1
|
Chen YR, Yin WW, Jin YR, Lv PP, Jin M, Feng C. Current status and hotspots of in vitro oocyte maturation: a bibliometric study of the past two decades. J Assist Reprod Genet 2025; 42:459-472. [PMID: 39317914 DOI: 10.1007/s10815-024-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE In vitro maturation (IVM) of oocytes is a promising technique among assisted reproductive technologies. Although IVM has been used for many years, its efficiency is still relatively low compared to that of traditional in vitro fertilization (IVF) procedures. Therefore, we aimed to explore the hotspots and frontiers of IVM research over the past two decades and provide direction for IVM advancement. METHODS The articles and reviews related to IVM in the Web of Science Core Collection (WoSCC) were retrieved on June 03, 2024. Three bibliometric tools, VOSviewer 1.6.18 (2010), CiteSpace 6.1. R6 (2006), and Bibliometrix R package 4.1.0 (2017), were used to generate network maps and explore knowledge frontiers and trends. To uncover the latest research advancements and frontiers in the IVM field, we conducted an analysis of the entire IVM field, including all species. Given our focus on human IVM developments, we identified the leading countries, institutions, authors, and journals driving progress in human IVM. RESULTS A total of 5150 publications about IVM and 1534 publications in the specific context of human IVM were retrieved from the WoSCC. The number of publications on both overall IVM and human IVM fields has increased steadily. In human IVM, the United States (USA) and McGill University were the most prolific country and institution, respectively. Human Reproduction was both the most published in and the most cited journal in human IVM. Seang Lin, Tan was the most productive author, and Ri-Cheng, Chian's papers were the most cited in human IVM. Furthermore, five hotspot topics were summarized, namely, culture system, supplementation, cooperation in the ovarian follicle, gene expression, and oocyte cryopreservation. CONCLUSIONS Further studies could concentrate on the following topics: (1) the mechanisms involved in oocyte maturation in vivo and in vitro, especially in energy metabolism and intercellular communications; (2) the establishment of IVM culture systems, including standardization of the biphasic IVM culture system and supplementation; (3) the genetic differences between oocytes matured in vivo and in vitro; and (4) the mechanism of cryopreservation-inflicted damage and solutions to this challenge. For human IVM, it is necessary to precisely assess the developmental stages of oocytes and adjust the IVM process accordingly to develop tailored culture media. Concurrently, clinical trials are essential for evaluating the effectiveness and safety of IVM.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei-Wei Yin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ru Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chun Feng
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Chen W, Dong L, Wei C, Wu H. Role of epigenetic regulation in diminished ovarian reserve. J Assist Reprod Genet 2025; 42:389-403. [PMID: 39644448 DOI: 10.1007/s10815-024-03301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
Diminished ovarian reserve (DOR) is characterized by a decrease in the number and quality of oocytes, with its incidence increasing annually. Its pathogenesis remains unclear, making it one of the most challenging problems in the field of assisted reproduction. Epigenetic modification, a molecular mechanism affecting genomic activity and expression without altering the DNA sequence, has been widely studied in reproductive medicine and has attracted considerable attention regarding DOR. This review comprehensively examines the various epigenetic regulatory changes in ovarian granulosa cells (OGCs) and oocytes during DOR. DNA methylation plays a crucial role in regulating granulosa cell function, hormone production, and oocyte development, maturation, and senescence. Histone modifications are involved in regulating follicular activation, while non-coding RNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), regulate granulosa cell function and oocyte development. N6-methyladenosine (m6A) modifications are associated with age-related oocyte senescence. Epigenetic clocks based on DNA methylation show potential in predicting ovarian reserve in DOR. Furthermore, it discusses the potential for utilizing epigenetic mechanisms to better diagnose and manage DOR.
Collapse
Affiliation(s)
- Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chaofeng Wei
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
3
|
Pan Y, Pan C, Zhang C. Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications. J Ovarian Res 2024; 17:237. [PMID: 39593094 PMCID: PMC11590415 DOI: 10.1186/s13048-024-01551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Follicular fluid (FF) plays a vital role in the bidirectional communication between oocytes and granulosa cells (GCs), regulating and promoting oocyte growth and development. This fluid constitutes a complex microenvironment, rich in various molecules including hormones, growth factors, cytokines, lipids, proteins, and extracellular vesicles. Understanding the composition and metabolic profile of follicular fluid is important for investigating ovarian pathologies such as polycystic ovary syndrome (PCOS) and endometriosis. Additionally, analyzing follicular fluid can offer valuable insights into oocyte quality, aiding in optimal oocyte selection for in vitro fertilization (IVF). This review provides an overview of follicular fluid composition, classification of its components and discusses the influential components of oocyte development. It also highlights the role of follicular fluid in the pathogenesis and diagnosis of ovarian diseases, along with potential follicular fluid biomarkers for assessing oocyte quality. By understanding the intricate relationship between follicular fluid and oocyte development, we can advance fertility research and improve clinical outcomes for infertility patients.
Collapse
Affiliation(s)
- Yurong Pan
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenyu Pan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330019, China.
| |
Collapse
|
4
|
Kashutina M, Obosyan L, Bunyaeva E, Zhernov Y, Kirillova A. Quality of IVM ovarian tissue oocytes: impact of clinical, demographic, and laboratory factors. J Assist Reprod Genet 2024; 41:3079-3088. [PMID: 39349891 PMCID: PMC11621277 DOI: 10.1007/s10815-024-03234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/15/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE To determine how clinical, demographic, and laboratory characteristics influence ovarian tissue oocyte quality. METHODS Immature cumulus-oocyte complexes were isolated from removed ovaries and cultured for 48-52 h in either monophasic standard or biphasic CAPA media for fertility preservation. A total of 355 MII oocytes from 53 patients were described for intracytoplasmic and extracytoplasmic anomalies. Multiple clinical, laboratory, and demographic characteristics were analyzed. Statistically significant differences between independent groups in qualitative variables were identified using Pearson's χ2 and Fisher's exact tests. The diagnostic value of quantitative variables was assessed using the ROC curve analysis. Factors associated with the development of dysmorphism, taking patient age into account, were identified using the binary logistic regression analysis. RESULTS Dysmorphisms were observed in 245 oocytes (69.0%), with a median number of dysmorphisms of 2. Oocyte dysmorphisms were found to be 2.211 times more likely to be detected in patients with ovarian cancer, while the presence of dark-colored cytoplasm was associated with gynecologic surgery in the anamnesis (p = 0.002; OR 16.652; 95% CI, 1.977-140.237; Cramer's V 0.187). Small polar bodies developed 2.717 times more often (95% CI, 1.195-6.18) in patients older than 35. In the case of ovarian transportation on ice at 4 ℃, the chances of development of cytoplasmic granularity increased 2.569 times (95% CI, 1.301-5.179). The use of biphasic CAPA IVM media contributed to a decrease in the probability of large polar body formation (p = 0.034) compared to the standard monophasic IVM media. CONCLUSIONS Both patients' characteristics and laboratory parameters have an impact on the quality of IVM ovarian tissue oocytes.
