1
|
Aguilar-Bañuelos JA, Bernal-Hernández YY, Medina-Díaz IM, Ruiz-Arias MA, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Agraz-Cibrián JM, Zambrano-Zaragoza JF, Verdín-Betancourt FA, Ruiz NP, Flores-Alfaro E, Rojas-García AE. Environmental exposure to pesticides is associated with oxidative stress, oxidative DNA damage, and elevated interleukin-8 in a child population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104656. [PMID: 39978743 DOI: 10.1016/j.etap.2025.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Pesticide exposure can cause various adverse effects in humans, with children being particularly susceptible. Such exposure leads to neurological, immunological, respiratory, and genetic damage, primarily by generating reactive oxygen species (ROS). The increase in ROS induces lipid peroxidation (LPO) and the formation of hydroxyl radicals, which generate DNA adducts. This study involved children aged 6-12 from three communities: two in an agricultural region (communities A and B) and one reference population (community C). The objective was to evaluate lipid peroxidation through malondialdehyde (MDA) levels, the content of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, and the concentrations of the cytokines IL-6, IL-8, IL-10, and TNF-α in children environmentally exposed to pesticides. Anthropometric measurements were taken from the study population. Dialkylphosphates (DAP) in urine were determined by gas chromatography and mass spectrometry. Plasma concentrations of MDA and pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and the anti-inflammatory cytokine (IL-10) were quantified using biochemical assays and urinary concentrations of 8-OHdG. The findings showed that DAP, MDA, and 8-OHdG concentrations in communities A and B increased significantly compared with community C. Additionally, IL-8 exhibited a significant increase in community A compared to community C, while no significant differences were observed for IL-6, IL-10, and TNF-α. Higher pesticide exposure is linked to oxidative stress, DNA damage and inflammation, key indicators of chronic diseases. In conclusion, this study provides evidence linking environmental pesticide exposure in agricultural communities to increased oxidative stress and inflammatory responses in children.
Collapse
Affiliation(s)
- José Antonio Aguilar-Bañuelos
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Miguel Alfonso Ruiz-Arias
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico; Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Padrón de Investigadoras e Investigadores por México, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | | | - Néstor Ponce Ruiz
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N. Ciudad del Conocimiento, Tepic, Nayarit, Mexico
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico.
| |
Collapse
|
2
|
Gallo D, Piantanida E, Bombelli R, Lepanto S, Bruno A, Gallazzi M, Bilato G, Borgese M, Baci D, Mortara L, Tanda ML. Natural Killer Cells in Graves' Disease: Increased Frequency but Impaired Degranulation Ability Compared to Healthy Controls. Int J Mol Sci 2025; 26:977. [PMID: 39940745 PMCID: PMC11816991 DOI: 10.3390/ijms26030977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Graves' disease (GD) is an autoimmune disorder, driven by the appearance of circulating autoantibodies (Ab) against the thyroid stimulating hormone (TSH) receptor, thus causing hyperthyroidism. While antithyroid drugs, the only available treatment for GD, carry a significant risk of relapse, advances in immunology could pave the way for more effective therapies. Natural killer (NK) cells, divided into cytotoxic CD56dim and cytokine-secreting CD56bright subsets, regulate immune responses through cytokine production and cell lysis and may play a role in the pathogenesis of GD. To investigate their involvement, we conducted flow cytometry on peripheral blood samples from 131 GD patients at various stages (disease onset, on antithyroid drugs, and in remission) and 97 age- and sex-matched healthy controls (HC). We analyzed NK cell subsets, activating (CD16, CD69, NKG2D, NKp30) and inhibitory receptors (CD161, NKG2A), degranulation (CD107a), and intracellular cytokines expression (interferon γ, tumor necrosis factor α). Statistical comparisons were made between GD patients and HC and across disease stages. GD patients had a higher frequency of total NK cells (p < 0.028) and CD56bright NK cells (p < 0.01) but a lower frequency of CD56dim NK cells (p = 0.005) compared to HC. NK cells in GD patients expressed activating receptors more frequently, except for NKG2D, but had decreased cytokine expression and degranulation ability. At GD onset, patients had higher frequencies of total NK cells, CD56bright NK cells, and NK cells expressing activating receptors compared to patients receiving ATD treatment and those in remission. CD161+ NK cells were lower at GD onset and returned to levels of HC following treatment. Correlation analysis revealed that free thyroxine (FT4) levels were inversely correlated with CD107a+ NK cells (p < 0.05) and positively correlated with CD69+ NK cells (p < 0.01). These findings suggest that hyperthyroidism impairs NK cell degranulation, with the increased frequency of NK cells potentially compensating for their reduced function. This dysfunction may contribute to the unregulated immune response in GD, highlighting NK cells as a potential target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST Dei Sette Laghi, 21100 Varese, Italy; (E.P.); (S.L.); (M.L.T.)
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST Dei Sette Laghi, 21100 Varese, Italy; (E.P.); (S.L.); (M.L.T.)
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (R.B.); (A.B.); (G.B.); (D.B.)
| | - Silvia Lepanto
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST Dei Sette Laghi, 21100 Varese, Italy; (E.P.); (S.L.); (M.L.T.)
| | - Antonino Bruno
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (R.B.); (A.B.); (G.B.); (D.B.)
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, 20138 Milan, Italy;
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, 20138 Milan, Italy;
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (R.B.); (A.B.); (G.B.); (D.B.)
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, 20138 Milan, Italy;
| | - Marina Borgese
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (R.B.); (A.B.); (G.B.); (D.B.)
- Laboratory of Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (R.B.); (A.B.); (G.B.); (D.B.)
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, 20138 Milan, Italy;
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST Dei Sette Laghi, 21100 Varese, Italy; (E.P.); (S.L.); (M.L.T.)
| |
Collapse
|
3
|
Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A, Sarab GA. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Front Immunol 2023; 14:950465. [PMID: 37520529 PMCID: PMC10379649 DOI: 10.3389/fimmu.2023.950465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
For many years, vitamin D has been acknowledged for its role in maintaining calcium and phosphate balance. However, in recent years, research has assessed its immunomodulatory role and come up with conflicting conclusions. Because the vitamin D receptor is expressed in a variety of immune cell types, study into the precise role of this molecule in diseases, notably autoimmune disorders, has been made possible. The physiologically activated version of vitamin D also promotes a tolerogenic immunological condition in addition to modulating innate and acquired immune cell responses. According to a number of recent studies, this important micronutrient plays a complex role in numerous biochemical pathways in the immune system and disorders that are associated with them. Research in this field is still relatively new, and some studies claim that patients with severe autoimmune illnesses frequently have vitamin D deficiencies or insufficiencies. This review seeks to clarify the most recent research on vitamin D's immune system-related roles, including the pathophysiology of major disorders.
Collapse
Affiliation(s)
| | - Ali Ghaderi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Sharafi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Moossavi
- Nanobiology and Nanomedicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Beliën J, Goris A, Matthys P. Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Front Immunol 2022; 13:869447. [PMID: 35464427 PMCID: PMC9019710 DOI: 10.3389/fimmu.2022.869447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.
