebert S, Yang B, Muenchhoff M, Hellmuth JC, Scherer C, Wichmann C, Effinger D, Hübner M, El Bounkari O, Scheiermann P, Bernhagen J, Hoffmann A. CD74 is a functional MIF receptor on activated CD4 + T cells. Cell Mol Life Sci 2024; 81:296. [PMID: 38992165 PMCID: PMC11335222 DOI: 10.1007/s00018-024-05338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.
Collapse
Affiliation(s)
- Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Iris Woltering
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Mathias Holzner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Carl-Christian Schaefer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Genta Bushati
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Medicine I, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - David Effinger
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Anaesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistraße 15, 81377, Munich, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
13
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Huynh DC, Nguyen MP, Ngo DT, Nguyen XH, Nguyen DT, Mai TH, Le TH, Hoang MD, Le KL, Nguyen KQ, Nguyen VH, Kelley KW. A comprehensive analysis of the immune system in healthy Vietnamese people. Heliyon 2024; 10:e30647. [PMID: 38765090 PMCID: PMC11101793 DOI: 10.1016/j.heliyon.2024.e30647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lifestyle, diet, socioeconomic status and genetics all contribute to heterogeneity in immune responses. Vietnam is plagued with a variety of health problems, but there are no available data on immune system values in the Vietnamese population. This study aimed to establish reference intervals for immune cell parameters specific to the healthy Vietnamese population by utilizing multi-color flow cytometry (MCFC). We provide a comprehensive analysis of total leukocyte count, quantitative and qualitative shifts within lymphocyte subsets, serum and cytokine and chemokine levels and functional attributes of key immune cells including B cells, T cells, natural killer (NK) cells and their respective subpopulations. By establishing these reference values for the Vietnamese population, these data contribute significantly to our understanding of the human immune system variations across diverse populations. These data will be of substantial comparative value and be instrumental in developing personalized medical approaches and optimizing diagnostic strategies for individuals based on their unique immune profiles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Keith W Kelley
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Starskaia I, Valta M, Pietilä S, Suomi T, Pahkuri S, Kalim UU, Rasool O, Rydgren E, Hyöty H, Knip M, Veijola R, Ilonen J, Toppari J, Lempainen J, Elo LL, Lahesmaa R. Distinct cellular immune responses in children en route to type 1 diabetes with different first-appearing autoantibodies. Nat Commun 2024; 15:3810. [PMID: 38714671 PMCID: PMC11076468 DOI: 10.1038/s41467-024-47918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.
Collapse
Grants
- 1-SRA-2016-342-M-R, 1-SRA-2019-732-M-B, 3-SRA-2020-955-S-B JDRF
- BMH4-CT98-3314 European Commission (EC)
- Academy of Finland (292538, 292335, 294337, 319280, 31444, 319280, 329277, 331790, 310561, 314443, 329278, 335434, 335611 and 341342), Novo Nordisk Foundation, Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017 [Decision No 250114]; Special Research Funds for University Hospitals in Finland; Diabetes Research Foundation, Finland; European Foundation for the Study of Diabetes; Päivikki and Sakari Sohlberg Foundation; Pediatric Research Foundation. Business Finland, the Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, the Finnish Cancer Foundation, InFLAMES Flagship Programme of the Academy of Finland, Diabetes Wellness Suomi, the Finnish cultural foundation. the European Research Council ERC (677943), the Finnish Medical Foundation, the Finnish Pediatric Research Foundation and the Hospital Districht of South-West Finland.
Collapse
Affiliation(s)
- Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Milla Valta
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sirpa Pahkuri
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Emilie Rydgren
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.
- Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
16
|
DeConne TM, Fancher IS, Edwards DG, Trott DW, Martens CR. CD8 + T-cell metabolism is related to cerebrovascular reactivity in middle-aged adults. Am J Physiol Regul Integr Comp Physiol 2024; 326:R416-R426. [PMID: 38406845 PMCID: PMC11687960 DOI: 10.1152/ajpregu.00267.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (β = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (β = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (β = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
17
|
Jin K, McCoy BM, Goldman EA, Usova V, Tkachev V, Chitsazan AD, Kakebeen A, Jeffery U, Creevy KE, Wills A, Snyder‐Mackler N, Promislow DEL. DNA methylation and chromatin accessibility predict age in the domestic dog. Aging Cell 2024; 23:e14079. [PMID: 38263575 PMCID: PMC11019125 DOI: 10.1111/acel.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Across mammals, the epigenome is highly predictive of chronological age. These "epigenetic clocks," most of which have been built using DNA methylation (DNAm) profiles, have gained traction as biomarkers of aging and organismal health. While the ability of DNAm to predict chronological age has been repeatedly demonstrated, the ability of other epigenetic features to predict age remains unclear. Here, we use two types of epigenetic information-DNAm, and chromatin accessibility as measured by ATAC-seq-to develop age predictors in peripheral blood mononuclear cells sampled from a population of domesticated dogs. We measured DNAm and ATAC-seq profiles for 71 dogs, building separate predictive clocks from each, as well as the combined dataset. We also use fluorescence-assisted cell sorting to quantify major lymphoid populations for each sample. We found that chromatin accessibility can accurately predict chronological age (R2 ATAC = 26%), though less accurately than the DNAm clock (R2 DNAm = 33%), and the clock built from the combined datasets was comparable to both (R2 combined = 29%). We also observed various populations of CD62L+ T cells significantly correlated with dog age. Finally, we found that all three clocks selected features that were in or near at least two protein-coding genes: BAIAP2 and SCARF2, both previously implicated in processes related to cognitive or neurological impairment. Taken together, these results highlight the potential of chromatin accessibility as a complementary epigenetic resource for modeling and investigating biologic age.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Brianah M. McCoy
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | | | - Viktoria Usova
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Victor Tkachev
- Division of Pediatric Hematology/OncologyBoston Children's HospitalBostonMassachusettsUSA
- Dana Farber Cancer InstituteBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alex D. Chitsazan
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Anneke Kakebeen
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Unity Jeffery
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Kate E. Creevy
- College of Veterinary MedicineTexas A & M UniversityCollege StationTexasUSA
| | - Andrea Wills
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Noah Snyder‐Mackler
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
18
|
Bumbea VI, Bumbea H, Vladareanu AM. Immune dysfunction in patients with end stage kidney disease; Immunosenescence - Review. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:12-19. [PMID: 37991332 DOI: 10.2478/rjim-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Indexed: 11/23/2023]
Abstract
The body's defense against environmental factors is realized by physical barriers and cells of both the innate and adaptive immune systems. Patients with end stage kidney disease (ESKD), especially those treated by hemodialysis, have changes in both the function and the number or percent of different leukocyte subsets. Changes were described at the level of monocytes and lymphocyte subsets, which are associated with immunodeficiencies and pro-inflammatory status correlated with degenerative changes and increased cardiovascular risk. These abnormalities have been compared over the past years with alterations appearing as a result ageing. Also, similitudes regarding immunosenescence observed in ESKD patients, in combination with chronic inflammation, are described as the so-called "inflammaging syndrome".