Collapse
Affiliation(s)
- Maria Kashutina
- Russian University of Medicine, Moscow, Russia
- Loginov Moscow Clinical Scientific and Practical Center, Moscow, Russia
- National Research Centre for Therapy and Preventive Medicine, Moscow, Russia
| | - Lilia Obosyan
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina Bunyaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After V.I.Kulakov, Moscow, Russia
| | - Yury Zhernov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- A.N. Sysin Research Institute of Human Ecology and Environmental Hygiene, Moscow, Russia
- Fomin Clinic, Moscow, Russia
| | - Anastasia Kirillova
- Fomin Clinic, Moscow, Russia.
- Royal Women's Hospital, Melbourne, Australia.
- University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Grudet F, Martinot E, Godin P, Bérubé M, Chédotal A, Boerboom D. Slit1 inhibits ovarian follicle development and female fertility in mice†. Biol Reprod 2024; 111:834-844. [PMID: 38943353 PMCID: PMC11473917 DOI: 10.1093/biolre/ioae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Previous in vitro studies have suggested that SLIT ligands could play roles in regulating ovarian granulosa cell proliferation and gene expression, as well as luteolysis. However, no in vivo study of Slit gene function has been conducted to date. Here, we investigated the potential role of Slit1 in ovarian biology using a Slit1-null mouse model. Female Slit1-null mice were found to produce larger litters than their wild-type counterparts due to increased ovulation rates. Increased ovarian weights in Slit1-null animals were found to be due to the presence of greater numbers of healthy antral follicles with similar numbers of atretic ones, suggesting both an increased rate of follicle recruitment and a decreased rate of atresia. Consistent with this, treatment of cultured granulosa cells with exogenous SLIT1 induced apoptosis in presence or absence of follicle-stimulating hormone, but had no effect on cell proliferation. Although few alterations in the messenger RNA levels of follicle-stimulating hormone-responsive genes were noted in granulosa cells of Slit1-null mice, luteinizing hormone target gene mRNA levels were greatly increased. Finally, increased phospho-AKT levels were found in granulosa cells isolated from Slit1-null mice, and SLIT1 pretreatment of cultured granulosa cells inhibited the ability of both follicle-stimulating hormone and luteinizing hormone to increase AKT phosphorylation, suggesting a mechanism whereby SLIT1 could antagonize gonadotropin signaling. These findings therefore represent the first evidence for a physiological role of a SLIT ligand in the ovary, and define Slit1 as a novel autocrine/paracrine regulator of follicle development.
Collapse
Affiliation(s)
- Florine Grudet
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Emmanuelle Martinot
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Godin
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Michael Bérubé
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité (CRRF), Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
6
|
Scarlet D, Serbetci I, Lautner M, Kowalewski MP, Bollwein H. Exogenous FSH/LH modulates TGF beta signaling genes in granulosa cells of Simmental heifers without affecting IVP results. Theriogenology 2024; 227:60-67. [PMID: 39018835 DOI: 10.1016/j.theriogenology.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Follicular wave synchronization and follicular superstimulation with FSH are commonly used in OPU-IVP programs to increase oocyte developmental competence. Factors like Growth Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15), from the TGF beta superfamily, are produced by the oocyte and modulate follicular function. The aim of this study was to analyze the FSH-induced effects on (1) embryo production in dual-purpose Simmental cattle, and (2) TGF beta-mediated effects on oocyte-granulosa cell communication. Simmental heifers (n = 12, age 484 ± 62 days) underwent two OPU-IVP cycles in a cross-over design. Follicular waves were synchronized using 0.5 mg cloprostenol on Day 0, followed by 10 μg buserelin on Day 2. Subsequently, half of the heifers were randomly assigned to receive FSH/LH (four injections of 75 IU FSHp and 75IU LHp, 12 h apart on Days 4 and 5) before the first OPU, while the remaining heifers received FSH/LH before the second OPU. At the time of OPU, i.e. 7 days after the start of synchronization, granulosa cells were collected for RT-qPCR analysis. FSH treatment did not affect the number of oocytes collected (17.3 vs. 13.3, P > 0.05), but increased the percentage of quality 1 oocytes compared to controls (45.7 % vs. 22.0 %, P < 0.001). Neither cleavage (86.4 % vs. 85.7 %), nor blastocyst (42.1 % vs. 39.3 %) rate, or the number of transferable embryos produced by IVP (4.1 vs 4.8) was influenced by FSH treatment (P > 0.05 in all cases). FSH treatment increased HIF1A and FSHR levels in granulosa cells, while STAR was decreased (P = 0.008 in all cases). FSH treatment did not affect BMP15 or GDF9 mRNA expression (P > 0.05) but appeared to modulate the expression of genes involved in the BMP signaling pathway. Transcriptional levels of BMP15 receptor (BMPR1A, P = 0.016), and its downstream signaling factor SMAD1 (P = 0.008) were affected by FSH treatment. Our results demonstrated no benefit of this FSH stimulation protocol on IVP results in Simmental heifers. Further, our results suggest that the effects of FSH on bovine oocytes during acquisition of developmental competence may be mediated through BMP, but do not involve the regulation of transcriptional availability of GDF9, providing new insights into possible paracrine effects of the oocyte on granulosa cells.
Collapse
Affiliation(s)
- Dragos Scarlet
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Idil Serbetci
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Matthias Lautner
- Besamungsverein Neustadt a. d. Aisch e. V., Neustadt a. d. Aisch, Germany
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Gül S, Gül M, Otlu B, Erdemli ME, Gözükara Bağ HG. High Carbohydrate, Fat, and Protein Diets Have a Critical Role in Folliculogenesis and Oocyte Development in Rats. Reprod Sci 2024; 31:3215-3227. [PMID: 38937400 PMCID: PMC11438621 DOI: 10.1007/s43032-024-01629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
To date, there is no comparative data on the effects of carbohydrates, fat, and proteins, which are macronutrients, on female reproductive functions. Therefore, in this study, we investigated the effects of diets enriched with carbohydrates, fats, and proteins on folliculogenesis and oocyte development in female rats. 21-day-old rats that were just weaned were divided into 4 groups: control, carbohydrate, fat, and protein. The control group was fed with standard chow and the carbohydrate, fat, and protein groups were fed diets enriched with 75% carbohydrate, 60% fat, and 50% protein for 11 weeks, respectively. It was found that high-fat and high-protein diets caused an increase in the estrous cycle length compared to carbohydrate group (p < 0.05). Graafian follicle number decreased in the protein group compared to the control (p < 0.05). However, the atretic follicle number was higher in the fat group compared to the control group (p < 0.05). In the carbohydrate group, Zp1 was found to be lower than the control and protein groups, Zp2 was found to be lower than the control, and Zp3 was found to be lower than the fat group (p < 0.05). While BMP15 was similar between groups (p > 0.05), GDF9 was lower in all diet groups compared to the control (p < 0.05). Foxo3a was lower in the protein group compared to carbohydrate and control (p < 0.05). GAS2 was found to be higher in the control group than the fat group, and higher in the carbohydrate group than the fat and protein groups (p < 0.05). FSH, LH, Progesterone, and E2 levels were higher in all three diet groups than in the control (p < 0.05). Also, significant differences were observed between the groups regarding adiponectin, resistin, and leptin levels. Taken together, high carbohydrate, fat, and protein intake are associated with impairment of the menstrual cycle, depletion of the developing follicle types, and altered expression of folliculogenesis-specific genes and hormones. Therefore, long-term macronutrient diets may result in shortened reproductive periods and reduced fertilization potential in females in the long run.