Collapse
Affiliation(s)
- Jarne Beliën
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wang CM, Tan KP, Jan Wu YJ, Lin JC, Zheng JW, Yu AL, Wu JM, Chen JY. MICA*019 Allele and Soluble MICA as Biomarkers for Ankylosing Spondylitis in Taiwanese. J Pers Med 2021; 11:jpm11060564. [PMID: 34208618 PMCID: PMC8235541 DOI: 10.3390/jpm11060564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
MICA (major histocompatibility complex class I chain-related gene A) interacts with NKG2D on immune cells to regulate host immune responses. We aimed to determine whether MICA alleles are associated with AS susceptibility in Taiwanese. MICA alleles were determined through haplotype analyses of major MICA coding SNP (cSNP) data from 895 AS patients and 896 normal healthy controls in Taiwan. The distributions of MICA alleles were compared between AS patients and normal healthy controls and among AS patients, stratified by clinical characteristics. ELISA was used to determine soluble MICA (sMICA) levels in serum of AS patients and healthy controls. Stable cell lines expressing four major MICA alleles (MICA*002, MICA*008, MICA*010 and MICA*019) in Taiwanese were used for biological analyses. We found that MICA*019 is the only major MICA allele significantly associated with AS susceptibility (PFDR = 2.25 × 10−115; OR, 14.90; 95% CI, 11.83–18.77) in Taiwanese. In addition, the MICA*019 allele is associated with syndesmophyte formation (PFDR = 0.0017; OR, 1.69; 95% CI, 1.29–2.22) and HLA-B27 positivity (PFDR = 1.45 × 10−33; OR, 28.79; 95% CI, 16.83–49.26) in AS patients. Serum sMICA levels were significantly increased in AS patients as compared to healthy controls. Additionally, MICA*019 homozygous subjects produced the highest levels of sMICA, compared to donors with other genotypes. Furthermore, in vitro experiments revealed that cells expressing MICA*019 produced the highest level of sMICA, as compared to other major MICA alleles. In summary, the MICA*019 allele, producing the highest levels of sMICA, is a significant risk factor for AS and syndesmophyte formation in Taiwanese. Our data indicate that a high level of sMICA is a biomarker for AS.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Keng-Poo Tan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Jing-Chi Lin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Jian-Wen Zheng
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 33375, Taiwan;
- Department of Pediatrics, University of California, San Diego, CA 92103, USA
| | - Jian-Ming Wu
- Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 2410); Fax: 886-3-3288-287
| |
Collapse
|
6
|
Jiang H, Li Z, Yu L, Zhang Y, Zhou L, Wu J, Yuan J, Han M, Xu T, He J, Wang S, Yu C, Pan S, Wu M, Liu H, Zeng H, Song Z, Wang Q, Qu S, Zhang J, Huang Y, Han J. Immune Phenotyping of Patients With Acute Vogt-Koyanagi-Harada Syndrome Before and After Glucocorticoids Therapy. Front Immunol 2021; 12:659150. [PMID: 33995378 PMCID: PMC8113950 DOI: 10.3389/fimmu.2021.659150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have established that disturbed lymphocytes are involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) syndrome. Accordingly, glucocorticoids (GCs), with their well-recognized immune-suppressive function, have been widely used for treatment of VKH patients with acute relapses. However, the systemic response of diverse immune cells to GC therapy in VKH is poorly characterized. To address this issue, we analyzed immune cell subpopulations and their phenotype, as well as cytokine profiles in peripheral blood from VKH patients (n=25) and health controls (HCs, n=21) by flow cytometry and luminex technique, respectively. For 16 patients underwent GC therapy (methylprednisolone, MP), the aforementioned measurements as well as the transcriptome data from patients before and after one-week’s GC therapy were also compared to interrogate the systemic immune response to GC therapy. Lymphocyte composition in the blood was different in VKH patients and HCs. VKH patients had significantly higher numbers of T cells with more activated, polarized and differentiated phenotype, more unswitched memory B cells and monocytes, as compared to HCs. MP treatment resulted in decreased frequencies of T cells and NK cells, inhibited NK cell activation and T cell differentiation, and more profoundly, a marked shift in the distribution of monocyte subsets. Collectively, our findings suggest that advanced activation and differentiation, as well as dysregulated numbers of peripheral lymphocytes are the major immunological features of VKH, and GC therapy with MP not only inhibits T cell activation directly, but also affects monocyte subsets, which might combinatorically result in the inhibition of the pathogenic immune response.
Collapse
Affiliation(s)
- Han Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Li
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Ophthalmic Imaging Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Li Zhou
- Cataract Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Jianhua Wu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Jing Yuan
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Mengyao Han
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Tao Xu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Junwen He
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Shan Wang
- Ophthalmic Imaging Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Chengfeng Yu
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Sha Pan
- Retinal and Vitreous Diseases Department of Wuhan Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihong Zeng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Song
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Qu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Xhonneux LP, Knight O, Lernmark Å, Bonifacio E, Hagopian WA, Rewers MJ, She JX, Toppari J, Parikh H, Smith KGC, Ziegler AG, Akolkar B, Krischer JP, McKinney EF. Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression. Sci Transl Med 2021; 13:eabd5666. [PMID: 33790023 PMCID: PMC8447843 DOI: 10.1126/scitranslmed.abd5666] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a disease of insulin deficiency that results from autoimmune destruction of pancreatic islet β cells. The exact cause of T1D remains unknown, although asymptomatic islet autoimmunity lasting from weeks to years before diagnosis raises the possibility of intervention before the onset of clinical disease. The number, type, and titer of islet autoantibodies are associated with long-term disease risk but do not cause disease, and robust early predictors of individual progression to T1D onset remain elusive. The Environmental Determinants of Diabetes in the Young (TEDDY) consortium is a prospective cohort study aiming to determine genetic and environmental interactions causing T1D. Here, we analyzed longitudinal blood transcriptomes of 2013 samples from 400 individuals in the TEDDY study before both T1D and islet autoimmunity. We identified and interpreted age-associated gene expression changes in healthy infancy and age-independent changes tracking with progression to both T1D and islet autoimmunity, beginning before other evidence of islet autoimmunity was present. We combined multivariate longitudinal data in a Bayesian joint model to predict individual risk of T1D onset and validated the association of a natural killer cell signature with progression and the model's predictive performance on an additional 356 samples from 56 individuals in the independent Type 1 Diabetes Prediction and Prevention study. Together, our results indicate that T1D is characterized by early and longitudinal changes in gene expression, informing the immunopathology of disease progression and facilitating prediction of its course.
Collapse
Affiliation(s)
- Louis-Pascal Xhonneux
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Oliver Knight
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC Skåne University Hospital Malmo, Jan Waldenströms gata 35, Malmö, Sweden
| | - Ezio Bonifacio
- Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - William A Hagopian
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, 1775 Aurora Ct, Aurora, CO 80045, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd., Augusta, GA 30912, USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turun Lyliopisto, Finland
| | - Hemang Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische, Universität München, Forschergruppe Diabetes e.V., Arcisstraße 21, 80333 München, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike Bethesda, MD 20892, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Ljunggren HG. Paths taken towards NK cell-mediated immunotherapy of human cancer-a personal reflection. Scand J Immunol 2020; 93:e12993. [PMID: 33151595 PMCID: PMC7816273 DOI: 10.1111/sji.12993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022]
Abstract
The discovery that NK cells are able to specifically recognize cells lacking the expression of self‐MHC class I molecules provided the first insight into NK cell recognition of tumour cells. It started a flourishing field of NK cell research aimed at exploring the molecular nature of NK cell receptors involved in tumour cell recognition. While much of the important early work was conducted in murine experimental model systems, studies of human NK cells rapidly followed. Over the years, human NK cell research has swiftly progressed, aided by new detailed molecular information on human NK cell development, differentiation, molecular specificity, tissue heterogeneity and functional capacity. NK cells have also been studied in many different diseases aside from cancer, including viral diseases, autoimmunity, allergy and primary immunodeficiencies. These fields of research have all, indirectly or directly, provided further insights into NK cell‐mediated recognition of target cells and paved the way for the development of NK cell‐based immunotherapies for human cancer. Excitingly, NK cell‐based immunotherapy now opens up for novel strategies aimed towards treating malignant diseases, either alone or in combination with other drugs. Reviewed here are some personal reflections of select contributions leading up to the current state‐of‐the‐art in the field, with a particular emphasis on contributions from our own laboratory. This review is part of a series of articles on immunology in Scandinavia, published in conjunction with the 50th anniversary of the Scandinavian Society for Immunology.
