1
|
Sanap A, Bhonde R, Shekatkar M, Kharat A, Kheur S, Undale V, Dharkar N, Tillu G, Joshi K. Novel Combination of Traditional Ayurvedic Herb Piper longum L. and Modern Stem Cell Therapy for the Reversal of Glucocorticoid-Induced Osteoporosis. Mol Nutr Food Res 2025; 69:e202400698. [PMID: 39888175 DOI: 10.1002/mnfr.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/23/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Glucocorticoids induced osteoporosis (GIOP) is a global concern without effective therapies. The present study investigated the potential of the umbilical cord-derived mesenchymal stem cells (UCMSCs) and traditional medicine Piper longum L. in the reversal of GIOP. Twelve-week-old female Swiss Albino mice were subjected to the dexamethasone treatment for 4 weeks to induce GIOP. Further, the mice were randomized into four different groups for treatment, viz., phosphate buffered saline (PBS), UCMSCs, P. longum L. aqueous extract through feed, and a combination of UCMSCs and P. longum L. extract. Post therapy, GIOP mice regained the weight and hair loss in the UCMSCs and P. longum L. extract group. ALP activity and mRNA expression of RunX2, ALP, and OPN were significantly increased. Micro-CT analysis revealed remarkable improvement in key parameters such as bone volume, bone surface density, tissue surface, trabecular thickness, and number. Our results unequivocally demonstrate that a combination of the UCMSCs and P. longum L. is highly effective in the reversal of GIOP as compared to P. longum L. or UCMSCs alone. The therapeutic effect can be attributed to the osteogenic and paracrine potential of UCMSCs and the anti-inflammatory effect of P. longum L.
Collapse
Affiliation(s)
- Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Madhura Shekatkar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Pimpri, Pune, Maharashtra, India
| | - Nilima Dharkar
- Dr. D. Y. Patil College of Ayurved & Research Centre Pimpri, Pune, Maharashtra, India
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule University of Pune, Pune, Maharashtra, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
2
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
3
|
Ma Z, Qiu L, Li J, Wu Z, Liang S, Zhao Y, Yang J, Hu M, Li Y. Construction a novel osteoporosis model in immune-deficient mice with natural ageing. Biochem Biophys Res Commun 2024; 735:150820. [PMID: 39406026 DOI: 10.1016/j.bbrc.2024.150820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Osteoporosis (OP) predominantly affects elderly individuals. Stem cells show potential for treating OP. However, animal models with normal immune function can eliminate implanted human cells. This study utilized naturally aging NOD/SCID mice, which exhibit immunodeficiency, to create a human osteoporosis model. This approach helps to minimize the premature immune clearance of transplanted allogeneic or xenogeneic cells in preclinical studies, allowing for a more accurate replication of the clinical pharmacological and pharmacokinetic processes involved in stem cell interventions for osteoporosis. NOD/SCID mice were fed until 12, 32, and 43 weeks of age, respectively, and then euthanized. We harvested lumbar vertebra for Micro-Computed Tomography (Micro-CT) scanning and pathological examination. Additionally, we performed biomechanical testing of lumbar vertebra to assess the severity of osteoporosis. We utilized real-time RT-PCR to assess gene expression changes associated with bone metabolism, aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway. In addition, the protein expression levels of P16, Tgf-β1 and Smad3 were detected using Western Blotting (WB). In comparison to 12-week-old mice, the 32-week-old and 43-week-old mice displayed significantly sparser and fractured trabeculae in their lumbar vertebra, lower bone mineral density (BMD), and changes in bone microstructural parameters (∗∗P < 0.01, ∗∗∗P < 0.001). Additionally, compared to 12-week-old mice, the 32-week-old and 43-week-old mice exhibited decreased expression of osteogenic genes (Alp, Opg, Sp7, Col1a1), increased expression of osteoclastic gene (Rankl), the number of TRAP-positive osteoclasts significantly increased in 32-week-old and 43-week-old mice compared to 12-week-old mice. The expression of genes related to aging and inflammatory (P16, Il-1β, Tnf-α) increases with advancing age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). The expression of oxidative stress-related genes (Sod1, Sod2, Foxo3, Nrf2), as well as Tgf-β1 and Smad3 decreased with age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). As age increases, the levels of P16 protein increase, Tgf-β1 and Smad3 proteins decrease. Our study successfully replicated osteoporosis models in NOD/SCID mice at both 32 and 43 weeks, with the latter exhibiting more severe osteoporosis. This condition seems to be driven by factors such as aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Jinyan Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Shu Liang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Jinmei Yang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| |