Collapse
Affiliation(s)
- Semir Gül
- Faculty of Medicine, Department of Histology and Embryology, Tokat Gaziosmanpaşa University, Tokat, Turkey.
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey.
| | - Mehmet Gül
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey
| | - Barış Otlu
- Faculty of Medicine, Department of Medical Microbiology, İnönü University, Malatya, Turkey
| | - Mehmet Erman Erdemli
- Faculty of Medicine, Department of Medical Biochemistry, İnönü University, Malatya, Turkey
| | - Harika Gözde Gözükara Bağ
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, İnönü University, Malatya, Turkey
| |
Collapse
|
8
|
Shah SF, Noorali S, Faizi S, Jabeen A. Patuletin Ameliorates Inflammation and Letrozole-Induced Polycystic Ovarian Syndrome in Rats. Cell Biochem Funct 2024; 42:e4123. [PMID: 39294896 DOI: 10.1002/cbf.4123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Concerns about inflammation-related issues affecting female reproductive health are growing. Chronic low-grade inflammation in women with polycystic ovarian syndrome (PCOS) affects follicular growth, ovulation, and androgen production. The present investigation aimed to elucidate the efficacy of flavonoid patuletin in ameliorating the letrozole-induced PCOS and associated inflammation in rats. Female Wistar rats (32 days old) were divided into five groups (n = 12): Group I, control; Group II, vehicle control; Group III, letrozole oral (1 mg/kg) for 28 days; Group IV and Group V treatment groups, patuletin i.p. (25 mg/kg) and clomiphene citrate + metformin i.p. (50 mg/kg + 300 mg/kg), respectively. Leterozole-induced PCOS and ovarian inflammation were ameliorated by patuletin, as reflected in the improved histopathology, prevention of cyst formation, significant upregulation of growth factors such as growth differentiation factor 9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) expression, and a decrease in the pro-inflammatory cytokines TNF-α, IL-6, and COX-2. Additionally, the plasma levels of reproductive hormones were restored. Upregulation of FSH-R, PR, and CYP19a1, along with downregulation of ERα, LHR, CYP17a1, CYP11a1 and HSDβ17a1, showed the regulation of gonadotropin receptors and steroid biosynthesis genes in ovarian tissues. Patuletin demonstrated a promising protective approach against the biological model of PCOS by increasing the inflammation in ovarian tissues with consequent regulation of growth factors, enzymes, and hormones, and might be used as adjuvant therapy in the treatment of problems related to female reproductive health.
Collapse
Affiliation(s)
- Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samina Noorali
- Molecular Virology Laboratory, Department of Biology, Henry N. Tisdale Molecular Science Research Center, Claflin University, Orangeburg, South Carolina, USA
| | - Shaheen Faizi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Liu Y, Tao W, Wu S, Zhang Y, Nie H, Hou Z, Zhang J, Yang Z, Chen ZJ, Wang J, Lu F, Wu K. Maternal mRNA deadenylation is defective in in vitro matured mouse and human oocytes. Nat Commun 2024; 15:5550. [PMID: 38956014 PMCID: PMC11219934 DOI: 10.1038/s41467-024-49695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.
Collapse
Affiliation(s)
- Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenrong Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shuang Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hu Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jingye Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zhen Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, 250012, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Chegini R, Sadeghi M, Shirian S, Sabbaghziarani F, Aali E, Soleimani P, Reza Ashtari Majelan M, Zafari F, Darabi S. Effects of combination of melatonin and L-carnitine on in vitro maturation in mouse oocytes: An experimental study. Int J Reprod Biomed 2024; 22:527-538. [PMID: 39355312 PMCID: PMC11441286 DOI: 10.18502/ijrm.v22i7.16961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 10/03/2024] Open
Abstract
Background Melatonin and L-carnitine are free radical scavengers with antiapoptotic and antioxidant properties that improve oocyte development. Objective This study aimed to find the possible effect of combining 2 antioxidant agents of melatonin and L-carnitine on oocyte morphology, maturation, apoptosis, and expression of bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9) genes in a mice model. Materials and Methods To overstimulation, 60 female NMRI mice were injected intraperitoneally using mare serum gonadotropin. On day 2 post-injection, 70 cumulus-oocyte complexes were collected from each mouse. The collected oocytes randomly were then divided into 4 groups including, the control, melatonin, L-carnitine, and melatonin + L-carnitine groups. The morphology and maturation rate of the oocytes was evaluated using a light microscope. Apoptosis was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and the expression of BMP-15 and growth and differentiation factor GDF-9 genes was also evaluated by real-time polymerase chain reaction. Results Oocyte diameter significantly was increased in combination treatment of L-carnitine and melatonin compared to other groups (p < 0.05). L-carnitine group showed the highest mean percentage of oocyte cytoplasmic pattern. Results of the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling indicated that the lowest apoptosis rate belonged to the melatonin + L-carnitine group. Moreover, the combination groups showed the highest number of oocytes and maturation rate. The BMP-15 and GDF-9 genes were significantly upregulated in all treatment groups compared to the control group. Conclusion Our results suggested a combination of melatonin + L-carnitine administration as a more effective choice for in vitro promotion of oocyte maturation.
Collapse
Affiliation(s)
- Raziye Chegini
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Sadeghi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Path Lab, Shiraz, Iran
| | - Fatemeh Sabbaghziarani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ehsan Aali
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Pouriya Soleimani
- Department of Nursing, Faculty of Nursing and Midwifery, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Reza Ashtari Majelan
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
11
|
Fountas S, Petinaki E, Bolaris S, Kargakou M, Dafopoulos S, Zikopoulos A, Moustakli E, Sotiriou S, Dafopoulos K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J Clin Med 2024; 13:3775. [PMID: 38999341 PMCID: PMC11242125 DOI: 10.3390/jcm13133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo-endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization.