Collapse
Affiliation(s)
- Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Enteroviral Pathogenesis of Type 1 Diabetes: The Role of Natural Killer Cells. Microorganisms 2020; 8:microorganisms8070989. [PMID: 32630332 PMCID: PMC7409131 DOI: 10.3390/microorganisms8070989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses, especially group B coxsackieviruses (CV-B), have been associated with the development of chronic diseases such as type 1 diabetes (T1D). The pathological mechanisms that trigger virus-induced autoimmunity against islet antigens in T1D are not fully elucidated. Animal and human studies suggest that NK cells response to CV-B infection play a crucial role in the enteroviral pathogenesis of T1D. Indeed, CV-B-infected cells can escape from cytotoxic T cells recognition and destruction by inhibition of cell surface expression of HLA class I antigen through non-structural viral proteins, but they can nevertheless be killed by NK cells. Cytolytic activity of NK cells towards pancreatic beta cells persistently-infected with CV-B has been reported and defective viral clearance by NK cells of patients with T1D has been suggested as a mechanism leading to persistence of CV-B and triggering autoimmunity reported in these patients. The knowledge about host antiviral defense against CV-B infection is not only crucial to understand the susceptibility to virus-induced T1D but could also contribute to the design of new preventive or therapeutic approaches for individuals at risk for T1D or newly diagnosed patients.
Collapse
|
10
|
Wee YM, Go H, Choi MY, Jung HR, Cho YM, Kim YH, Han DJ, Shin S. Tissue-resident natural killer cells exacerbate tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in a model of aristolochic acid-induced nephropathy. BMB Rep 2020. [PMID: 31072444 PMCID: PMC6774424 DOI: 10.5483/bmbrep.2019.52.9.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite reports suggesting that tissue-resident natural killer (trNK) cells cause ischemic kidney injury, their contribution to the development of tubulointerstitial fibrosis has not been determined. This study hypothesized that the depletion of trNK cells may ameliorate renal fibrosis by affecting transglutaminase 2/syndecan-4 interactions. Aristolochic acid nephropathy (AAN) was induced in C57BL/6 mice as an experimental model of kidney fibrosis. The mice were treated with anti-asialo GM1 (ASGM1) or anti-NK1.1 antibodies to deplete NK cells. Although both ASGM1 and NK1.1 antibodies suppressed renal NKp46+DX5+ NK cells, renal NKp46+DX5− cells were resistant to suppression by ASGM1 or NK1.1 antibodies during the development of tubulointerstitial fibrosis in the AAN-induced mouse model. Western blot analysis showed that both antibodies increased the expression of fibronectin, transglutaminase 2, and syndecan-4. These findings indicate that trNK cells played an exacerbating role in tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in the AAN-induced mouse model.
Collapse
Affiliation(s)
- Yu Mee Wee
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Monica Young Choi
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Hey Rim Jung
- Department of Asan Institute for Life Science, Asan Medical Center, Seoul 05535, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05535, Korea
| |
Collapse
|
11
|
Shi L, Guo H, Zheng Z, Liu J, Jiang Y, Su Y. Laparoscopic Surgery Versus Open Surgery for Colorectal Cancer: Impacts on Natural Killer Cells. Cancer Control 2020; 27:1073274820906811. [PMID: 32157905 PMCID: PMC7092650 DOI: 10.1177/1073274820906811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Laparoscopic resection is increasingly used in colorectal cancer (CRC). It has been suggested to carry short-term benefits in safety, recovery, and preservation on immune function for patients with CRC. However, the impact of laparoscopic resection on natural killer (NK) cells is largely unclear. METHODS A total of 200 patients with CRC across Dukes A/B/C stages were randomly assigned to laparoscopic or open resection. The blood samples were collected before and after the surgery. The total number of NK cells was quantified by flow cytometer. Lytic units 35 toward K562 was used to quantify NK cells activity. The outcomes between the groups across pathological stages were also analyzed. RESULTS The number and activity of NK cells decreased after the surgery in both groups. The laparoscopic group showed a faster recovery rate of NK cells function than the control group as assessed by cell count and lytic activity. Natural killer cells were impaired in a higher degree in patients at Dukes B/C stages. The recovery of NK cells to baseline level at day 7 postsurgery was observed in the laparoscopic group across all 3 stages. CONCLUSION Generally, laparoscopically assisted surgery resulted in a better preservation on NK cells function. A better outcome was observed in patients with CRC at Dukes B/C stages.
Collapse
Affiliation(s)
- Liangpan Shi
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Hailian Guo
- Department of Gynaecology and Obstetrics, Jinjiang Hospital, Jinjiang, Fujian, China
| | - Zhihua Zheng
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Jiangrui Liu
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yancheng Jiang
- Department of Laboratory Medicine, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
12
|
PD-1 Expression on NK Cells in Malaria-Exposed Individuals Is Associated with Diminished Natural Cytotoxicity and Enhanced Antibody-Dependent Cellular Cytotoxicity. Infect Immun 2020; 88:IAI.00711-19. [PMID: 31907195 DOI: 10.1128/iai.00711-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are key effector cells of innate resistance capable of destroying tumors and virus-infected cells through cytotoxicity and rapid cytokine production. The control of NK cell responses is complex and only partially understood. PD-1 is an inhibitory receptor that regulates T cell function, but a role for PD-1 in regulating NK cell function is only beginning to emerge. Here, we investigated PD-1 expression on NK cells in children and adults in Mali in a longitudinal analysis before, during, and after infection with Plasmodium falciparum malaria. We found that NK cells transiently upregulate PD-1 expression and interleukin-6 (IL-6) production in some individuals during acute febrile malaria. Furthermore, the percentage of PD-1 expressing NK cells increases with age and cumulative malaria exposure. Consistent with this, NK cells of malaria-naive adults upregulated PD-1 following P. falciparum stimulation in vitro Additionally, functional in vitro studies revealed that PD-1 expression on NK cells is associated with diminished natural cytotoxicity but enhanced antibody-dependent cellular cytotoxicity (ADCC). These data indicate that PD-1+ NK cells expand in the context of chronic immune activation and suggest that PD-1 may contribute to skewing NK cells toward enhanced ADCC during infections such as malaria.
Collapse
|
13
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Aghaei H, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between KIR polymorphisms and rheumatoid arthritis disease: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:24. [PMID: 30696403 PMCID: PMC6352331 DOI: 10.1186/s12881-019-0754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Background Currently published studies investigating association between the killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and rheumatoid arthritis (RA) reported inconsistent and contradictory results. Hence, we aim to carry out this comprehensive meta-analysis of all eligible studies meeting the inclusion criteria to achieve precise and comprehensive relationships between genetic variations in KIR gene cluster and risk of RA. Methods Databases of Medline/PubMed and Scopus were searched to investigate case-control studies prior to May 2018. The associations between KIR gene polymorphisms and RA susceptibility were analyzed by computing the odds ratio (OR) and 95% confidence interval (95% CI) for each study. Results A total of 11 comparative case-control studies involving 1847 RA patients and 2409 healthy individuals were included in this meta-analysis. Four significant associations of 2DL3 (OR = 0.591, 95% CI = 0.351–0.994; P = 0.047), 2DL5 (OR = 0.716, 95% CI = 0.601–0.853; P < 0.001), 2DS5 (OR = 0.623, 95% CI = 0.393–0.988; P = 0.045), and 3DL3 (OR = 0.324, 95% CI = 0.129–0.814; P = 0.016) genes with decreased RA risk were discovered in this meta-analysis. Although, other KIR receptors including 2DL1, 2DL2, 2DL4, 3DL1, 3DL2, 3DS1, 2DS1-2DS4, and two pseudo gens of 2DP1 and 3DP1 displayed no significant association with predisposition to RA. Conclusions These findings provide reliable evidence that 2DL3, 2DL5, 3DL3, and 2DS5 might have a potential protective role for RA.