Collapse
Affiliation(s)
| | - Horia Bumbea
- University Emergency Hospital, Bucharest, Hematology Department, Romania
- Carol Davila, Bucharest, University of Medicine and Pharmacy Romania
| | - Ana Maria Vladareanu
- University Emergency Hospital, Bucharest, Hematology Department, Romania
- Carol Davila, Bucharest, University of Medicine and Pharmacy Romania
| |
Collapse
|
19
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
20
|
Hong KT, Kang YJ, Choi JY, Yun YJ, Chang IM, Shin HY, Kang HJ, Lee WW. Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients. J Ginseng Res 2024; 48:68-76. [PMID: 38223820 PMCID: PMC10785244 DOI: 10.1016/j.jgr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 01/16/2024] Open
Abstract
Background Although the survival outcomes of childhood cancer patients have improved, childhood cancer survivors suffer from various degrees of immune dysfunction or delayed immune reconstitution. This study aimed to investigate the effect of Korean Red Ginseng (KRG) on T cell recovery in childhood cancer patients who underwent autologous hematopoietic stem cell transplantation (ASCT) from the perspective of inflammatory and senescent phenotypes. Methods This was a single-arm exploratory trial. The KRG group (n = 15) received KRG powder from month 1 to month 12 post-ASCT. We compared the results of the KRG group with those of the control group (n = 23). The proportions of T cell populations, senescent phenotypes, and cytokine production profiles were analyzed at 1, 3, 6, and 12 months post-ASCT using peripheral blood samples. Results All patients in the KRG group completed the treatment without any safety issues and showed a comparable T cell repopulation pattern to that in the control group. In particular, KRG administration influenced the repopulation of CD4+ T cells via T cell expansion and differentiation into effector memory cell re-expressing CD45RA (EMRA) cells. Although the KRG group showed an increase in the number of CD4+ EMRA cells, the expression of senescent and exhausted markers in these cells decreased, and the capacity for senescence-related cytokine production in the senescent CD28- subset was ameliorated. Conclusions These findings suggest that KRG promotes the repopulation of CD4+ EMRA T cells and regulates phenotypical and functional senescent changes after ASCT in pediatric patients with cancer.
Collapse
Affiliation(s)
- Kyung Taek Hong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Young Ju Yun
- Department of Integrative Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | | | - Hee Young Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Korea Red Cross, Wonju, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Wide River Institute of Immunology, Hongcheon, Republic of Korea
| | - Won-Woo Lee
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
21
|
Chen LN, Shou ZX, Jin X. Interaction Between Genetic Susceptibility and COVID-19 Pathogenesis in Pediatric Multisystem Inflammatory Disorders: The Role of Immune Responses. Viral Immunol 2024; 37:1-11. [PMID: 38271561 DOI: 10.1089/vim.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Numerous studies have highlighted the emergence of coronavirus disease (COVID-19) symptoms reminiscent of Kawasaki disease in children, including fever, heightened multisystem inflammation, and multiorgan involvement, posing a life-threatening complication. Consequently, extensive research endeavors in pediatric have aimed to elucidate the intricate relationship between COVID-19 infection and the immune system. COVID-19 profoundly impacts immune cells, culminating in a cytokine storm that particularly inflicts damage on the pulmonary system. The gravity and vulnerability to COVID-19 are closely intertwined with the vigor of the immune response. In this context, the human leukocyte antigen (HLA) molecule assumes pivotal significance in shaping immune responses. Genetic scrutiny of HLA has unveiled the presence of at least one deleterious allele in children afflicted with multisystem inflammatory syndrome in children (MIS-C). Furthermore, research has demonstrated that COVID-19 exploits the angiotensin-converting enzyme 2 (ACE-2) receptor, transmembrane serine protease type 2, and various other genes to gain entry into host cells, with individuals harboring ACE-2 polymorphisms being at higher risk. Pediatric studies have employed diverse genetic methodologies, such as genome-wide association studies (GWAS) and whole exome sequencing, to scrutinize target genes. These investigations have pinpointed two specific genomic loci linked to the severity and susceptibility of COVID-19, with the HLA locus emerging as a notable risk factor. In this comprehensive review article, we endeavor to assess the available evidence and consolidate data, offering insights into current clinical practices and delineating avenues for future research. Our objective is to advance early diagnosis, stabilization, and appropriate management strategies to mitigate genetic susceptibility's impact on the incidence of COVID-19 in pediatric patients with multisystem inflammation.
Collapse
Affiliation(s)
- Li-Na Chen
- Department of Pediatric, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhang-Xuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
22
|
Wan LY, Huang HH, Zhen C, Chen SY, Song B, Cao WJ, Shen LL, Zhou MJ, Zhang XC, Xu R, Fan X, Zhang JY, Shi M, Zhang C, Jiao YM, Song JW, Wang FS. Distinct inflammation-related proteins associated with T cell immune recovery during chronic HIV-1 infection. Emerg Microbes Infect 2023; 12:2150566. [PMID: 36408648 PMCID: PMC9769146 DOI: 10.1080/22221751.2022.2150566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic inflammation and T cell dysregulation persist in individuals infected with human immunodeficiency virus type 1 (HIV-1), even after successful antiretroviral treatment. The mechanism involved is not fully understood. Here, we used Olink proteomics to comprehensively analyze the aberrant inflammation-related proteins (IRPs) in chronic HIV-1-infected individuals, including in 24 treatment-naïve individuals, 33 immunological responders, and 38 immunological non-responders. T cell dysfunction was evaluated as T cell exhaustion, activation, and differentiation using flow cytometry. We identified a cluster of IRPs (cluster 7), including CXCL11, CXCL9, TNF, CXCL10, and IL18, which was closely associated with T cell dysregulation during chronic HIV-1 infection. Interestingly, IRPs in cluster 5, including ST1A1, CASP8, SIRT2, AXIN1, STAMBP, CD40, and IL7, were negatively correlated with the HIV-1 reservoir size. We also identified a combination of CDCP1, CXCL11, CST5, SLAMF1, TRANCE, and CD5, which may be useful for distinguishing immunological responders and immunological non-responders. In conclusion, the distinct inflammatory milieu is closely associated with immune restoration of T cells, and our results provide insight into immune dysregulation during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Lin-Yu Wan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Si-Yuan Chen
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bing Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li-Li Shen
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | - Ruonan Xu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China,Jin-Wen Song
| | - Fu-Sheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China, Fu-Sheng Wang
| |
Collapse
|
23
|
Tyrrell DJ, Wragg KM, Chen J, Wang H, Song J, Blin MG, Bolding C, Vardaman D, Giles K, Tidwell H, Ali MA, Janappareddi A, Wood SC, Goldstein DR. Clonally expanded memory CD8 + T cells accumulate in atherosclerotic plaques and are pro-atherogenic in aged mice. NATURE AGING 2023; 3:1576-1590. [PMID: 37996758 PMCID: PMC11924142 DOI: 10.1038/s43587-023-00515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
Aging is a strong risk factor for atherosclerosis and induces accumulation of memory CD8+ T cells in mice and humans. Biological changes that occur with aging lead to enhanced atherosclerosis, yet the role of aging on CD8+ T cells during atherogenesis is unclear. In this study, using femle mice, we found that depletion of CD8+ T cells attenuated atherogenesis in aged, but not young, animals. Furthermore, adoptive transfer of splenic CD8+ T cells from aged wild-type, but not young wild-type, donor mice significantly enhanced atherosclerosis in recipient mice lacking CD8+ T cells. We also characterized T cells in healthy and atherosclerotic young and aged mice by single-cell RNA sequencing. We found specific subsets of age-associated CD8+ T cells, including a Granzyme K+ effector memory subset, that accumulated and was clonally expanded within atherosclerotic plaques. These had transcriptomic signatures of T cell activation, migration, cytotoxicity and exhaustion. Overall, our study identified memory CD8+ T cells as therapeutic targets for atherosclerosis in aging.