Collapse
|
4
|
Zhang R, Mu X, Liu D, Chen C, Meng B, Qu Y, Liu J, Wang R, Li C, Mao X, Wang Q, Zhang Q. Apoptotic vesicles rescue impaired mesenchymal stem cells and their therapeutic capacity for osteoporosis by restoring miR-145a-5p deficiency. J Nanobiotechnology 2024; 22:580. [PMID: 39304875 PMCID: PMC11414301 DOI: 10.1186/s12951-024-02829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Apoptotic vesicles (apoVs) play a vital role in various physiological and pathological conditions. However, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs). Here, we proved that systemic infusion of MSCs derived from wild-type (WT) mice rather than from ovariectomized (OVX) mice effectively improved the osteopenia phenotype and rescued the impaired recipient MSCs in osteoporotic mice. Meanwhile, apoVs derived from WT MSCs (WT apoVs) instead of OVX apoVs efficiently restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-β/Smad 2/3-Wnt/β-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. The differential expression of miR-145a-5p is responsible for the distinct efficacy between the two types of apoVs. Overall, our findings unveil the remarkable potential of apoVs, as a novel nongenetic engineering approach, in rescuing the biological function and therapeutic capability of MSCs derived from patients. This discovery offers a new avenue for exploring apoVs-based stem cell engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Xiaodan Mu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dawei Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics, Peking University School & Hospital of Stomatology, Beijing, 100081, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Jin Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lab of Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Runci Wang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chuanjie Li
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China
| | - Xueli Mao
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Hospital of Stomatology, Guanghua School of Stomatology, Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Qingbin Zhang
- Department of Temporomandibular Joint, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
5
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhang R, Mu X, Liu D, Chen C, Meng B, Qu Y, Liu J, Wang R, Li C, Mao X, Wang Q, Zhang Q. Apoptotic vesicles rescue impaired mesenchymal stem cells and their therapeutic capacity for osteoporosis by restoring miR-145a-5p deficiency. RESEARCH SQUARE 2024:rs.3.rs-4416138. [PMID: 38883762 PMCID: PMC11177995 DOI: 10.21203/rs.3.rs-4416138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Apoptotic vesicles (apoVs) play a vital role in various pathological conditions; however, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs) and regulating tissue homeostasis. Here, we proved that systemic infusion of bone marrow MSCs derived from wild-type (WT) mice effectively improved the osteopenia phenotype and hyperimmune state in ovariectomized (OVX) mice. Importantly, the WT MSCs rescued the impairment of OVX MSCs both in vivo and in vitro, whereas OVX MSCs did not show the same efficacy. Interestingly, treatment with apoVs derived from WT MSCs (WT apoVs) restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. This effect was not observed with OVX MSCs-derived apoVs (OVX apoVs) treatment. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-β/Smad 2/3-Wnt/β-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. Conversely, treatment with OVX apoVs did not produce significant effects due to their limited expression of miR-145a-5p. Overall, our findings unveil the remarkable potential of apoVs in rescuing the biological function and therapeutic capability of MSCs derived from individuals with diseases. This discovery offers a new avenue for exploring apoVs-based MSC engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.