Collapse
Affiliation(s)
- Hamideh Aghaei
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.
| |
Collapse
|
16
|
Lemay AM, Haston CK. A Chromosome 6, not Natural Killer Cell, Contribution to Radiation- and Bleomycin-Induced Lung Disease in Mice. Radiat Res 2018; 190:605-611. [DOI: 10.1667/rr15144.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Anne-Marie Lemay
- Departments of Human Genetics and Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Christina K. Haston
- Departments of Human Genetics and Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Hosomi S, Grootjans J, Huang YH, Kaser A, Blumberg RS. New Insights Into the Regulation of Natural-Killer Group 2 Member D (NKG2D) and NKG2D-Ligands: Endoplasmic Reticulum Stress and CEA-Related Cell Adhesion Molecule 1. Front Immunol 2018; 9:1324. [PMID: 29973929 PMCID: PMC6020765 DOI: 10.3389/fimmu.2018.01324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/28/2018] [Indexed: 01/02/2023] Open
Abstract
Natural-killer group 2 member D (NKG2D) is a well-characterized activating receptor expressed by natural killer (NK) cells, NKT cells, activated CD8+ T cells, subsets of γδ+ T cells, and innate-like T cells. NKG2D recognizes multiple ligands (NKG2D-ligands) to mount an innate immune response against stressed, transformed, or infected cells. NKG2D-ligand surface expression is tightly restricted on healthy cells through transcriptional and post-transcriptional mechanisms, while transformed or infected cells express the ligands as a danger signal. Recent studies have revealed that unfolded protein response pathways during endoplasmic reticulum (ER) stress result in upregulation of ULBP-related protein via the protein kinase RNA-like ER kinase-activating factor 4-C/EBP homologous protein (PERK-ATF4-CHOP) pathway, which can be linked to the pathogenesis of autoimmune diseases. Transformed cells, however, possess mechanisms to escape NKG2D-mediated immune surveillance, such as upregulation of carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CEACAM1), a negative regulator of NKG2D-ligands. In this review, we discuss mechanisms of NKG2D-ligand regulation, with a focus on newly discovered mechanisms that promote NKG2D-ligand expression on epithelial cells, including ER stress, and mechanisms that suppress NKG2D-ligand-mediated killing of cancer cells, namely by co-expression of CEACAM1.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Stein N, Tsukerman P, Mandelboim O. The paired receptors TIGIT and DNAM-1 as targets for therapeutic antibodies. Hum Antibodies 2018; 25:111-119. [PMID: 28035916 DOI: 10.3233/hab-160307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the most exciting fields in modern medicine is immunotherapy, treatment which looks to harness the power of the immune system to fight disease. A particularly effective strategy uses antibodies designed to influence the activity levels of the immune system. Here we look at two receptors - TIGIT and DNAM-1 - which bind the same ligands but have opposite effects on immune cells, earning them the label `paired receptors'. Importantly, natural killer cells and cytotoxic T cells express both of these receptors, and in certain cases their effector functions are dictated by TIGIT or DNAM-1 signaling. Agonist and antagonist antibodies targeting either TIGIT or DNAM-1 present many therapeutic options for diseases spanning from cancer to auto-immunity. In this review we present cases in which the modulation of these receptors holds potential for the development of novel therapies.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Gene Expression Regulation
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Protein Binding
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
|
19
|
Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol 2017; 453:68-78. [PMID: 28412519 DOI: 10.1016/j.mce.2017.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects on gut homeostasis, and provide a mechanistic basis for potential therapeutic benefit of vitamin D supplementation in IBD.
Collapse
Affiliation(s)
- Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
NK cell subsets in autoimmune diseases. J Autoimmun 2017; 83:22-30. [DOI: 10.1016/j.jaut.2017.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
|
21
|
Guo R, Zhou Y, Lu L, Cao L, Cao J. Atopy in children with juvenile systemic lupus erythematosus is associated with severe disease. PLoS One 2017; 12:e0177774. [PMID: 28545118 PMCID: PMC5435243 DOI: 10.1371/journal.pone.0177774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/03/2017] [Indexed: 01/22/2023] Open
Abstract
The influence of co-existing atopy on the prognosis of juvenile systemic lupus erythematosus (JSLE) was assessed in this study. Patients diagnosed with JSLE between October 2005 and April 2016 were enrolled in a prospective study and followed up for 2 years. Management of patients was evaluated using the systemic lupus erythematosus disease activity index 2000 (SLEDAI-2K) score and laboratory variables. Eighty JSLE patients were enrolled at diagnosis and divided into those with (n = 35) and without (n = 45) atopy. When compared with the non-atopic group, atopic patients showed higher SLEDAI-2K score at disease onset (16.09 vs. 11.18), higher erythrocyte sedimentation rate (52.89 vs. 38.27 mm/h), higher percentage of total B-cells (25.85 vs. 19.51%), lower percentage (7.26 vs. 9.03%) and cytotoxicity (9.92 vs. 11.32%) of natural killer cells, and lower complement C3 (0.51 vs. 0.69 g/L) (all p<0.05). At 1, 3, 6, 12, 18, and 24 months, JSLE patients with atopy reached higher SLEDAI-2K score and lower ΔSLEDAI-2K improvement rate (at 1 month, 8.34 vs. 4.71 and 43.63 vs. 57.95%, respectively; at 3 months, 8.57 vs. 2.62 and 48.39 vs. 75.10%, respectively; at 6 months, 6.91 vs. 2.38 and 53.59 vs. 77.26%, respectively; at 12 months, 4.71 vs. 1.80 and 69.54 vs. 84.10%, respectively; at 18 months, 4.66 vs. 2.02 and 68.14 vs. 82.93%, respectively; at 24 months, 8.57 vs. 2.62 and 70.00 vs. 81.88%, respectively; all p<0.05). During the 24 months of follow-up, the total number of disease flares was higher in JSLE patients with co-existing atopy (3.77 vs. 1.51, p<0.05), and the atopic group needed much more time to reach the stable condition of the disease (6.88 vs. 4.65 months, p<0.05). JSLE patients combined with co-existing atopy had more severe disease at diagnosis and poorer outcomes than JSLE patients without atopy.
Collapse
Affiliation(s)
- Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Yanqing Zhou
- Department of Pediatrics, Central hospital of Jiading, Shanghai, P.R.China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Lanfang Cao
- Department of Pediatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Junjia Cao
- Department of Pediatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| |
Collapse
|
22
|
Cosan F, Aktas Cetin E, Akdeniz N, Emrence Z, Cefle A, Deniz G. Natural Killer Cell Subsets and Their Functional Activity in Behçet's Disease. Immunol Invest 2017; 46:419-432. [PMID: 28388249 DOI: 10.1080/08820139.2017.1288240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Behçet's disease (BD) is a rare, chronic autoinflammatory disorder of unknown origin. Natural killer (NK) cells are one of the major immunoregulatory cell groups of the innate immune system, but their role in BD pathogenesis is not well documented. OBJECTIVES We aimed to investigate the role of NK cell subsets and their cytokine secretion and cytotoxic activity in patients with BD. PATIENTS AND METHODS The study group consisted of BD patients who had only mucocutaneous involvement, and they were compared with healthy subjects. BD patients were divided into two groups according to their frequencies of oral ulcerations. NK cell cytotoxicity was determined using CD107a expression and a CFSE-based cytotoxicity test. Expression of NK cell receptors and surface markers and the intracellular IL-5, IL-10, IL-17, and IFN-γ levels in CD16+ NK cells were assessed by flow cytometry. RESULTS Although the cytokine secretion pattern was different, no difference was obtained in cytotoxic activity, expression of activatory receptors, or degranulation of NK cells. CONCLUSION Increases in NK1/NK2 ratio and CD16+IFN-γ+ NK1 cells might support the idea of a biased IFN-γ dominant immune response in the mucocutaneous involvement of BD pathogenesis. Although the cytokine secretion pattern was different, no difference was obtained in cytotoxic activity, expression of activatory receptors, or degranulation of NK cells.