Collapse
Affiliation(s)
- Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianrui Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Muriel G Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chase Bolding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald Vardaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kara Giles
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison Tidwell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sherri C Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Brito-de-Sousa JP, Lima-Silva ML, Costa-Rocha IAD, Júnior LRADO, Campi-Azevedo AC, Peruhype-Magalhães V, Quetz JDS, Coelho-Dos-Reis JGA, Costa-Pereira C, Garcia CC, Antonelli LRDV, Fonseca CT, Lemos JAC, Mambrini JVDM, Souza-Fagundes EM, Teixeira-Carvalho A, Faria AMDC, Gomes AO, Torres KCDL, Martins-Filho OA. Rhythmic profile of memory T and B-cells along childhood and adolescence. Sci Rep 2023; 13:20978. [PMID: 38017254 PMCID: PMC10684863 DOI: 10.1038/s41598-023-48115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Immunobiography describes the life-long effects of exogenous or endogenous stimuli on remodeling of immune cell biology, including the development of memory T and B-cells. The present study aimed at investigating the rhythms of changes in phenotypic features of memory T and B-cells along childhood and adolescence. A descriptive-observational investigation was conducted including 812 healthy volunteers, clustered into six consecutive age groups (9Mths-1Yr; 2Yrs; 3-4Yrs; 5-7Yrs; 8-10Yrs; 11-18Yrs). Immunophenotypic analysis of memory T-cell (CD4+ and CD8+) and B-cell subsets were performed by flow cytometry. The results pointed out that memory-related biomarkers of T and B-cells displayed a bimodal profile along healthy childhood and adolescence, regardless of sex. The first stage of changes occurs around 2Yrs, with predominance of naive cells, while the second and more prominent wave occurs around the age 8-10Yrs, with the prevalence of memory phenotypes. The neighborhood connectivity profile analysis demonstrated that the number of correlations reaches a peak at 11-18Yrs and lower values along the childhood. Males presented higher and conserved number of correlations when compared to females. Altogether, our results provide new insights into immunobiography and a better understanding of interactions among the cellular subsets studied here during childhood and adolescence.
Collapse
Affiliation(s)
- Joaquim Pedro Brito-de-Sousa
- Programa de Pós-graduação em Imunologia e Parasitologia Aplicadas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Maria Luiza Lima-Silva
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Ismael Artur da Costa-Rocha
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | | | - Ana Carolina Campi-Azevedo
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Vanessa Peruhype-Magalhães
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Josiane da Silva Quetz
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
- Universidade Professor Edson Antônio Velano, UNIFENAS, Belo Horizonte, MG, Brazil
| | - Jordana Grazziela Alves Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiane Costa-Pereira
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Cristiana Couto Garcia
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Lis Ribeiro do Vale Antonelli
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Cristina Toscano Fonseca
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | | | - Juliana Vaz de Melo Mambrini
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Elaine Maria Souza-Fagundes
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil
| | - Ana Maria de Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Karen Cecília de Lima Torres
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil.
- Universidade Professor Edson Antônio Velano, UNIFENAS, Belo Horizonte, MG, Brazil.
| | - Olindo Assis Martins-Filho
- Programa de Pós-graduação em Imunologia e Parasitologia Aplicadas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Avenida Augusto de Lima, 1715, Barro Preto, Belo Horizonte, MG, 30190-002, Brazil.
| |
Collapse
|
25
|
van de Sandt CE, Nguyen THO, Gherardin NA, Crawford JC, Samir J, Minervina AA, Pogorelyy MV, Rizzetto S, Szeto C, Kaur J, Ranson N, Sonda S, Harper A, Redmond SJ, McQuilten HA, Menon T, Sant S, Jia X, Pedrina K, Karapanagiotidis T, Cain N, Nicholson S, Chen Z, Lim R, Clemens EB, Eltahla A, La Gruta NL, Crowe J, Lappas M, Rossjohn J, Godfrey DI, Thomas PG, Gras S, Flanagan KL, Luciani F, Kedzierska K. Newborn and child-like molecular signatures in older adults stem from TCR shifts across human lifespan. Nat Immunol 2023; 24:1890-1907. [PMID: 37749325 PMCID: PMC10602853 DOI: 10.1038/s41590-023-01633-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023]
Abstract
CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αβ signatures. Suboptimal TCRαβ signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Simone Rizzetto
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Christopher Szeto
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Nicole Ranson
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Alice Harper
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Samuel J Redmond
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Pedrina
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Natalie Cain
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Auda Eltahla
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Gras
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, Tasmania, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Vallet H, Guidet B, Boumendil A, De Lange DW, Leaver S, Szczeklik W, Jung C, Sviri S, Beil M, Flaatten H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann Intensive Care 2023; 13:68. [PMID: 37542186 PMCID: PMC10403479 DOI: 10.1186/s13613-023-01160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
In this narrative review, we describe the most important age-related "syndromes" found in the old ICU patients. The syndromes are frailty, comorbidity, cognitive decline, malnutrition, sarcopenia, loss of functional autonomy, immunosenescence and inflam-ageing. The underlying geriatric condition, together with the admission diagnosis and the acute severity contribute to the short-term, but also to the long-term prognosis. Besides mortality, functional status and quality of life are major outcome variables. The geriatric assessment is a key tool for long-term qualitative outcome, while immediate severity accounts for acute mortality. A poor functional baseline reduces the chances of a successful outcome following ICU. This review emphasises the importance of using a geriatric assessment and considering the older patient as a whole, rather than the acute illness in isolation, when making decisions regarding intensive care treatment.