Collapse
Affiliation(s)
- Serafeim Fountas
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Stamatis Bolaris
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Magdalini Kargakou
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Dafopoulos
- ART Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
12
|
Tang Y, Lu S, Wei J, Xu R, Zhang H, Wei Q, Han B, Gao Y, Zhao X, Peng S, Pan M, Ma B. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells. Theriogenology 2024; 219:65-74. [PMID: 38402699 DOI: 10.1016/j.theriogenology.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Both oocyte secretory factors (OSFs) and estrogen are essential for the development and function of mammalian ovarian follicles, playing synergistic role in regulating oocyte growth. OSFs can significantly affect the biological processes regulated by estrogen in cumulus cells (CCs). It is a scientific question worth investigating whether oocyte secretory factors can influence the expression of estrogen receptors in CCs. In our study, we observed a significant increase in the mRNA and protein expressions of estrogen receptor β (Esr2/ERβ) and G-protein-coupled estrogen receptor (GPER) in cumulus cells of goat cumulus-oocyte complexes (COCs) cultured in vitro for 6 h. Furthermore, the addition of 10 ng/mL growth-differentiation factor 9 (GDF9) and 5 ng/mL bone morphogenetic protein 15 (BMP15) to the culture medium of goat COCs resulted in a significant increase in the expressions of ERβ and GPER in cumulus cells. To explore the mechanism further, we performed micromanipulation to remove oocyte contents and co-cultured the oocytectomized complexes (OOXs) with denuded oocytes (DOs) or GDF9/BMP15. The expressions of ERβ and GPER in the co-culture groups were significantly higher than those in the OOXs group, but there was no difference compared to the COCs group. Mechanistically, we found that SB431542 (inhibitor of GDF9 bioactivity), but not LDN193189 (inhibitor of BMP15 bioactivity), abolished the upregulation of ERβ and GPER in cumulus cells and the activation of Smad2/3 signaling. In conclusion, our results demonstrate that the oocyte secretory factor GDF9 promotes the activation of Smad2/3 signaling in cumulus cells during goat COCs culture in vitro, and the phosphorylation of Smad2/3 induces the expression of estrogen receptors ERβ and GPER in cumulus cells.
Collapse
Affiliation(s)
- Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Juncai Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sha Peng
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
13
|
Faizal AM, Elias MH, Jin NM, Abu MA, Syafruddin SE, Zainuddin AA, Suzuki N, Karim AKA. Unravelling the role of HAS2, GREM1, and PTGS2 gene expression in cumulus cells: implications for human oocyte development competency - a systematic review and integrated bioinformatic analysis. Front Endocrinol (Lausanne) 2024; 15:1274376. [PMID: 38524634 PMCID: PMC10957552 DOI: 10.3389/fendo.2024.1274376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
Collapse
Affiliation(s)
- Ahmad Mohd Faizal
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Marjanu Hikmah Elias
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Norazilah Mat Jin
- Department of Obstetrics & Gynecology, Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Muhammad Azrai Abu
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Ani Amelia Zainuddin
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Nao Suzuki
- Department of Obstetrics & Gynecology, St Marianna School of Medicine, Kawasaki, Japan
| | - Abdul Kadir Abdul Karim
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Mehdizadeh A, Soleimani M, Amjadi F, Sene AA, Sheikhha MH, Dehghani A, Ashourzadeh S, Aali BS, Dabiri S, Zandieh Z. Implication of Novel BMP15 and GDF9 Variants in Unexpected Poor Ovarian Response. Reprod Sci 2024; 31:840-850. [PMID: 37848645 DOI: 10.1007/s43032-023-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Unexpected poor ovarian response (UPOR) occurs when nine or fewer oocytes are retrieved from a young patient with normal ovarian reserve. Bone morphogenetic protein15 (BMP15) and growth differentiation factor 9 (GDF9) are two oocyte-specific factors with pivotal role in folliculogenesis. The aim of this study was to assess the relation between BMP15 and GDF9 variants with UPOR. Hundred women aged ≤ 39 with AMH ≥ 1.27 IU/ml participated as UPOR and normal ovarian responders (NOR) based on their oocyte number. Each group consisted of 50 patients. After genomic DNA extraction, the entire exonic regions of BMP15 and GDF9 were amplified and examined by direct sequencing. Western blotting was performed to determine the expression levels of BMP15 and GDF9 in follicular fluid. Additionally, in silico analysis was applied to predict the effect of discovered mutations. From four novel variants of BMP15 and GDF9 genes, silent mutations (c.744 T > C) and (c.99G > A) occurred in both groups, whereas missense variants: c.967-968insA and c.296A > G were found exclusively in UPORs. The latter variants caused reduction in protein expression. Moreover, the mutant allele (T) in a GDF9 polymorphism (C447T) found to be more in NOR individuals (58% NOR vs. 37% UPOR (OR = 2.3, CI 1.32-4.11, p = 0.004).The novel missense mutations which were predicted as damaging, along with other mutations that happened in UPORs might result in ovarian resistance to stimulation. The mutant allele (T) in C447T polymorphism has a protective effect. It can be concluded that there is an association between BMP15 and GDF9 variants and follicular development and ovarian response.
Collapse
Affiliation(s)
- Anahita Mehdizadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Akbari Sene
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sheikhha
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Bibi Shahnaz Aali
- FRANZCOG Rockingham Peel Group, South Metropolitan Health Service, Murdoch, Australia
| | - Shahriar Dabiri
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Zandieh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Subiran Adrados C, Cadenas J, Polat SL, Tjäder AS, Blanche P, Kristensen SG. Exploring the potential use of platelet rich plasma (PRP) from adult and umbilical cord blood in murine follicle culture. Reprod Biol 2024; 24:100851. [PMID: 38237503 DOI: 10.1016/j.repbio.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 04/02/2024]
Abstract
Ovarian follicle culture is a powerful tool to study follicular physiology and has potential applications in clinical and commercial settings. Despite remarkable progress, recreating folliculogenesis in vitro remains challenging for many mammalian species. This study investigates the impact of platelet-rich plasma (PRP) derived from adult blood (human platelet lysate, hPL) and umbilical cord blood (Umbilical cord plasma, UCP) on murine pre-antral follicle culture and oocyte maturation. Pre-antral follicles were cultured individually for 10 days with fetal bovine serum (FBS) serving as the control and two PRP sources (hPL and UCP) and their activated forms (Ac-hPL and Ac-UCP). The results suggest that neither hPL nor UCP, regardless of activation status, improved follicle culture outcomes compared to FBS. Interestingly, activation did not significantly impact the main functional outcomes such as maturation rates, survival, and growth. Oestradiol secretion and oocyte diameter, often considered hallmarks of follicle quality, did not show significant differences between matured and non-matured oocytes across the treatment groups. However, gene expression analysis revealed a significant upregulation of Gdf-9 and Bmp-15 mRNA levels in oocytes from the Ac-UCP group, regardless of maturation stage, suggesting that the accumulation of the mRNA could be due to potential challenges in translation in the Ac-UCP group. In conclusion, this study challenges the hypothesis that PRP, as a serum source, could improve follicle culture outcomes compared to FBS, the gold standard in murine follicle culture. Further research is needed to understand the species-specific effects of PRP and explore other potential factors affecting follicle culture and oocyte quality.