Collapse
Affiliation(s)
- Fulya Cosan
- a Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology , Bahcesehir University , Istanbul , Turkey.,b Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology , Kocaeli University , Kocaeli , Turkey
| | - Esin Aktas Cetin
- c Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Department of Immunology , Istanbul University , Istanbul , Turkey
| | - Nilgun Akdeniz
- c Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Department of Immunology , Istanbul University , Istanbul , Turkey
| | - Zeliha Emrence
- d Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Department of Genetics , Istanbul University , Istanbul , Turkey
| | - Ayse Cefle
- b Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology , Kocaeli University , Kocaeli , Turkey
| | - Gunnur Deniz
- c Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Department of Immunology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
23
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
24
|
Velarde-de la Cruz EE, Sánchez-Hernández PE, Muñoz-Valle JF, Palafox-Sánchez CA, Ramírez-de Los Santos S, Graciano-Machuca O, García-Iglesias T, Montoya-Buelna M, Ramírez-Dueñas MG. KIR2DL2 and KIR2DS2 as genetic markers to the methotrexate response in rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2017; 38:303-9. [PMID: 27251940 DOI: 10.1080/08923973.2016.1194429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Disease Modifying Anti-Rheumatic Drugs (DMARDs) are aimed to interfere with rheumatoid arthritis (RA) progression and reduce the joint damage; however, not all patients respond alike. Killer-cell immunoglobulin-like receptors (KIR) and their ligands, human leucocyte antigen class I (HLA-I), have been associated with RA pathology; therefore, KIR and HLA genes may influence the treatment response. MATERIALS AND METHODS We evaluated the association of KIR genotype and their ligands HLA-C genes with the response to DMARDs in RA patients. We included 69 patients diagnosed with RA and 82 healthy individuals as the reference group. KIR and HLA-C genotyping was performed using SSP-PCR. RA patients were assessed at baseline and under treatment at 6 and 12 months; subsequently classified as responders and non-responders in each time period. We evaluated the association between DMARD response and genes using statistical analysis by using Fisher exact test with Bonferroni correction; results were regarded as statistically significant at p < 0.05. RESULTS Significant difference was observed in gene frequencies of patients and the reference group, KIR2DL2 was associated with RA (p = 0.031, OR = 2.119). We also observed an association between KIR2DS2 and the response to methotrexate (MTX), moreover, the combination KIR2DL2+/KIR2DS2+ was more frequent in responders to MTX (p = 0.043). DISCUSSION AND CONCLUSIONS In our results, responders and non-responders to DMARDs showed KIR2DS2 and KIR2DL2 different gene frequencies, therefore, these genes could be used as response predictors to DMARDs treatment. Thus, these genes were also associated with disease severity, as well as the treatment response possibly by the immunoregulatory function of NK cells.
Collapse
Affiliation(s)
- Erandi Enif Velarde-de la Cruz
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Pedro Ernesto Sánchez-Hernández
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - José Francisco Muñoz-Valle
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Claudia Azucena Palafox-Sánchez
- b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,c Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Saúl Ramírez-de Los Santos
- d Departamento de Clínicas , Centro Universitario de los Altos, Universidad de Guadalajara , Tepatitlán , Jalisco , México
| | - Omar Graciano-Machuca
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Trinidad García-Iglesias
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - Margarita Montoya-Buelna
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| | - María Guadalupe Ramírez-Dueñas
- a Laboratorio de Inmunología, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México ;,b Doctorado en Ciencias Biomédicas, Departamento de Fisiología , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Guadalajara , Jalisco , México
| |
Collapse
|
25
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
26
|
Templer S, Sacks G. A blessing and a curse: is high NK cell activity good for health and bad for reproduction? HUM FERTIL 2016; 19:166-72. [DOI: 10.1080/14647273.2016.1219072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sophie Templer
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Gavin Sacks
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- IVF Australia, Sydney, Australia
- St George Hospital, Sydney, Australia
- Royal Hospital for Women, Sydney, Australia
| |
Collapse
|
27
|
Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol 2016; 46:1984-96. [PMID: 27325505 DOI: 10.1002/eji.201546194] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals.
Collapse
Affiliation(s)
- Laura Hertwig
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Isabell Hamann
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jason M Millward
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rebekka Pietrek
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Coralie Chanvillard
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hanna Stuis
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karolin Pollok
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,German Rheumatism Research Center, Germany and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
28
|
Analysis of killer cell immunoglobulin-like receptors and their human leukocyte antigen-ligands gene polymorphisms in Iranian patients with systemic lupus erythematosus. Lupus 2016; 25:1244-53. [DOI: 10.1177/0961203316638931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/22/2016] [Indexed: 01/18/2023]
Abstract
Objective Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease. Natural killer (NK) cells play a critical role in the pathogenesis of autoimmune disorders that mainly express killer cell immunoglobulin-like receptors (KIRs). The present study was undertaken to determine the association of the KIR alleles, genotypes, and KIR–human leukocyte antigen ( HLA) ligand gene combinations with the susceptibility to SLE. Methods The genotyping of 17 KIR and 5 HLA loci was performed using the polymerase chain reaction-sequence specific primer (PCR-SSP) method. The study population consisted of 230 SLE patients and 273 ethnical-, age-, and sex-matched healthy controls. The association of the polymorphisms with the prevalence of 11 clinical criteria in patients was analyzed. Results The carrier frequency of HLA-A-Bw4 was modestly decreased in the SLE patients. The prevalence of hematological and renal disorders was significantly increased in patients with combination of KIR3DL1+; HLA-B-Bw4Thr80+ and KIR2DS1+; HLA-C2+ genes, respectively. Female patients with combination of KIR2DL2+; HLA-C1− genes were more likely to develop serositis. In addition the prevalence of renal disorders, oral ulcer and serositis was significantly increased in male patients with KIR3DP1+, KIR2DS1+, and KIR2DS3+ genotypes respectively. Conclusion Our results showed that the presence of activating KIR receptors alone or in combination with their HLA ligands and the absence of inhibitory KIRs in combination with their HLA ligands may activate NK cells and are significantly correlated with the prevalence of renal disease, hematologic disorders, serositis, and oral ulcer in SLE patients.
Collapse
|
29
|
Rojas JM, Spada R, Sanz-Ortega L, Morillas L, Mejías R, Mulens-Arias V, Pérez-Yagüe S, Barber DF. PI3K p85 β regulatory subunit deficiency does not affect NK cell differentiation and increases NKG2D-mediated activation. J Leukoc Biol 2016; 100:1285-1296. [PMID: 27381007 DOI: 10.1189/jlb.1a1215-541rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Activation of NK cells depends on a balance between activating and inhibitory signals. Class Ia PI3K are heterodimeric proteins with a catalytic and a regulatory subunit and have a central role in cell signaling by associating with tyrosine kinase receptors to trigger signaling cascades. The regulatory p85 subunit participates in signaling through NKG2D, one of the main activating receptors on NK cells, via its interaction with the adaptor protein DAP10. Although the effects of inhibiting catalytic subunits or deleting the regulatory p85α subunit have been studied, little attention has focused on the role of the p85β subunit in NK cells. Using p85β knockout mice, we found that p85β deficiency does not alter NK cell differentiation and maturation in spleen or bone marrow. NK cells from p85β-/- mice nonetheless produced more IFN-γ and degranulated more effectively when stimulated with anti-NKG2D antibody. These cells also degranulated and killed NKG2D ligand-expressing target cells more efficiently. We show that p85β deficiency impaired NKG2D internalization, which could contribute to the activated phenotype. Decreasing p85β subunit protein levels might thus constitute a therapeutic target to promote NK cell activity toward NKG2D ligand-expressing cells.
Collapse
Affiliation(s)
- José M Rojas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Roberto Spada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Laura Morillas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Raquel Mejías
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
30
|
NK Cell Subtypes as Regulators of Autoimmune Liver Disease. Gastroenterol Res Pract 2016; 2016:6903496. [PMID: 27462349 PMCID: PMC4947642 DOI: 10.1155/2016/6903496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.
Collapse
|
31
|
Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci U S A 2016; 113:E2973-82. [PMID: 27162345 DOI: 10.1073/pnas.1524924113] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood-brain barrier, CD56(bright) NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4(+) T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4(+) T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor's ligand CD155 on CD4(+) T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4(+) T cells and the cytolytic activity of NK cells.