Collapse
Affiliation(s)
- Hélène Vallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), Department of Geriatrics, Saint Antoine, Assistance Publique Hôpitaux de Paris (AP-HP), Sorbonne Université, F75012, Paris, France
| | - Bertrand Guidet
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Saint-Antoine, service de réanimation, Sorbonne Université, INSERM, AP-HP, 75012, Paris, France.
| | - Ariane Boumendil
- service de réanimation, AP-HP, Hôpital Saint-Antoine, F75012, Paris, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Susannah Leaver
- Department of Critical Care Medicine, St George's Hospital London, London, England
| | - Wojciech Szczeklik
- Intensive Care and Perioperative Medicine Division, Jagiellonian University Medical College, Kraków, Poland
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sigal Sviri
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Michael Beil
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Research and Developement, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Parks OB, Eddens T, Sojati J, Lan J, Zhang Y, Oury TD, Ramsey M, Erickson JJ, Byersdorfer CA, Williams JV. Terminally exhausted CD8 + T cells contribute to age-dependent severity of respiratory virus infection. Immun Ageing 2023; 20:40. [PMID: 37528458 PMCID: PMC10391960 DOI: 10.1186/s12979-023-00365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Lower respiratory infections are a leading cause of severe morbidity and mortality among older adults. Despite ubiquitous exposure to common respiratory pathogens throughout life and near universal seropositivity, antibodies fail to effectively protect the elderly. Therefore, we hypothesized that severe respiratory illness in the elderly is due to deficient CD8+ T cell responses. RESULTS Here, we establish an aged mouse model of human metapneumovirus infection (HMPV) wherein aged C57BL/6 mice exhibit worsened weight loss, clinical disease, lung pathology and delayed viral clearance compared to young adult mice. Aged mice generate fewer lung-infiltrating HMPV epitope-specific CD8+ T cells. Those that do expand demonstrate higher expression of PD-1 and other inhibitory receptors and are functionally impaired. Transplant of aged T cells into young mice and vice versa, as well as adoptive transfer of young versus aged CD8+ T cells into Rag1-/- recipients, recapitulates the HMPV aged phenotype, suggesting a cell-intrinsic age-associated defect. HMPV-specific aged CD8+ T cells exhibit a terminally exhausted TCF1/7- TOX+ EOMES+ phenotype. We confirmed similar terminal exhaustion of aged CD8+ T cells during influenza viral infection. CONCLUSIONS This study identifies terminal CD8+ T cell exhaustion as a mechanism of severe disease from respiratory viral infections in the elderly.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor Eddens
- Department of Pediatrics, Division of Allergy/Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jorna Sojati
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Lan
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Manda Ramsey
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Erickson
- Department of Pediatrics, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Craig A Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John V Williams
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, USA.
- University of Pittsburgh, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
29
|
Hofstee MI, Cevirgel A, de Zeeuw-Brouwer ML, de Rond L, van der Klis F, Buisman AM. Cytomegalovirus and Epstein-Barr virus co-infected young and middle-aged adults can have an aging-related T-cell phenotype. Sci Rep 2023; 13:10912. [PMID: 37407603 DOI: 10.1038/s41598-023-37502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Cytomegalovirus (CMV) is known to alter circulating effector memory or re-expressing CD45RA+ (TemRA) T-cell numbers, but whether Epstein-Barr virus (EBV) does the same or this is amplified during a CMV and EBV co-infection is unclear. Immune cell numbers in blood of children and young, middle-aged, and senior adults (n = 336) were determined with flow cytometry, and additional multivariate linear regression, intra-group correlation, and cluster analyses were performed. Compared to non-infected controls, CMV-seropositive individuals from all age groups had more immune cell variance, and CMV+ EBV- senior adults had more late-differentiated CD4+ and CD8+ TemRA and CD4+ effector memory T-cells. EBV-seropositive children and young adults had a more equal immune cell composition than non-infected controls, and CMV- EBV+ senior adults had more intermediate/late-differentiated CD4+ TemRA and effector memory T-cells than non-infected controls. CMV and EBV co-infected young and middle-aged adults with an elevated BMI and anti-CMV antibody levels had a similar immune cell composition as senior adults, and CMV+ EBV+ middle-aged adults had more late-differentiated CD8+ TemRA, effector memory, and HLA-DR+ CD38- T-cells than CMV+ EBV- controls. This study identified changes in T-cell numbers in CMV- or EBV-seropositive individuals and that some CMV and EBV co-infected young and middle-aged adults had an aging-related T-cell phenotype.
Collapse
Affiliation(s)
- Marloes I Hofstee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Alper Cevirgel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
30
|
Iske J, Wiegmann B, Ius F, Chichelnitskiy E, Ludwig K, Kühne JF, Hitz AM, Beushausen K, Keil J, Iordanidis S, Rojas SV, Sommer W, Salman J, Haverich A, Warnecke G, Falk CS. Immediate major dynamic changes in the T- and NK-cell subset composition after cardiac transplantation. Eur J Immunol 2023; 53:e2250097. [PMID: 37119053 DOI: 10.1002/eji.202250097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 04/30/2023]
Abstract
Early kinetics of lymphocyte subsets involved in tolerance and rejection following heart transplantation (HTx) are barely defined. Here, we aimed to delineate the early alloimmune response immediately after HTx. Therefore, blood samples from 23 heart-transplanted patients were collected before (pre-), immediately (T0), 24 hours (T24), and 3 weeks (3 wks) after HTx. Immunophenotyping was performed using flow cytometry. A significant increase was detected for terminally differentiated (TEMRA) CD4+ or CD8+ T cells and CD56dim CD16+ NK cells immediately after HTx linked to a decrease in naïve CD8+ and CM CD4+ T as well as CD56bright CD16- NK cells, returning to baseline levels at T24. More detailed analyses revealed increased CD69+ CD25- and diminished CD69- CD25- CD4+ or CD8+ T-cell proportions at T0 associated with decreasing S1PR1 expression. Passenger T and NK cells were found at low frequencies only in several patients at T0 and did not correlate with lymphocyte alterations. Collectively, these results suggest an immediate, transient shift toward memory T and NK cells following HTx. Opposite migratory properties of naïve versus memory T and NK cells occurring in the early phase after HTx could underlie these observations and may impinge on the development of allo-specific immune responses.
Collapse
Affiliation(s)
- Jasper Iske
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | | | - Kristina Ludwig
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jenny F Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Anna Maria Hitz
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Iordanidis
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Sebastián V Rojas
- Heart and Diabetes Center Nordrhein-Westfalen, University Hospital Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Wiebke Sommer
- Department of Cardiac Surgery, University Hospital Heidelberg UK-HD, Heidelberg, Germany
| | - Jawad Salman
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg UK-HD, Heidelberg, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, TTU-IICH Hannover-Braunschweig site, Germany
| |
Collapse
|
31
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Nissen E, Reiner A, Liu S, Wallace RB, Molinaro AM, Salas LA, Christensen BC, Wiencke JK, Koestler DC, Kelsey KT. Assessment of immune cell profiles among post-menopausal women in the Women's Health Initiative using DNA methylation-based methods. Clin Epigenetics 2023; 15:69. [PMID: 37118842 PMCID: PMC10141818 DOI: 10.1186/s13148-023-01488-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Over the past decade, DNA methylation (DNAm)-based deconvolution methods that leverage cell-specific DNAm markers of immune cell types have been developed to provide accurate estimates of the proportions of leukocytes in peripheral blood. Immune cell phenotyping using DNAm markers, termed immunomethylomics or methylation cytometry, offers a solution for determining the body's immune cell landscape that does not require fresh blood and is scalable to large sample sizes. Despite significant advances in DNAm-based deconvolution, references at the population level are needed for clinical and research interpretation of these additional immune layers. Here we aim to provide some references for immune populations in a group of multi-ethnic post-menopausal American women. RESULTS We applied DNAm-based deconvolution to a large sample of post-menopausal women enrolled in the Women's Health Initiative (baseline, N = 58) or the ancillary Long Life Study (WHI-LLS, N = 1237) to determine the reference ranges of 58 immune parameters, including proportions and absolute counts for 19 leukocyte subsets and 20 derived cell ratios. Participants were 50-94 years old at the time of blood draw, and N = 898 (69.3%) self-identified as White. Using linear regression models, we observed significant associations between age at blood draw and absolute counts and proportions of naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ memory, neutrophils, and natural killer cells. We also assessed the same immune profiles in a subset of paired longitudinal samples collected 14-18 years apart across N = 52 participants. Our results demonstrate high inter-individual variability in rates of change of leukocyte subsets over this time. And, when conducting paired t tests to test the difference in counts and proportions between the baseline visit and LLS visit, there were significant changes in naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ cells and neutrophils, similar to the results seen when analyzing the association with age in the entire cohort. CONCLUSIONS Here, we show that derived cell counts largely reflect the immune profile associated with proportions and that these novel methods replicate the known immune profiles associated with age. Further, we demonstrate the value this methylation cytometry approach can add as a potential application in epidemiological studies.