Collapse
Affiliation(s)
- Cristina Subiran Adrados
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Sofie Lund Polat
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anna Sanderhage Tjäder
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Paul Blanche
- Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, Entrance B, 2nd floor, 1014 Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Najafi Salehi J, Eimani H, Shahverdi A, Totonchi M, Fathi R, Moosavi SA, Taher Mofrad SMJ, Tahaei LS. Improvement of Mouse Preantral Follicle Survival and Development following Co-Culture with Ovarian Parenchyma Cell Suspension. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:153-161. [PMID: 38368519 PMCID: PMC10875308 DOI: 10.22074/ijfs.2023.1990372.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 07/22/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND The parallel and continued improvements in both infertility treatment and the management of malignancy cases have brought to the forefront the potential for fertility preservation. Using ovarian follicular resources can effectively improve reproductive capacity and prevent infertility. The primary aim of this research was to try to generate an appropriate in vivo environment for the growth of the mouse follicles. Hence, the possible effects of the ovarian parenchyma cell suspension were explored on the growth and maturation of preantral follicles in vitro. MATERIALS AND METHODS In this experimental study, ovarian parenchymal cells were mechanically dissociated from preantral follicles of 12-14 days-old NMRI mice and then divided into 5 experimental groups (G1: Control, G2: Fresh follicle with fresh parenchyma cell suspension, G3: Vitrified-warmed follicle with fresh parenchyma cell suspension, G4: Fresh follicle with frozen-thawed parenchyma cell suspension, and G5: Vitrified-warmed follicle with frozenthawed parenchyma cell suspension). The diameter of the follicles and immature oocytes, viability, antrum formation, resumption of meiosis, in vitro fertilization (IVF), and Gdf9, Bmp6, and Bmp15 gene expression were examined on different periods. RESULTS The diameter of the follicles and the oocytes on days 4 and 8, as well as the survival rate of the follicles up to day 12, were significantly higher in G2 and G4 compared to the Ctrl group (G1: 73.66%, G2:87.99%, G3: 82.70%, G4: 94.37%, and G5: 78.59%). Expression of growth marker genes for G3, and G5 groups was significantly higher than other groups, which indicated the protective effects of parenchyma cell suspension on follicles damaged by vitrification solutions. CONCLUSION The growth, survival, and maturation of preantral follicles could be enhanced by co-culturing them with ovarian parenchyma cells. Further studies are needed to optimize the conditions for a successful parenchyma cell suspension-induced in vitro maturation (IVM) to occur in infertility clinics.
Collapse
Affiliation(s)
- Javad Najafi Salehi
- Department of Basic Sciences and New Biological Technologies, Science and Culture University, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hussein Eimani
- Department of Basic Sciences and New Biological Technologies, Science and Culture University, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyed Akbar Moosavi
- Department of Lab Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohamad Javad Taher Mofrad
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Sadat Tahaei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Cheng M, Chen X, Han M, Luo X, Yu Y, Lv Y, Han Y, Cao L, Zhang J, Wang M, Jin Y. miR-155-5p improves oocyte maturation in porcine cumulus cells through connexin 43-mediated regulation of MPF activity. Theriogenology 2024; 214:124-133. [PMID: 37866301 DOI: 10.1016/j.theriogenology.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
In this study, we aimed to investigate the effect of the expression of miR-155-5p and its target genes on oocyte maturation. We analyzed the expression of miR-155-5p and its target genes in cumulus cells and oocytes using quantitative real-time reverse-transcription polymerase chain reaction. Using carboxyfluorescein, porcine cumulus cells were transfected with mimics and inhibitors of ssc-miR-155-5p to induce in vitro maturation, and subsequently, cumulus expansion, oocyte maturation, and cleavage rate were measured. We found that miR-155-5p expression in cumulus cells at the metaphase II stage was significantly higher than that at the germinal vesicle (GV) stage, whereas Cx43 expression was significantly lower than that at the GV stage (P < 0.05). Compared with those in the negative control group, the cumulus diffusion area of cumulus oocyte complexes; oocyte maturation rate; cleavage rate; HAS2, PTGS2, CD44, PTX3, and TNFAIP6 expression in cumulus cells; and GDF9, BMP15, CyclinB1, and CDK1 expression in oocytes were significantly increased in the miR-155-5p mimics group (P < 0.05), whereas the mRNA and protein expression of CX43 were significantly decreased (P < 0.05). Compared with that in the negative control group, the protein expression of CyclinB1 and p-CDK1 (Thr14, Tyr15) in the miR-155-5p mimics group was significantly increased (P < 0.05). These results suggest that miR-155-5p regulates maturation promoting factor activity by targeting Cx43, which improves the in vitro maturation and cleavage rate of porcine oocytes.
Collapse
Affiliation(s)
- Mimi Cheng
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xuan Chen
- Yanbian University, Jilin, Yanji, 133000, China
| | - Mingzi Han
- Animal Disease Prevention and Control Center of Yanbian Korean Autonomous Prefecture, Jilin, Yanji, 133000, China
| | - Xiaotong Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Yanqiu Lv
- Yanbian University, Jilin, Yanji, 133000, China
| | - Yue Han
- Yanbian University, Jilin, Yanji, 133000, China
| | - Lipeng Cao
- Yanbian University, Jilin, Yanji, 133000, China
| | | | | | - Yi Jin
- Yanbian University, Jilin, Yanji, 133000, China.
| |
Collapse
|
18
|
Ebrahimi M, Dattena M, Luciano AM, Succu S, Gadau SD, Mara L, Chessa F, Berlinguer F. In vitro culture of sheep early-antral follicles: Milestones, challenges and future perspectives. Theriogenology 2024; 213:114-123. [PMID: 37839290 DOI: 10.1016/j.theriogenology.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/05/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Early antral follicles (EAFs) represent the transitional stage between pre-antral and antral follicles, containing oocytes that have completed most of their growth phase. Therefore, they offer an easily exploitable reserve for producing mature oocytes and preserving genetic resources, given their higher abundance compared to antral follicles (AFs) and shorter culture period than other pre-antral follicles (PAFs). Despite these advantages, the culture of EAFs remains challenging, and the success rates of in vitro embryo production (IVEP) from EAF-derived oocytes are still far below the standard achieved with fully grown oocytes in ruminant species. The difficulty is related to developing suitable in vitro culture systems tailored with nutrients, growth factors, and other signaling molecules to support oocyte growth. In this review, we focus on the in vitro development of sheep EAFs to provide an informative reference to current research progress. We also summarize the basic aspect of folliculogenesis in sheep and the main achievements and limitations of the current methods for EAF isolation, in vitro culture systems, and medium supplementation. Finally, we highlight future perspectives and challenges for improving EAF culture outcomes.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy; Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy.