Collapse
|
32
|
Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22:933-48. [PMID: 26811638 PMCID: PMC4716046 DOI: 10.3748/wjg.v22.i3.933] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/28/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency has been associated with a wide range of diseases and multiple forms of cancer including breast, colon, and prostate cancers. Relatively recent work has demonstrated vitamin D to be critical in immune function and therefore important in inflammatory diseases such as inflammatory bowel disease (IBD). Because vitamin D deficiency or insufficiency is increasingly prevalent around the world, with an estimated 30%-50% of children and adults at risk for vitamin D deficiency worldwide, it could have a significant impact on IBD. Epidemiologic studies suggest that low serum vitamin D levels are a risk factor for IBD and colon cancer, and vitamin D supplementation is associated with decreased colitis disease activity and/or alleviated symptoms. Patients diagnosed with IBD have a higher incidence of colorectal cancer than the general population, which supports the notion that inflammation plays a key role in cancer development and underscores the importance of understanding how vitamin D influences inflammation and its cancer-promoting effects. In addition to human epidemiological data, studies utilizing mouse models of colitis have shown that vitamin D is beneficial in preventing or ameliorating inflammation and clinical disease. The precise role of vitamin D on colitis is unknown; however, vitamin D regulates immune cell trafficking and differentiation, gut barrier function and antimicrobial peptide synthesis, all of which may be protective from IBD and colon cancer. Here we focus on effects of vitamin D on inflammation and inflammation-associated colon cancer and discuss the potential use of vitamin D for protection and treatment of IBD and colon cancer.
Collapse
|
33
|
Liu Q, Sanai N, Jin WN, La Cava A, Van Kaer L, Shi FD. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci 2016; 19:243-52. [PMID: 26752157 PMCID: PMC5336309 DOI: 10.1038/nn.4211] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022]
Abstract
Recovery from organ-specific autoimmune diseases largely relies on the mobilization of endogenous repair mechanisms and local factors that control them. Natural killer (NK) cells are swiftly mobilized to organs targeted by autoimmunity and typically undergo numerical contraction when inflammation wanes. We report the unexpected finding that NK cells are retained in the brain subventricular zone (SVZ) during the chronic phase of multiple sclerosis in humans and its animal model in mice. These NK cells were found preferentially in close proximity to SVZ neural stem cells (NSCs) that produce interleukin-15 and sustain functionally competent NK cells. Moreover, NK cells limited the reparative capacity of NSCs following brain inflammation. These findings reveal that reciprocal interactions between NSCs and NK cells regulate neurorepair.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
34
|
Maruthamuthu S, Mariakuttikan J. Predominance of B haplotype associated KIR genes in Tamil Speaking Dravidians. Hum Immunol 2015; 76:344-7. [DOI: 10.1016/j.humimm.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
|
35
|
Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 2015; 15:243-54. [PMID: 25743219 DOI: 10.1038/nri3799] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for the control of infections and malignancies. NK cells express a variety of inhibitory and activating receptors that facilitate fine discrimination between damaged and healthy cells. Among them, a family of molecules that bind nectin and nectin-like proteins has recently emerged and has been shown to function as an important regulator of NK cell functions. These molecules include CD226, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), CD96, and cytotoxic and regulatory T cell molecule (CRTAM). In this Review, we focus on the recent advances in our understanding of how these receptors regulate NK cell biology and of their roles in pathologies such as cancer, infection and autoimmunity.
Collapse
Affiliation(s)
- Ludovic Martinet
- 1] Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. [2] Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, Toulouse F-31000, France
| | - Mark J Smyth
- 1] Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. [2] School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
36
|
Spada R, Rojas JM, Pérez-Yagüe S, Mulens V, Cannata-Ortiz P, Bragado R, Barber DF. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol 2015; 97:583-98. [PMID: 25583577 DOI: 10.1189/jlb.4a0714-326r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NK cells are a major component of the immune system, and alterations in their activity are correlated with various autoimmune diseases. In the present work, we observed an increased expression of the NKG2D ligand MICA in SLE patients' kidneys but not healthy subjects. We also show glomerulus-specific expression of the NKG2D ligands Rae-1 and Mult-1 in various murine SLE models, which correlated with a higher number of glomerular-infiltrating NK cells. As the role of NK cells in the immunopathogenesis of SLE is poorly understood, we explored NK cell differentiation and activity in tissues and organs in SLE-prone murine models by use of diseased and prediseased MRL/MpJ and MRL/lpr mice. We report here that phenotypically iNK cells accumulate only in the spleen but not in BM or kidneys of diseased mice. Infiltrating NK cells in kidneys undergoing a lupus nephritic process showed a more mature, activated phenotype compared with kidney, as well as peripheral NK cells from prediseased mice, as determined by IFN-γ and STAT5 analysis. These findings and the presence of glomerulus-specific NKG2D ligands in lupus-prone mice identify a role for NK cells and NKG2D ligands in the lupus nephritic process, which could aid in understanding their role in human SLE.
Collapse
Affiliation(s)
- Roberto Spada
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - José M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Sonia Pérez-Yagüe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Vladimir Mulens
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Pablo Cannata-Ortiz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Rafael Bragado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Domingo F Barber
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| |
Collapse
|
37
|
Richter J, Capková K, Hříbalová V, Vannucci L, Danyi I, Malý M, Fišerová A. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. Clin Exp Immunol 2014; 177:121-33. [PMID: 24588081 DOI: 10.1111/cei.12313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis is an autoimmunity leading to considerable impairment of quality of life. N-acetyl glucosamine (GlcNAc) has been described previously as a potent modulator of experimental arthritis in animal models and is used for osteoarthritis treatment in humans, praised for its lack of adverse effects. In this study we present a comprehensive immunological analysis of multivalent GlcNAc-terminated glycoconjugate (GC) application in the treatment of collagen-induced arthritis (CIA) and its clinical outcome. We used immunohistochemistry and FACS to describe conditions on the inflammation site. Systemic and clinical effects were evaluated by FACS, cytotoxicity assay, ELISA, cytometric bead array (CBA), RT-PCR and clinical scoring. We found reduced inflammatory infiltration, NKG2D expression on NK and suppression of T, B and antigen-presenting cells (APC) in the synovia. On the systemic level, GCs prevented the activation of monocyte- and B cell-derived APCs, the rise of TNF-α and IFN-γ levels, and subsequent type II collagen (CII)-specific IgG2a formation. Moreover, we detected an increase of anti-inflammatory IL-4 mRNA in the spleen. Similar to the synovia, the GCs caused a significant reduction of NKG2D-expressing NK cells in the spleen without influencing their lytic function. GCs effectively postponed the onset of arthritic symptoms, reduced their severity and in 18% (GN8P) and 31% (GN4C) of the cases completely prevented their appearance. Our data prove that GlcNAc glycoconjugates prevent the inflammatory response, involving proinflammatory cytokine rise, APC activation and NKG2D expression, leading to the attenuation of clinical symptoms. These results support the glycobiological approach to the treatment of collagen-induced arthritis/rheumatoid arthritis (CIA/RA) as a way of bringing new prospects for more effective therapeutic interventions.
Collapse
Affiliation(s)
- J Richter
- Laboratory of Molecular Biology and Immunology, Institute of Microbiology, ASCR v.v.i., Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
38
|
Torres LC, Soares DCDQ, Kulikowski LD, Franco JF, Kim CA. NK and B cell deficiency in a MPS type II family with novel mutation in the IDS gene. Clin Immunol 2014; 154:100-4. [PMID: 25038527 DOI: 10.1016/j.clim.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 11/16/2022]
Abstract
The mucopolysaccharidoses (MPSs) are a group of rare, inherited lysosomal storage disorders that are clinically characterized by abnormalities in multiple organ systems and reduced life expectancy. Whereas the lysosome is essential to the functioning of the immune system, some authors suggest that the MPS patients have abnormalities in the immune system similar to the patients with primary immunodeficiency. In this study, we evaluated 8 male MPS type II patients of the same family with novel mutation in the IDS gene. We found in this MPS family a quantitative deficiency of NK and B cells with normal values of IgG, IgM and IgA serum antibodies and normal response to polysaccharide antigens. Interestingly, abnormalities found in these patients were not observed in other MPS patients, suggesting that the type of mutation found in the IDS gene can be implicated in the immunodeficiency.