Collapse
Affiliation(s)
- Emily Nissen
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander Reiner
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI, USA
| | - Robert B Wallace
- Departments of Epidemiology and Internal Medicine, School of Public Health, University of Iowa, Iowa City, IA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
33
|
Ghosh A, Khanam A, Ray K, Mathur P, Subramanian A, Poonia B, Kottilil S. CD38: an ecto-enzyme with functional diversity in T cells. Front Immunol 2023; 14:1146791. [PMID: 37180151 PMCID: PMC10172466 DOI: 10.3389/fimmu.2023.1146791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation.
Collapse
Affiliation(s)
- Alip Ghosh
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Poonam Mathur
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ananya Subramanian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
35
|
Thymic Exhaustion and Increased Immune Activation Are the Main Mechanisms Involved in Impaired Immunological Recovery of HIV-Positive Patients under ART. Viruses 2023; 15:v15020440. [PMID: 36851655 PMCID: PMC9961132 DOI: 10.3390/v15020440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Decades of studies in antiretroviral therapy (ART) have passed, and the mechanisms that determine impaired immunological recovery in HIV-positive patients receiving ART have not been completely elucidated yet. Thus, T-lymphocytes immunophenotyping and cytokines levels were analyzed in 44 ART-treated HIV-positive patients who had a prolonged undetectable plasma viral load. The patients were classified as immunological non-responders (INR = 13) and immunological responders (IR = 31), according to their CD4+ T cell levels. Evaluating pre-CD4+ levels, we observed a statistically significant trend between lower CD4+ T cell levels and INR status (Z = 3.486, p < 0.001), and during 18 months of ART, the CD4+ T cell levels maintained statistical differences between the INR and IR groups (WTS = 37.252, p < 0.001). Furthermore, the INRs were associated with an elevated age at ART start; a lower pre-treatment CD4+ T cell count and a percentage that remained low even after 18 months of ART; lower levels of recent thymic emigrant (RTE) CD4+ T cell (CD45RA + CD31+) and a naïve CD4+ T cell (CD45RA + CD62L+); higher levels of central memory CD4+ T cells (CD45RA-CD62L+); and higher immune activation by CD4+ expressing HLA-DR+ or both (HLA-DR+ and CD38+) when compared with IRs. Our study demonstrates that thymic exhaustion and increased immune activation are two mechanisms substantially implicated in the impaired immune recovery of ART-treated HIV patients.
Collapse
|
36
|
Muyayalo KP, Tao D, Lin XX, Zhang YJ. Age-related changes in CD4 + T and NK cell compartments may contribute to the occurrence of pregnancy loss in advanced maternal age. J Reprod Immunol 2023; 155:103790. [PMID: 36621090 DOI: 10.1016/j.jri.2022.103790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A recent study characterized novel immune cell subsets (T, NK, and γδ T cell subsets) related to recurrent pregnancy loss (RPL). This study aims to assess whether these RPL-related immune cell subsets are affected by aging. The percentages of peripheral blood immunes cells from nulligravida women (NGW), women with a history of normal pregnancy (NP), and women with a history of pregnancy loss (PL) were detected by flow cytometry. The correlations between maternal age and cell percentages were assessed. We found a significant positive correlation between PL and maternal age. The percentages of effector memory CD4+ T (CD3+ CD4+ CD45RA¯ CCR7¯), terminally differentiated CD4+ T (CD3+ CD4+ CD45RA+ CCR7¯), and mature NK cells (CD3¯ CD56+lo) significantly increased with maternal age. A significant decrease in the percentage of Naïve CD4+ T cells (CD3+ CD4+ CD45RA+ CCR7+) with age was observed in women from the NP group. Women aged 35 or older had significantly higher percentages of effector memory CD4+ T cells, terminally differentiated CD4+ T cells, and mature NK cells than younger women. Maternal age positively correlates with terminally differentiated CD4+ T, effector memory CD4+ T, and mature NK cell percentages. In contrast, an inverse correlation was observed between Naïve CD4+ T cell and age among women from the NP group. Our findings indicate that age-related CD4+ T and NK cell dysregulation might be involved in the pathogenesis of PL in women with advanced maternal age. The underlying mechanism needs further investigation.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Ding Tao
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
37
|
Chen HY, Zhao Y, Xie YZ. Immunosenescence of brain accelerates Alzheimer's disease progression. Rev Neurosci 2023; 34:85-101. [PMID: 35791032 DOI: 10.1515/revneuro-2022-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 01/07/2023]
Abstract
Most of Alzheimer's disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Collapse
Affiliation(s)
- Hou-Yu Chen
- Department of Abdominal Surgery, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangdong 510095, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yong-Zhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
38
|
Li GM, Xiao GZ, Qin PF, Wan XY, Fu YJ, Zheng YH, Luo MY, Ren DL, Liu SP, Chen HX, Lin HC. Single-Cell RNA Sequencing Reveals Heterogeneity in the Tumor Microenvironment between Young-Onset and Old-Onset Colorectal Cancer. Biomolecules 2022; 12:biom12121860. [PMID: 36551288 PMCID: PMC9776336 DOI: 10.3390/biom12121860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The incidence of sporadic young-onset colorectal cancer (yCRC) is increasing. Compared with old-onset colorectal cancer (oCRC), yCRC has different clinical and molecular characteristics. However, the difference in the tumor microenvironment (TME) between yCRC and oCRC remains unclear. METHODS Fourteen untreated CRC tumor samples were subjected to single-cell RNA sequencing analysis. RESULTS B cells and naïve T cells are enriched in yCRC, while effector T cells and plasma cells are enriched in oCRC. Effector T cells of yCRC show decreased interferon-gamma response and proliferative activity; meanwhile, Treg cells in yCRC show stronger oxidative phosphorylation and TGF-β signaling than that in oCRC. The down-regulated immune response of T cells in yCRC may be regulated by immune and malignant cells, as we observed a downregulation of antigen presentation and immune activations in B cells, dendritic cells, and macrophages. Finally, we identified malignant cells in yCRC and oCRC with high heterogeneity and revealed their interactions with immune cells in the TME. CONCLUSIONS Our data reveal significant differences of TME between yCRC and oCRC, of which the TME of yCRC is more immunosuppressive than oCRC. Malignant cells play an essential role in the formation of the suppressive tumor immune microenvironment.