Collapse
Affiliation(s)
| | | | - Dawei Liu
- Peking University School & Hospital of Stomatology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Muniyasamy R, Manjubala I. Insights into the Mechanism of Osteoporosis and the Available Treatment Options. Curr Pharm Biotechnol 2024; 25:1538-1551. [PMID: 37936474 DOI: 10.2174/0113892010273783231027073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
Osteoporosis, one of the most prevalent bone illnesses, majorly affects postmenopausal women and men over 50 years of age. Osteoporosis is associated with an increased susceptibility to fragility fractures and can result in persistent pain and significant impairment in affected individuals. The primary method for diagnosing osteoporosis involves the assessment of bone mineral density (BMD) through the utilisation of dual energy x-ray absorptiometry (DEXA). The integration of a fracture risk assessment algorithm with bone mineral density (BMD) has led to significant progress in the diagnosis of osteoporosis. Given that osteoporosis is a chronic condition and multiple factors play an important role in maintaining bone mass, comprehending its underlying mechanism is crucial for developing more effective pharmaceutical interventions for the disease. The effective management of osteoporosis involves the utilisation of appropriate pharmacological agents in conjunction with suitable dietary interventions and lifestyle modifications. This review provides a comprehensive understanding of the types of osteoporosis and elucidates the currently available pharmacological treatment options and their related mechanism of action and usage.
Collapse
Affiliation(s)
- Rajeshwari Muniyasamy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Inderchand Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
9
|
Huo KL, Yang TY, Zhang WW, Shao J. Mesenchymal stem/stromal cells-derived exosomes for osteoporosis treatment. World J Stem Cells 2023; 15:83-89. [PMID: 37007454 PMCID: PMC10052342 DOI: 10.4252/wjsc.v15.i3.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Osteoporosis is a systemic bone disease, which leads to decreased bone mass and an increased risk of fragility fractures. Currently, there are many anti-resorption drugs and osteosynthesis drugs, which are effective in the treatment of osteoporosis, but their usage is limited due to their contraindications and side effects. In regenerative medicine, the unique repair ability of mesenchymal stem cells (MSCs) has been favored by researchers. The exosomes secreted by MSCs have signal transduction and molecular delivery mechanisms, which may have therapeutic effects. In this review, we describe the regulatory effects of MSCs-derived exosomes on osteoclasts, osteoblasts, and bone immunity. We aim to summarize the preclinical studies of exosome therapy in osteoporosis. Furthermore, we speculate that exosome therapy can be a future direction to improve bone health.
Collapse
Affiliation(s)
- Kai-Lun Huo
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan 750004, the Ningxia Hui Autonomous Region, China
| | - Tie-Yi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Medical Technology, University of Shanghai for Science and Technology, Shanghai 200135, China
| | - Wei-Wei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Medical Technology, University of Shanghai for Science and Technology, Shanghai 200135, China
| |
Collapse
|
10
|
Advances in the Study of Exosomes as Drug Delivery Systems for Bone-Related Diseases. Pharmaceutics 2023; 15:pharmaceutics15010220. [PMID: 36678850 PMCID: PMC9867375 DOI: 10.3390/pharmaceutics15010220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Bone-related diseases are major problems and heavy burdens faced by modern society. Current clinical approaches for the treatment of these pathological conditions often lead to complications and have limited therapeutic efficacy. In this context, the development of nanotherapeutic platforms, such as extracellular vesicles, can improve the relevant therapeutic effects. In particular, exosomes are nano-sized, lipid bilayer extracellular vesicles secreted by many cells in mammals. Due to their innate capacity to transport materials-including proteins, lipids, and genes-among cells, as well as their innate attraction to target cells, they are considered to be a crucial medium for cell communication and are involved in a number of biological processes. Exosomes have been used as drug delivery vehicles in recent bone tissue engineering studies, in order to regulate bone homeostasis. However, the precise workings of the exosome regulatory network in maintaining bone homeostasis and its potential for treating bone injury remain unclear. To provide a fresh perspective for the study of exosomes in drug delivery and bone-related diseases, in this paper, we review recent studies on the roles of exosomes for drug delivery in bone homeostasis and bone-related diseases, as well as the composition and characteristics of exosomes and their regulatory roles in bone homeostasis and bone-related diseases, aiming to provide new ideas for the therapeutic application of exosomes in the treatment of bone-related diseases.
Collapse
|
11
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|