Collapse
Affiliation(s)
- Leuridan Cavalcante Torres
- Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil; Medical Investigation Laboratory (LIM 36), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil.
| | - Diogo Cordeiro de Queiroz Soares
- Translational Research Laboratory Prof. C. A. Hart, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil; Medical Genetics Unit, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Department of Pathology, Citogenomics Laboratory (LIM 03), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Jose Francisco Franco
- Medical Genetics Unit, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Chong Ae Kim
- Medical Genetics Unit, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
39
|
Prakash S, Alam S, Bharadwaj U, Aggarwal A, Mishra RN, Agrawal S. Associations of killer cell immunoglobulin like receptors with rheumatoid arthritis among North Indian population. Hum Immunol 2014; 75:802-7. [PMID: 24912006 DOI: 10.1016/j.humimm.2014.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/11/2014] [Accepted: 05/29/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease of unknown etiology. Killer cell immunoglobulin-like receptors (KIR) expressed on surface of natural killer cells and CD28 null T-cells which are present in synovial membrane of RA. The present study has evaluated associations of KIR genes with RA among North Indian population from Uttar Pradesh. MATERIALS AND METHODS KIR genotypes were determined in 100 RA cases and 100 healthy controls using sequence specific primer polymerase chain reaction (PCR-SSP) method. RESULTS RA cases positive for KIR3DS1 (OR = 1.17, p-value = 0.0498) and KIR2DS2 (OR = 2.21, p-value = 0.0120) showed risk associations. While, KIR2DL2 (OR = 0.40, p-value = 0.0026), KIR2DL3 (OR = 0.44, p-value = 0.0283) and KIR3DL1 (OR=0.32, p-value = 0.0012) showed protective associations. Increased incidence of BB genotype (45%) was revealed among cases. Risk association was noted against telomeric region (OR = 2.12, p = 0.0120) genes for RA. Pair-wise linkage disequilibrium (LD) analysis among RA cases revealed KIR2DS1-2DL1 (D' = 0.83, r(2) = 0.36), KIR3DL1-3DS1 (D' = 1, r(2) = 0.58) and KIR2DL1-2DL2 (D' = 1, r(2)=0.61) to be in significant LD. KIR3DS1 and KIR2DS3 genes showed significant risk associations among RA patients with extra-articular manifestations (OR = 5.14, p-value = 0.0018; OR = 3.79, p-value = 0.0106) and in limited range of motion in affected joints (OR = 14.91, p-value = 0.0001; OR = 2.95, p-value=0.0126). CONCLUSION The KIR activating genes have risk association with RA in the present study.
Collapse
Affiliation(s)
- Swayam Prakash
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareily Road, Lucknow, Uttar Pradesh, India
| | - Shahnawaz Alam
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareily Road, Lucknow, Uttar Pradesh, India
| | - Uddalak Bharadwaj
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Amita Aggarwal
- Department of Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareily Road, Lucknow, Uttar Pradesh, India
| | - Ram Nath Mishra
- Department of Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareily Road, Lucknow, Uttar Pradesh, India
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareily Road, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
40
|
Theorell J, Gustavsson AL, Tesi B, Sigmundsson K, Ljunggren HG, Lundbäck T, Bryceson YT. Immunomodulatory activity of commonly used drugs on Fc-receptor-mediated human natural killer cell activation. Cancer Immunol Immunother 2014; 63:627-41. [PMID: 24682538 PMCID: PMC11028594 DOI: 10.1007/s00262-014-1539-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Natural killer (NK) cells mediate defense against neoplastic as well as infected cells. Yet, how their effector functions are affected by the large variety of pharmacological compounds commonly in use has not been investigated systematically. Here, we screened 1,200 in-use or previously approved drugs for their biological effect on freshly isolated human peripheral blood-derived NK cells. Mimicking antibody-dependent cellular cytotoxicity (ADCC), known to be important in antibody-based immunotherapies against, e.g., human malignancies, the cells were stimulated by Fc-receptor (CD16) engagement. Cellular responses were assessed by flow cytometry. Fifty-six compounds that significantly inhibited and twelve that enhanced one or more of the readouts of adhesion, exocytosis, and chemokine production were identified and confirmed as hits. Among the confirmed inhibitors, 80 % could be assigned to one of seven major pharmacological classes. These classes were β2-adrenergic agonists, prostaglandins, phosphodiesterase-4 inhibitors, Ca(2+)-channel blockers, histamine H1-receptor antagonists, serotonin/dopamine receptor antagonists, and topoisomerase inhibitors that displayed distinct inhibitory patterns on NK cell responses. Among observed enhancers, interestingly, two ergosterol synthesis inhibitors were identified that specifically promoted exocytosis. In summary, these results provide a comprehensive knowledge base of the effect known drugs have on NK cells. More specifically, they provide an overview of drugs that may modulate NK cell-mediated ADCC in the context of clinical immunotherapies.
Collapse
Affiliation(s)
- Jakob Theorell
- Department of Medicine, Centre for Infectious Medicine, F59, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kristmundur Sigmundsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Centre for Infectious Medicine, F59, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yenan T. Bryceson
- Department of Medicine, Centre for Infectious Medicine, F59, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Broegelmann Research Laboratory, Institute of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
Role of cytolytic impairment of natural killer and natural killer T-cell populations in rheumatoid arthritis. Clin Rheumatol 2014; 33:1067-78. [PMID: 24797770 DOI: 10.1007/s10067-014-2641-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/24/2014] [Accepted: 04/17/2014] [Indexed: 01/13/2023]
Abstract
Innate immunity has been widely accepted as one of the major cause for the alteration of immune system and progression of autoimmune diseases. Natural killer (NK) cells and natural killer T (NKT) cells have not been explored in clinical studies for their cytolytic components in association with rheumatoid arthritis (RA). The literature available for these potential candidates is controversial in terms of their protective or pathogenic role in disease severity of RA. Present study explained the role of NK and NKT cell populations and intracellular expression of caspases, perforin, granzymes A and B in the pathogenesis of RA in patients. DAS28 score was measured as the disease severity. Immunochemical parameters were studied by using monoclonal antibodies (mAbs) against different cell types in flow cytometry. Results indicated that that whatsoever is the change in percentage cell populations, ratio of NK and NKT cell populations always remained poised even in the disease state. Reactive oxygen species (ROS) levels were elevated with increased intracellular active caspase-3, perforin and granzyme expression in RA patients. Their elevated expressions were positively correlated with DAS28 suggesting the pathogenic role in RA. The expressions of pro-inflammatory cytokines were enhanced while the anti-inflammatory cytokine expressions were diminished in the patients. Present study may point towards futuristic therapeutic targets which can fascinate the pharmaceutical industries to selectively target these molecules in designing the therapeutic strategy of RA patients.
Collapse
|
42
|
Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects. Immunology 2014; 141:483-9. [PMID: 24303897 DOI: 10.1111/imm.12224] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022] Open
Abstract
Human natural killer (NK) cells have distinct functions as NK(tolerant) , NK(cytotoxic) and NK(regulatory) cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27⁺ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs.