Collapse
Affiliation(s)
- Gui-Ming Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Guo-Zhong Xiao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Peng-Fei Qin
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xing-Yang Wan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Yuan-Ji Fu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Yi-Hui Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Min-Yi Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Dong-Lin Ren
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
| | - Shi-Ping Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518083, China
- Correspondence: (S.-P.L.); (H.-X.C.); (H.-C.L.); Tel.: +86-15915815776 (H.-C.L.); Fax: +86-20-38254221 (H.-C.L.)
| | - Hua-Xian Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (S.-P.L.); (H.-X.C.); (H.-C.L.); Tel.: +86-15915815776 (H.-C.L.); Fax: +86-20-38254221 (H.-C.L.)
| | - Hong-Cheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou 510655, China
- Correspondence: (S.-P.L.); (H.-X.C.); (H.-C.L.); Tel.: +86-15915815776 (H.-C.L.); Fax: +86-20-38254221 (H.-C.L.)
| |
Collapse
|
39
|
Li T, Liu Y, Yu X, Wang P, Sun S, Liu D. IL-17D affects the chemokines and chemokine receptors of intestinal epithelial cells under hyperoxia. Int Immunopharmacol 2022; 113:109386. [PMID: 36461593 DOI: 10.1016/j.intimp.2022.109386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
IL-17D is a new member of the IL-17 family. Currently, it is believed that IL-17D can directly act on immune cells or may indirectly modulate immune responses by regulating cytokine expression. Herein, we hypothesized that IL-17D regulates the expression of chemokines in intestinal epithelial cells, in turn modulating the immune response within intestinal mucosa under hyperoxia. To explore this notion, newborn rats were divided into a hyperoxia group (85 % O2) and control group (21 % O2). Small intestinal tissues were obtained from neonatal rats at 3, 7, 10, and 14 days. Similarly, intestinal epithelial cells were treated by hyperoxia (85 % O2) as the hyperoxia group or were incubated under normal oxygen (21 % O2) as the control group. Finally, intestinal epithelial cells subjected to hyperoxia were treated with recombinant IL-17D and IL-17D antibodies for 24, 48, and 72 h. Immunohistochemistry, western blot, and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of chemokines and chemokine receptors in intestinal tissues of newborn rats and intestinal epithelial cells. We found that hyperoxia affected chemokine expression both in vivo and in vitro. Under hyperoxia, IL-17D promoted the expression of CCL2, CCL25, CCL28, and CCR9 in intestinal epithelial cells while downregulating CCR2, CCR5, CCL5, and CCL20. Our findings provide a basis for further study on the effects of hyperoxia-induced intestinal inflammation and intestinal injury.
Collapse
Affiliation(s)
- Tianming Li
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Yanping Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Pingchuan Wang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China.
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
40
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
41
|
Czarnogórski MC, Sakowska J, Maziewski M, Zieliński M, Piekarska A, Obuchowski I, Młyński M, Dutka M, Sadowska-Klasa A, Zarzycka E, Bieniaszewska M, Trzonkowski P, Witkowski JM, Hellmann A, Ruckemann-Dziurdzińska K, Zaucha JM. Ageing-resembling phenotype of long-term allogeneic hematopoietic cells recipients compared to their donors. Immun Ageing 2022; 19:51. [PMID: 36324179 PMCID: PMC9628063 DOI: 10.1186/s12979-022-00308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ageing is a complex phenomenon that leads to decreased proliferative activity, loss of function of the cells, and cellular senescence. Senescence of the immune system exacerbates individual's immune response, both humoral and cellular but increases the frequency of infections. We hypothesized that physiological ageing of adaptive immune system occurs in recipients of allogeneic hematopoietic cells transplant (allo-HCT) at faster rate when compared to their respective donors since the small number of donor cells undergo immense proliferative stress restoring recipients hematopoiesis. We compared molecular characterizations of ageing between recipients and donors of allo-HCT: telomeric length and immunophenotypic changes in main lymphocyte subsets - CD4+, CD8+, CD19+, CD56+. RESULTS Median telomeric length (TL) of CD8+ lymphocytes was significantly longer in donors compared to recipients (on average 2,1 kb and 1,7 kb respectively, p = 0,02). Similar trends were observed for CD4+ and CD19+ although the results did not reach statistical significance. We have also found trends in the immunophenotype between recipients and donors in the subpopulations of CD4+ (naïve and effector memory), CD8+ Eomes+ and B-lymphocytes (B1 and B2). Lower infection risk recipients had also a significantly greater percentage of NK cells (22,3%) than high-risk patients (9,3%) p = 0,04. CONCLUSION Our data do not support the initial hypothesis of accelerated aging in the long term all-HCT recipients with the exception of the recipients lymphocytes (mainly CD8+) which present some molecular features, characteristic for physiological ageing (telomeric shortening, immunophenotype) when compared to their respective donors. However, a history of lower infection numbers in HCT recipients seems to be associated with increased percentage of NK cells. The history of GVHD seems not to affect the rate of ageing. Therefore, it is safe to conclude that the observed subtle differences between recipients' and donors' cells result mainly from the proliferative stress in the early period after allo-HCT and the difference between hosts' and recipients' microenvironments.
Collapse
Affiliation(s)
| | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Mateusz Maziewski
- Department of Physiopathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Mikołaj Młyński
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Dutka
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Zarzycka
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Physiopathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
42
|
Vithayathil M, D'Alessio A, Fulgenzi CAM, Nishida N, Schönlein M, von Felden J, Schulze K, Wege H, Saeed A, Wietharn B, Hildebrand H, Wu L, Ang C, Marron TU, Weinmann A, Galle PR, Bettinger D, Bengsch B, Vogel A, Balcar L, Scheiner B, Lee P, Huang Y, Amara S, Muzaffar M, Naqash AR, Cammarota A, Personeni N, Pressiani T, Pinter M, Cortellini A, Kudo M, Rimassa L, Pinato DJ, Sharma R. Impact of older age in patients receiving atezolizumab and bevacizumab for hepatocellular carcinoma. Liver Int 2022; 42:2538-2547. [PMID: 35986902 PMCID: PMC9825835 DOI: 10.1111/liv.15405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Combination atezolizumab/bevacizumab is the gold standard for first-line treatment of unresectable hepatocellular carcinoma (HCC). Our study investigated the efficacy and safety of combination therapy in older patients with HCC. METHODS 191 consecutive patients from eight centres receiving atezolizumab and bevacizumab were included. Overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and disease control rate (DCR) defined by RECIST v1.1 were measured in older (age ≥ 65 years) and younger (age < 65 years) age patients. Treatment-related adverse events (trAEs) were evaluated. RESULTS The elderly (n = 116) had higher rates of non-alcoholic fatty liver disease (19.8% vs. 2.7%; p < .001), presenting with smaller tumours (6.2 cm vs 7.9 cm, p = .02) with less portal vein thrombosis (31.9 vs. 54.7%, p = .002), with fewer patients presenting with BCLC-C stage disease (50.9 vs. 74.3%, p = .002). There was no significant difference in OS (median 14.9 vs. 15.1 months; HR 1.15, 95% CI 0.65-2.02 p = .63) and PFS (median 7.1 vs. 5.5 months; HR 1.11, 95% CI 0.54-1.92; p = .72) between older age and younger age. Older patients had similar ORR (27.6% vs. 20.0%; p = .27) and DCR (77.5% vs. 66.1%; p = .11) compared to younger patients. Atezolizumab-related (40.5% vs. 48.0%; p = .31) and bevacizumab-related (44.8% vs. 41.3%; p = .63) trAEs were comparable between groups. Rates of grade ≥3 trAEs and toxicity-related treatment discontinuation were similar between older and younger age patients. Patients 75 years and older had similar survival and safety outcomes compared to younger patients. CONCLUSIONS Atezolizumab and bevacizumab therapy is associated with comparable efficacy and tolerability in older age patients with unresectable HCC.