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università, 6, 26900, Lodi, Italy
| | - Sara Succu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Sergio Domenico Gadau
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, 07100, Sassari, Italy
| | - Fiammetta Berlinguer
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, Italy
| |
Collapse
|
19
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
20
|
Liang Y, Xu ML, Gao X, Wang Y, Zhang LN, Li YC, Guo Q. Resveratrol improves ovarian state by inhibiting apoptosis of granulosa cells. Gynecol Endocrinol 2023; 39:2181652. [PMID: 36824010 DOI: 10.1080/09513590.2023.2181652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
AIM Among the natural polyphenolic compounds, resveratrol (RES) is known for reducing the effects of declining reproductive power through resisting senility, anti-oxidant and anti-inflammatory, while the molecular mechanism of RES in human ovaries is unclear. We aimed to evaluate the most likely mechanisms of RES against apoptosis induced by H2O2 in human ovary granulosa cells. METHODS Ovarian granulosa cells from infertile women (≤35 years old) were collected. Those patients defined as polycystic ovary syndrome (PCOS), poor ovarian responder (POR) and Endometriosis were excluded. Then they were randomly divided into control group, model group and the treatment group. Cellular apoptosis was analyzed by flow cytometer method. The related protein and mRNA expressions were detected by western blot and RT-PCR. RESULTS Apoptosis rates of the treatment group containing RES with concentrations of 1 μM and 10 μM were significantly decreased (p < 0.001). Western blot results demonstrated that the proteins levels of transforming growth factor-β (TGF-β), Bax and Caspase 9 were decreased, and Bcl-2 was increased under RES treatment, while the protein levels of Caspase 8, Caspase 3, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) expressed no significant difference. The results by RT-PCR of follicle and ovarian development related mRNA factors were consistent with that of western blot assay. CONCLUSION In conclusion, the present study provides the evidence that RES may affects apoptotic factors to protect human ovarian state.
Collapse
Affiliation(s)
- Ying Liang
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, (Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| | - Mei-Ling Xu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, (Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| | - Xing Gao
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, (Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| | - Yan Wang
- North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Li-Nan Zhang
- Department of Pathology and Pathophysiology, Hebei Medicine University, Shijiazhuang, Hebei, China
| | - Ya-Cong Li
- Hebei Traditional Chinese Medicine Hospital, Shijiazhuang, Hebei, China
| | - Qing Guo
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, (Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Budiyanto A, Hartanto S, Widayanti R, Setyawan EMN, Wardono HP, Gustari S. The relationship between G1 (c.260 G>A) and G4 (c.721 G>A) polymorphisms in the GDF9 gene and the litter size of sheep: A meta-analysis study. J Adv Vet Anim Res 2023; 10:599-607. [PMID: 38370904 PMCID: PMC10868705 DOI: 10.5455/javar.2023.j715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective The results of G1 and G4 polymorphisms as litter-size (LS) markers of ewes remain contradictory. The aim was to evaluate the impact of G1 (c.260 G>A) and G4 (c.721 G>A) polymorphisms on the LS of sheep by synthesizing data from multiple previous studies. Methods Data were extracted from 14 eligible articles. The genotypes of G1 and G4 polymorphisms were homozygous wild-type (WW), heterozygous (WM), and homozygous mutant-type (MM). The standardized mean difference (SMD) method using random effect models was employed to determine the effect size of G1 and G4 polymorphisms on LS under dominant, recessive, additive, and co-dominant genetic models. Heterogeneity was analyzed with the I2 statistic index. Publication bias was depicted with funnel plots and tested by Egger's and Begg's tests. Results The study showed that the correlation between G1 polymorphism and LS in sheep was not significant (p > 0.05) under all genetic models. The influence of G4 polymorphism on the LS of sheep was found significantly (p < 0.05) under dominant [SMD = 0.28, I2 = 0% (no heterogeneity)] and co-dominant [SMD = -0.14, I2 = 36% (moderate heterogeneity)] genetic models. The WM genotype of G4 polymorphism increased LS, while the MM genotype reduced LS in sheep. Publication bias among G1 and G4 polymorphism studies was absent in all genetic models. Conclusion Thus, the study revealed that G4 polymorphism could be a potential genetic marker for LS in ewes. On the contrary, G1 polymorphism has no association with the LS of ewes.
Collapse
Affiliation(s)
- Agung Budiyanto
- Department of Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Slamet Hartanto
- National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Rini Widayanti
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erif Maha Nugraha Setyawan
- Department of Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | | | - Sri Gustari
- Department of Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
22
|
Wu K, Zhai Y, Qin M, Zhao C, Ai N, He J, Ge W. Genetic evidence for differential functions of figla and nobox in zebrafish ovarian differentiation and folliculogenesis. Commun Biol 2023; 6:1185. [PMID: 37990081 PMCID: PMC10663522 DOI: 10.1038/s42003-023-05551-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
FIGLA and NOBOX are important oocyte-specific transcription factors. Both figla-/- and nobox-/- mutants showed all-male phenotype in zebrafish due to increased dominance of the male-promoting pathway. The early diversion towards males in these mutants has precluded analysis of their roles in folliculogenesis. In this study, we attenuated the male-promoting pathway by deleting dmrt1, a key male-promoting gene, in figla-/- and nobox-/- fish, which allows a sufficient display of defects in folliculogenesis. Germ cells in figla-/-;dmrt1-/- double mutant remained in cysts without forming follicles. In contrast, follicles could form well but exhibited deficient growth in nobox-/-;dmrt1-/- double mutants. Follicles in nobox-/-;dmrt1-/- ovary could progress to previtellogenic (PV) stage but failed to enter vitellogenic growth. Such arrest at PV stage suggested a possible deficiency in estrogen signaling. This was supported by lines of evidence in nobox-/-;dmrt1-/-, including reduced expression of ovarian aromatase (cyp19a1a) and level of serum estradiol (E2), regressed genital papilla (female secondary sex characteristics), and more importantly the resumption of vitellogenic growth by E2 treatment. Expression analysis suggested Nobox might regulate cyp19a1a by controlling Gdf9 and/or Bmp15. Our discoveries indicate that Figla is essential for ovarian differentiation and follicle formation whereas Nobox is important for driving subsequent follicle development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, 519082, Zhuhai, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, 999078, Taipa, Macau, China.