Collapse
Affiliation(s)
- Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | | | | |
Collapse
|
43
|
Cichocki F, Sitnicka E, Bryceson YT. NK cell development and function – Plasticity and redundancy unleashed. Semin Immunol 2014; 26:114-26. [DOI: 10.1016/j.smim.2014.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
|
44
|
Backteman K, Ernerudh J, Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol 2014; 175:104-12. [PMID: 24298947 DOI: 10.1111/cei.12210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 12/11/2022] Open
Abstract
Although reduced natural killer (NK) cell levels have been reported consistently in patients with coronary artery disease (CAD), the clinical significance and persistence of this immune perturbation is not clarified. In this study we characterized the NK cell deficit further by determining (i) differentiation surface markers and cytokine profile of NK cell subsets and (ii) ability to reconstitute NK cell levels over time. Flow cytometry was used to analyse NK cell subsets and the intracellular cytokine profile in 31 patients with non-ST elevation myocardial infarction (non-STEMI), 34 patients with stable angina (SA) and 37 healthy controls. In blood collected prior to coronary angiography, the proportions of NK cells were reduced significantly in non-STEMI and SA patients compared with controls, whereas NK cell subset analyses or cytokine profile measurements did not reveal any differences across groups. During a 12-month follow-up, the proportions of NK cells increased, although not in all patients. Failure to reconstitute NK cell levels was associated with several components of metabolic syndrome. Moreover, interleukin (IL)-6 levels remained high in patients with sustained NK cell deficit, whereas a decline in IL-6 (P < 0·001) was seen in patients with a pronounced increase in NK cells. In conclusion, we found no evidence that reduction of NK cells in CAD patients was associated with aberrations in NK cell phenotype at any clinical stage of the disease. Conversely, failure to reconstitute NK cell levels was associated with a persistent low-grade inflammation, suggesting a protective role of NK cells in CAD.
Collapse
Affiliation(s)
- K Backteman
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Clinical Immunology and Transfusion Medicine, County Council of Östergötland, Linköping, Sweden
| | | | | |
Collapse
|
45
|
Poggi A, Zocchi MR. NK cell autoreactivity and autoimmune diseases. Front Immunol 2014; 5:27. [PMID: 24550913 PMCID: PMC3912987 DOI: 10.3389/fimmu.2014.00027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023] Open
Abstract
Increasing evidences have pointed out the relevance of natural killer (NK) cells in organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands up-regulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILCs), comprising the classical CD56+ NK cells, have a role in maintaining or alternating tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Scientific Institute San Raffaele , Milan , Italy
| |
Collapse
|
46
|
Flow cytometric detection of p38 MAPK phosphorylation and intracellular cytokine expression in peripheral blood subpopulations from patients with autoimmune rheumatic diseases. J Immunol Res 2014; 2014:671431. [PMID: 24741615 PMCID: PMC3987974 DOI: 10.1155/2014/671431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022] Open
Abstract
Flow cytometric analysis of p38 mitogen-activated protein kinase (p38 MAPK) signaling cascade is optimally achieved by methanol permeabilization protocols. Such protocols suffer from the difficulties to accurately detect intracellular cytokines and surface epitopes of infrequent cell subpopulations, which are removed by methanol. To overcome these limitations, we have modified methanol-based phosphoflow protocols using several commercially available antibody clones suitable for surface antigens, intracellular cytokines, and p38 MAPK. These included markers of B cells (CD19, CD20, and CD22), T cells (CD3, CD4, and CD8), NK (CD56 and CD7), and dendritic cells (CD11c). We have also tested surface markers of costimulatory molecules, such as CD27. We have successfully determined simultaneous expression of IFN- γ , as well as IL-10, and phosphorylated p38 in cell subsets. The optimized phosphoflow protocol has also been successfully applied in peripheral blood mononuclear cells or purified cell subpopulations from patients with various autoimmune diseases. In conclusion, our refined phosphoflow cytometric approach allows simultaneous detection of p38 MAPK activity and intracellular cytokine expression and could be used as an important tool to study signaling cascades in autoimmunity.
Collapse
|
47
|
Enk J, Mandelboim O. The role of natural cytotoxicity receptors in various pathologies: emphasis on type I diabetes. Front Immunol 2014; 5:4. [PMID: 24478773 PMCID: PMC3895823 DOI: 10.3389/fimmu.2014.00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that function mainly as immune sentinels against viral infection and tumorigenesis. NK cell function is governed by inhibitory and activating signals arising from corresponding receptors. A prominent group of activating NK receptors is the natural cytotoxicity receptors (NCRs), which includes NKp30, NKp44, and NKp46. These receptors bind various diverse ligands of pathogenic, tumor, and even self origin. Type 1 diabetes mellitus (T1D) is a multifactorial autoimmune disease, in which insulin-producing beta (β) cells are ablated by the immune system. This killing of β cells is carried out mainly by T cells, but many other immune cells have been implicated in the pathogenesis of this disease. Importantly, NK cells were shown to be key participants in the initial autoimmune attack. It was shown that all β cells from humans and mice, healthy or sick, express an unknown ligand for the activating NKp46 receptor. In this review, we describe the role played by the NCRs in various pathologies with an emphasis on Type I diabetes.
Collapse
Affiliation(s)
- Jonatan Enk
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School , Jerusalem , Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School , Jerusalem , Israel
| |
Collapse
|
48
|
NK Cell Trafficking in Health and Autoimmunity:A Comprehensive Review. Clin Rev Allergy Immunol 2013; 47:119-27. [DOI: 10.1007/s12016-013-8400-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 2013; 92:237-44. [PMID: 24343663 DOI: 10.1038/icb.2013.95] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells represent key innate immune cells that restrain viral infection and malignant transformation and help mount an adaptive immune response. To perform such complicated tasks, NK cells express a wide set of inhibitory and activating receptors that alert them against cellular stress without damaging healthy cells. A new family of receptors that recognize nectin and nectin-like molecules has recently emerged as a critical regulator of NK cell functions. The most famous member of this family, DNAX accessory molecule (DNAM-1, CD226), is an adhesion molecule that control NK cell cytotoxicity and interferon-γ production against a wide range of cancer and infected cells. Its ligands CD112 and CD155 have been described in different pathological conditions, and recent evidence indicates that their expression is regulated by cellular stress. Additional receptors have been shown to bind DNAM-1 ligands and modulate NK cell functions bringing another level of complexity. These include CD96 (TACTILE) and TIGIT (WUCAM, VSTM3). Here, we review the role of DNAM-1, TIGIT and CD96 in NK cell biology summarizing the recent advances made on the role of these receptors in various pathologies, such as cancer, viral infections and autoimmunity.
Collapse
|
50
|
Aggarwal A, Sharma A, Bhatnagar A. Bi(o)communications among peripheral blood fractions: a focus on NK and NKT cell biology in rheumatoid arthritis. Autoimmunity 2013; 46:238-50. [PMID: 23215763 DOI: 10.3109/08916934.2012.755959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease with unknown pathophysiology involving many interwoven signalling cascades. ROS, NK and NKT cells might be crucial in the disease severity of RA of which the role of NK and NKT cells are controversial in literature. However, the role of oxidative stress, its impact on NK and NKT cell immunobiology and disease activity (DAS28) is largely unknown. Therefore, we studied the role of oxidative stress and NK cell subsets in the pathogenesis of RA. The state of oxidative stress in various peripheral blood fractions, percentage NK and NKT cell expression, their altered apoptotic signaling pathways involving mitochondrial membrane potential, FAS associated death domain (FADD) mediated pathways and DNA damage were analyzed. Results indicated a state of profound oxidative stress in the peripheral blood of RA patients where percentage of NK and NKT cell subsets diminished while ROS levels increased. The depolarized mitochondrial membrane potential, FAS, FASL and active caspase-3 positive NK and NKT cell subsets were considerably elevated in patients. The DNA damage, assessed as percentage of DNA in comet tail, was significantly elevated. Findings of the present work indicate increased apoptosis of peripheral NK and NKT cells in the diseased condition. PBMC and RBC are the major sites of enhanced oxidative stress. The state of oxidative stress and altered immunobiology of NK and NKT cells strongly correlated with Disease activity score. The present study strongly supports the protective role of NK cell subsets in the pathogenesis of RA.
Collapse
Affiliation(s)
- Ashish Aggarwal
- Department of Biochemistry, Basic Medical Sciences Block, Panjab University, Chandigarh, India
| | | | | |
Collapse
|