Collapse
Affiliation(s)
- Mathew Vithayathil
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
| | - Claudia A. M. Fulgenzi
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
- Division of Medical OncologyPoliclinico Universitario Campus Bio‐MedicoRomeItaly
| | - Naoshi Nishida
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsakaJapan
| | - Martin Schönlein
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of PneumologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johann von Felden
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kornelius Schulze
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Henning Wege
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anwaar Saeed
- Division of Medical Oncology, Department of MedicineKansas University Cancer CenterKansas CityKansasUSA
| | - Brooke Wietharn
- Division of Medical Oncology, Department of MedicineKansas University Cancer CenterKansas CityKansasUSA
| | - Hannah Hildebrand
- Division of Medical Oncology, Department of MedicineKansas University Cancer CenterKansas CityKansasUSA
| | - Linda Wu
- Division of Hematology/Oncology, Department of MedicineTisch Cancer Institute, Mount Sinai HospitalNew YorkNew YorkUSA
| | - Celina Ang
- Division of Hematology/Oncology, Department of MedicineTisch Cancer Institute, Mount Sinai HospitalNew YorkNew YorkUSA
| | - Thomas U. Marron
- Division of Hematology/Oncology, Department of MedicineTisch Cancer Institute, Mount Sinai HospitalNew YorkNew YorkUSA
| | - Arndt Weinmann
- I. Medical DepartmentUniversity Medical Center MainzMainzGermany
| | - Peter R. Galle
- I. Medical DepartmentUniversity Medical Center MainzMainzGermany
| | - Dominik Bettinger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Freiburg University Medical CenterUniversity of FreiburgFreiburgGermany
| | - Bertram Bengsch
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Freiburg University Medical CenterUniversity of FreiburgFreiburgGermany
- University of FreiburgSignalling Research Centers BIOSS and CIBSSFreiburgGermany
- German Cancer Consortium (DKTK), Partner SiteFreiburgGermany
| | | | - Lorenz Balcar
- Division of Gastroenterology & Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Bernhard Scheiner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Pei‐Chang Lee
- Division of Gastroenterology and Hepatology, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
- Institute of Clinical Medicine, School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Suneetha Amara
- Division of Hematology/OncologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Mahvish Muzaffar
- Division of Hematology/OncologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Abdul Rafeh Naqash
- Division of Hematology/OncologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer CenterUniversity of OklahomaNormanOklahomaUSA
| | - Antonella Cammarota
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
- Medical Oncology and Hematology Unit, Humanitas Cancer CenterIRCCS Humanitas Research HospitalRozzanoItaly
| | - Nicola Personeni
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
- Medical Oncology and Hematology Unit, Humanitas Cancer CenterIRCCS Humanitas Research HospitalRozzanoItaly
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer CenterIRCCS Humanitas Research HospitalRozzanoItaly
| | - Matthias Pinter
- Division of Gastroenterology & Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Alessio Cortellini
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
| | - Masatoshi Kudo
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsakaJapan
| | - Lorenza Rimassa
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
- Medical Oncology and Hematology Unit, Humanitas Cancer CenterIRCCS Humanitas Research HospitalRozzanoItaly
| | - David J. Pinato
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
- Division of Oncology, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College LondonHammersmith HospitalLondonUK
| |
Collapse
|
43
|
Dei Zotti F, Moriconi C, Qiu A, Miller A, Hudson KE. Distinct CD4+ T cell signature in ANA-positive young adult patients. Front Immunol 2022; 13:972127. [PMCID: PMC9608560 DOI: 10.3389/fimmu.2022.972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Failure of immune tolerance can lead to autoantibody production resulting in autoimmune diseases, a broad spectrum of organ-specific or systemic disorders. Immune tolerance mechanisms regulate autoreactive T and B cells, yet some lymphocytes escape and promote autoantibody production. CD4+ T cell dysregulation, characterized by decreased or impaired regulatory cells (Tregs) and/or accumulation of memory and effector T cells such as TH17, plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody (ANAs) testing is used as a first step for the diagnosis of autoimmune disorders, although most ANA-positive individuals do not have nor will develop an autoimmune disease. Studying the differences of T cell compartment among healthy blood donors, ANA-negative patients and ANA-positive patients, in which loss of tolerance have not led to autoimmunity, may improve our understanding on how tolerance mechanisms fail. Herein, we report that ANA-positive patients exhibit a distinct distribution of T cell subsets: significantly reduced frequencies of recent thymic emigrants (RTE) and naïve T cells, and significantly increased frequencies of central memory T cells, TH2 and TH17 cells; modulations within the T cell compartment are most profound within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive patients are metabolically active, as determined by a significant increase in mTORC1 and mTORC2 signals, compared to ANA-negative patients and healthy blood donors. No significant impairment of Treg numbers or pro-inflammatory cytokine production was observed. These results identify a unique T cell signature associated with autoantibody production in the absence of autoimmune disease.
Collapse
|
44
|
Singh B, Kumar Rai A. Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Hum Immunol 2022; 83:808-817. [DOI: 10.1016/j.humimm.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
45
|
Protein-losing Enteropathy as a Complication and/or Differential Diagnosis of Common Variable Immunodeficiency. J Clin Immunol 2022; 42:1461-1472. [PMID: 35737255 DOI: 10.1007/s10875-022-01299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/27/2022] [Indexed: 01/15/2023]
Abstract
As protein-losing enteropathy (PLE) can lead to hypogammaglobulinemia and lymphopenia, and since common variable immunodeficiency (CVID) is associated with digestive complications, we wondered if (1) PLE could occur during CVID and (2) specific features could help determine whether a patient with antibody deficiency has CVID, PLE, or both. Eligible patients were thus classified in 3 groups: CVID + PLE (n = 8), CVID-only (= 19), and PLE-only (n = 13). PLE was diagnosed using fecal clearance of α1-antitrypsin or 111In-labeled albumin. Immunoglobulin (Ig) A, G, and M, naive/memory B and T cell subsets were compared between each group. CVID + PLE patients had multiple causes of PLE: duodenal villous atrophy (5/8), nodular follicular hyperplasia (4/8), inflammatory bowel disease-like (4/8), portal hypertension (4/8), giardiasis (3/8), and pernicious anemia (1/8). Compared to the CVID-only group, CVID + PLE patients had similar serum Ig levels, B cell subset counts, but lower naive T cell proportion and IgG replacement efficiency index. Compared to the CVID-only group, PLE-only patients did not develop infections but had higher serum levels of IgG (p = 0.03), IgA (p < 0.0001), and switched memory B cells (p = 0.001); and decreased naive T cells (CD4+: p = 0.005; CD8+: p < 0.0001). Compared to the PLE-only group, CVID + PLE patients had higher infection rates (p = 0.0003), and lower serum Ig (especially IgA: p < 0.001) and switched memory B cells levels. In conclusion, PLE can occur during CVID and requires higher IgG replacement therapy dosage. PLE can also mimic CVID and is associated with milder immunological abnormalities, notably mildly decreased to normal serum IgA and switched memory B cell levels.