| |
Collapse
|
23
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Zhai Y, Zhang X, Zhao C, Geng R, Wu K, Yuan M, Ai N, Ge W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet 2023; 19:e1010954. [PMID: 37713421 PMCID: PMC10529593 DOI: 10.1371/journal.pgen.1010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruijing Geng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
25
|
Fındık DG, Kaplanoğlu GT, Arık GN, Alemari NBA. Decreased growth differentiation factor 9, bone morphogenetic protein 15, and forkhead box O3a expressions in the ovary via ulipristal acetate. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230381. [PMID: 37585996 PMCID: PMC10427182 DOI: 10.1590/1806-9282.20230381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Folliculogenesis is a complex process involving various ovarian paracrine factors. During folliculogenesis, vitamin D3 and progesterone are significant for the proper development of follicles. This study aimed to investigate the effects of vitamin D3 and selective progesterone receptor modulator ulipristal acetate on ovarian paracrine factors. METHODS In the study, 18 female Wistar-albino rats were randomly divided into three groups: control group (saline administration, n=6), vitamin D3 group (300 ng/day vitamin D3 oral administration, n=6), and UPA group (3 mg/kg/day ulipristal acetate oral administration, n=6). Ovarian tissue was analyzed by histochemistry and immunohistochemistry. For quantification of immunohistochemistry, the mean intensities of growth differentiation factor 9, bone morphogenetic protein 15, and forkhead box O3a expressions were measured by Image J and MATLAB. Blood samples were collected for the analysis of serum anti-Müllerian hormone levels by ELISA. RESULTS Atretic follicles and hemorrhagic cystic structures were observed in the UPA group. After immunohistochemistry via folliculogenesis assessment markers, growth differentiation factor 9, bone morphogenetic protein 15, and cytoplasmic forkhead box O3a expressions decreased in the UPA group (p<0.05). Anti-Müllerian hormone level did not differ significantly between the experimental groups (p>0.05). CONCLUSION Ulipristal acetate negatively affects folliculogenesis via ovarian paracrine factors. The recommended dietary vitamin D3 supplementation in healthy cases did not cause a significant change.
Collapse
Affiliation(s)
- Damla Gül Fındık
- Bilecik Şeyh Edebali University, Faculty of Medicine, Department of Histology and Embryology – Bilecik, Turkey
| | - Gülnur Take Kaplanoğlu
- Gazi University, Faculty of Medicine, Department of Histology and Embryology – Ankara, Turkey
| | - Gökçe Nur Arık
- Gazi University, Faculty of Medicine, Department of Histology and Embryology – Ankara, Turkey
| | | |
Collapse
|
26
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Stimulatory effects of vasopressin on progesterone production and BMP signaling by ovarian granulosa cells. Biochem Biophys Res Commun 2023; 667:132-137. [PMID: 37224632 DOI: 10.1016/j.bbrc.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to clarify the effects of arginine vasopressin (AVP) on ovarian steroid production and its functional relationship to the ovarian bone morphogenetic protein (BMP) system. The results showed that AVP treatment significantly increased gonadotropin- and forskolin-induced progesterone synthesis by primary culture of rat granulosa cells and human granulosa cells, respectively. In contrast, estradiol production was not significantly affected by AVP. Treatment with AVP significantly increased forskolin-induced cAMP synthesis by human granulosa cells and mRNA levels of the progesterogenic enzymes CYP11A1 and HSD3B2 in the cells. On the other hand, AVP also enhanced BMP-15-induced phosphorylation of SMAD1/5/9 and ID1 transcription. It was further revealed that the expression levels of BMP receptors, including ALK3, ALK6 and BMPR2, were upregulated by AVP. Collectively, the results indicate that AVP stimulates progesterone production via the cAMP-PKA pathway with upregulation of BMP signaling that inhibits progesterone production, which may lead to fine adjustment of progesterone biosynthesis by granulosa cells.
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
27
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
29
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
30
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Chen PR, Uh K, Monarch K, Spate LD, Reese ED, Prather RS, Lee K. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs†. Biol Reprod 2023; 108:611-618. [PMID: 36648449 PMCID: PMC10106843 DOI: 10.1093/biolre/ioad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Growth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9-/-) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9-/- and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9-/-), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9-/- gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.
Collapse
Affiliation(s)
- Paula R Chen
- United States Department of Agriculture—Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, USA
| | - Kyungjun Uh
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kaylynn Monarch
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Emily D Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
32
|
Huang TH, Chen FR, Zhang YN, Chen SQ, Long FY, Wei JJ, Zhang K, Zeng JZ, Zhu QY, Li-Ling J, Gong Y. Decreased GDF9 and BMP15 in follicle fluid and granulosa cells and outcomes of IVF-ET among young patients with low prognosis. J Assist Reprod Genet 2023; 40:567-576. [PMID: 36689045 PMCID: PMC10033789 DOI: 10.1007/s10815-023-02723-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To analyze the level of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in follicle fluid (FF) and granulosa cells (GCs) derived from young patients with low prognosis for in vitro fertilization and embryo transfer (IVF-ET) treatment. METHODS A prospective cohort study was carried out by enrolling 52 young patients with low prognosis according to the POSEIDON classification group 3 (low prognosis group) and 51 young patients with normal ovarian reserve (control group). The concentration of the GDF9 and BMP15 proteins in FF was determined by enzyme-linked immunosorbent assay. The mRNA level of the GDF9 and BMP15 in the GCs was measured by quantitative real-time PCR. RESULTS The concentration of GDF9 (1026.72 ± 159.12 pg/mL vs. 1298.06 ± 185.41 pg/mL) and BMP15 (685.23 ± 143.91 pg/mL vs. 794.37 ± 81.79 pg/mL) in FF and the mRNA level of GDF9 and BMP15 in the GCs and the live birth rate per treatment cycle started (30.77% vs. 50.98%) and oocytes retrieved (4.25 ± 1.91 vs.12.04 ± 4.24) were significantly lower, whereas the canceled cycle rate was significantly higher (9.62% vs. 0) in the low prognosis group compared with the control group (P < 0.05). The expression of GDF9 and BMP15 in the ovary was positively correlated with live birth (P < 0.05). CONCLUSION The expression of GDF9 and BMP15 in the ovary was decreased in young patients with low prognosis accompanied by a poorer outcome of IVF-ET treatment. TRIAL REGISTRATION ChiCTR1800016107 (Chinese Clinical Trial Registry), May 11, 2018. ( http://www.chictr.org.cn/edit.aspx?pid=27216&htm=4 ).