Collapse
|
46
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Ye BM, Hyeon JM, Kim SJ, Kim MJ, Lee HJ, Choi BH, Kim SR, Kim IY, Lee SB, Lee DW. Graft-Versus-Host Disease Developed After En Bloc Kidney Transplant From a Pediatric Donor: A Case Report. EXP CLIN TRANSPLANT 2022; 20:863-866. [DOI: 10.6002/ect.2022.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Ramasubramanian R, Meier HCS, Vivek S, Klopack E, Crimmins EM, Faul J, Nikolich-Žugich J, Thyagarajan B. Evaluation of T-cell aging-related immune phenotypes in the context of biological aging and multimorbidity in the Health and Retirement Study. Immun Ageing 2022; 19:33. [PMID: 35858901 PMCID: PMC9297609 DOI: 10.1186/s12979-022-00290-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cellular changes in adaptive immune system accompany the process of aging and contribute to an aging-related immune phenotype (ARIP) characterized by decrease in naïve T-cells (TN) and increase in memory T-cells (TM). A population-representative marker of ARIP and its associations with biological aging and age-related chronic conditions have not been studied previously. METHODS We developed two ARIP indicators based on well understood age-related changes in T cell distribution: TN/(TCM (Central Memory) + TEM (Effector Memory) + TEFF (Effector)) (referred as TN/TM) in CD4 + and CD8 + T-cells. We compared them with existing ARIP measures including CD4/CD8 ratio and CD8 + TN cells by evaluating associations with chronological age and the Klemera Doubal measure of biological age (measured in years) using linear regression, multimorbidity using multinomial logistic regression and two-year mortality using logistic regression. RESULTS CD8 + TN and CD8 + TN/TM had the strongest inverse association with chronological age (beta estimates: -3.41 and -3.61 respectively; p-value < 0.0001) after adjustment for sex, race/ethnicity and CMV status. CD4 + TN/TM and CD4 + TN had the strongest inverse association with biological age (β = -0.23; p = 0.003 and β = -0.24; p = 0.004 respectively) after adjustment for age, sex, race/ethnicity and CMV serostatus. CD4/CD8 ratio was not associated with chronological age or biological age. CD4 + TN/TM and CD4 + TN was inversely associated with multimorbidity. For CD4 + TN/TM, people with 2 chronic conditions had an odds ratio of for 0.74 (95%CI: 0.63-0.86 p = 0.0003) compared to those without any chronic conditions while those with 3 chronic conditions had an odds ratio of 0.75 (95% CI: 0.63-0.90; p = 0.003) after adjustment for age, sex, race/ethnicity, CMV serostatus, smoking, and BMI. The results for the CD4 + TN subset were very similar to the associations seen with the CD4 + TN/TM. CD4 + TN/TM and CD4 + TN were both associated with two-year mortality (OR = 0.80 (95% CI: 0.67-0.95; p = 0.01) and 0.81 (0.70-0.94; p = 0.01), respectively). CONCLUSION CD4 + TN/TM and CD4 + TN had a stronger association with biological age, age-related morbidity and mortality compared to other ARIP measures. Future longitudinal studies are needed to evaluate the utility of the CD4 + subsets in predicting the risk of aging-related outcomes.
Collapse
Affiliation(s)
- Ramya Ramasubramanian
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Helen C S Meier
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Eric Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center On Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
49
|
Clavarino G, Leroy C, Epaulard O, Raskovalova T, Vilotitch A, Pernollet M, Dumestre-Pérard C, Defendi F, Le Maréchal M, Le Gouellec A, Audoin P, Bosson JL, Poignard P, Roustit M, Jacob MC, Cesbron JY. Fine Analysis of Lymphocyte Subpopulations in SARS-CoV-2 Infected Patients: Differential Profiling of Patients With Severe Outcome. Front Immunol 2022; 13:889813. [PMID: 35911748 PMCID: PMC9335884 DOI: 10.3389/fimmu.2022.889813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 is caused by the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in widespread morbidity and mortality. CD4+ T cells, CD8+ T cells and neutralizing antibodies all contribute to control SARS-CoV-2 infection. However, heterogeneity is a major factor in disease severity and in immune innate and adaptive responses to SARS-CoV-2. We performed a deep analysis by flow cytometry of lymphocyte populations of 125 hospitalized SARS-CoV-2 infected patients on the day of hospital admission. Five clusters of patients were identified using hierarchical classification on the basis of their immunophenotypic profile, with different mortality outcomes. Some characteristics were observed in all the clusters of patients, such as lymphopenia and an elevated level of effector CD8+CCR7- T cells. However, low levels of T cell activation are associated to a better disease outcome; on the other hand, profound CD8+ T-cell lymphopenia, a high level of CD4+ and CD8+ T-cell activation and a high level of CD8+ T-cell senescence are associated with a higher mortality outcome. Furthermore, a cluster of patient was characterized by high B-cell responses with an extremely high level of plasmablasts. Our study points out the prognostic value of lymphocyte parameters such as T-cell activation and senescence and strengthen the interest in treating the patients early in course of the disease with targeted immunomodulatory therapies based on the type of adaptive response of each patient.
Collapse
Affiliation(s)
- Giovanna Clavarino
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- *Correspondence: Giovanna Clavarino,
| | - Corentin Leroy
- Cellule d’Ingénierie des Données, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Centre d’Investigation Clinique de l’Innovation et de la Technologie (CIC-IT), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Olivier Epaulard
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
| | - Tatiana Raskovalova
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Antoine Vilotitch
- Cellule d’Ingénierie des Données, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Martine Pernollet
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Chantal Dumestre-Pérard
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Federica Defendi
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Marion Le Maréchal
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Audrey Le Gouellec
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
- Service de Biochimie Biologie Moléculaire et Toxicologie Environnementale, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Pierre Audoin
- Unité recherche, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Jean-Luc Bosson
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
| | - Pascal Poignard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
- Laboratoire de Virologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Matthieu Roustit
- Centre d’Investigation Clinique INSERM CIC1406, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, UMR 1300, HP2, Grenoble, France
| | - Marie-Christine Jacob
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Jean-Yves Cesbron
- Laboratoire d’Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
50
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|