Collapse
Affiliation(s)
- Tian-Hong Huang
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Fu-Rui Chen
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Ya-Nan Zhang
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Shi-Qi Chen
- Women and Children's Health Management Department, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Fang-Yi Long
- Department of Pharmacy, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Jia-Jing Wei
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Kun Zhang
- Department of Genetics, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jiu-Zhi Zeng
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Qiao-Ying Zhu
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yan Gong
- Reproductive Medicine Center, Sichuan Provincial Women's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, Sichuan, China.
| |
Collapse
|
33
|
Resolving the challenge of insoluble production of mature human growth differentiation factor 9 protein (GDF9) in E. coli using bicistronic expression with thioredoxin. Int J Biol Macromol 2023; 230:123225. [PMID: 36649874 DOI: 10.1016/j.ijbiomac.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Growth differentiation factor 9 (GDF9) is an oocyte-derived protein with fundamental functions in folliculogenesis. While the crucial contributions of GDF9 in follicular survival have been revealed, crystallographic studies of GDF9 structure have not yet been carried out, essentially due to the insoluble expression of GDF9 in E. coli and lack of appropriate source for structural studies. Therefore, in this study, we investigated the impact of different expression rate of bacterial thioredoxin (TrxA) using bicistronic expression constructs to induce the soluble expression of mature human GDF9 (hGDF9) driven by T7 promoter in E. coli. Our findings revealed that in BL21(DE3), the high rate of TrxA co-expression at 30 °C was sufficiently potent for the soluble expression of hGDF9 and reduction of inclusion body formation by 4 fold. We also successfully confirmed the bioactivity of the purified soluble hGDF9 protein by evaluation of follicle-stimulating hormone receptor gene expression in bovine cumulus cells derived from small follicles. This study is the first to present an effective approach for expression of bioactive form of hGDF9 using TrxA co-expression in E. coli, which may unravel the current issues regarding structural analysis of hGDF9 protein and consequently provide a better insight into hGDF9 functions and interactions.
Collapse
|
34
|
Rheza A, Santoso B, Widjiati W. Correlation of serum kisspeptin levels, ovarian kisspeptin expression, and ovarian BMP15 expression in rat model of polycystic ovary syndrome. Open Vet J 2023; 13:288-296. [PMID: 37026063 PMCID: PMC10072833 DOI: 10.5455/ovj.2023.v13.i3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Kisspeptin is a neuropeptide that has an important role in the female reproductive cycle which is indicated by its role in regulating the hypothalamic-pituitary-gonadal axis. AIMS To analyze the correlation between serum kisspeptin levels, ovarian kisspeptin expression, and ovarian Bone Morphogenic Protein-15 (BMP15) expression in polycystic ovary syndrome (PCOS) model rats. METHODS The research was accurate experimental research with a post-test design-only control group and was carried out from August to October 2022 at the Faculty of Veterinary Medicine Universitas Airlangga. 32 Rattus novergicus rats were divided into a control group and a PCOS model group. Blood serum and ovaries were obtained from all groups. In addition, blood serum was examined for kisspeptin levels by ELISA technique, and kisspeptin expression and BMP15 Ovaries were examined immunohistochemically. RESULTS Serum kisspeptin levels and ovarian kisspeptin expression of the PCOS model group were not significantly higher than those of the control group (p > 0.05, p > 0.05). The ovarian BMP15 expression of the PCOS model group was not significantly lower (p > 0.05) than that of the control group. Ovarian kisspeptin expression and ovarian BMP15 expression did not significantly correlate with serum kisspeptin levels (p > 0.05). In contrast, there was a significant correlation (p < 0.05) between ovarian kisspeptin expression and ovarian BMP15 expression. CONCLUSION Serum kisspeptin levels and ovarian kisspeptin expression of the PCOS model group were not higher than those of the control group, and the ovarian BMP15 expression of the PCOS model group was not lower than that of the control group. There was no correlation between serum kisspeptin levels with ovarian kisspeptin expression and ovarian BMP15 expression. However, a significant correlation was found between ovarian kisspeptin expression and ovarian BMP15 expression.
Collapse
Affiliation(s)
- Achmad Rheza
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
35
|
Cen S, Qian X, Wu C, Xu X, Yang X. Efficacy and Clinical Significance of the Zuogui Pill on Premature Ovarian Failure via the GDF-9/Smad2 Pathway. Nutr Cancer 2023; 75:488-497. [PMID: 36194038 DOI: 10.1080/01635581.2022.2123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Our study aims to investigate the efficacy and clinical significance of the Zuogui pill (ZGP) on premature ovarian failure (POF) via the GDF-9/Smad2 pathway. Changes in clinical symptoms in the control group (treated with Femoston alone) and the treatment group (treated with ZGP combined with Femoston) were assessed before and after treatment. Sex hormone levels, serum inflammatory cytokine levels, and ultrasound parameters were measured before and after treatment. POF rat models were established using cyclophosphamide and the POF rats were treated with Femoston, or ZGP combined with Femoston. GDF-9 and Smad2 expression levels were determined by RT-qPCR. The follicle-stimulating hormone (FSH), luteinizing hormone (LH), interleukin (IL)-6, and IL-21 levels, and the pulsatility index (PI) and resistance index (RI) values were decreased, while the estradiol (E2) and anti-Mullerian hormone (AMH) levels, antral follicle count (AFC), ovarian volume (OV), mean ovarian diameter (MOD), and peak systolic velocity (PSV) values were increased in the treatment group compared to the control group. After treatment with ZGP combined with Femoston, GDF-9 and Smad2 expression in the ovarian tissues of POF rats increased. ZGP has a therapeutic effect on POF via modulation of the GDF-9/Smad2 pathway.
Collapse
Affiliation(s)
- Su Cen
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Qian
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chunfang Wu
- Department of Traditional Chinese Medicine, Maternal and Child Health Care Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Xinya Xu
- Gynaecologic Department of Traditional Chinese Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Yang
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
de Moraes FP, Missio D, Lazzari J, Rovani MT, Ferreira R, Gonçalves PBD, Gasperin BG. Local regulation of antral follicle development and ovulation in monovulatory species. Anim Reprod 2023; 19:e20220099. [PMID: 36650852 PMCID: PMC9833292 DOI: 10.1590/1984-3143-ar2022-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
The identification of mutations in the genes encoding bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) associated with phenotypes of sterility or increased ovulation rate in sheep aroused interest in the study of the role of local factors in preantral and antral folliculogenesis in different species. An additive mutation in the BMP15 receptor, BMPR1b, which determines an increase in the ovulatory rate, has been introduced in several sheep breeds to increase the number of lambs born. Although these mutations indicate extremely relevant functions of these factors, the literature data on the regulation of the expression and function of these proteins and their receptors are very controversial, possibly due to differences in experimental models. The present review discusses the published data and preliminary results obtained by our group on the participation of local factors in the selection of the dominant follicle, ovulation, and follicular atresia in cattle, focusing on transforming growth factors beta and their receptors. The study of the expression pattern and the functionality of proteins produced by follicular cells and their receptors will allow increasing the knowledge about this local system, known to be involved in ovarian physiopathology and with the potential to promote contraception or increase the ovulation rate in mammals.
Collapse
Affiliation(s)
- Fabiane Pereira de Moraes
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil
| | - Daniele Missio
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Jessica Lazzari
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil
| | - Monique Tomazele Rovani
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Rogério Ferreira
- Faculdade de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó, SC, Brasil
| | - Paulo Bayard Dias Gonçalves
- Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Bernardo Garziera Gasperin
- Programa de Pós-graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, Brasil,Rede FiBRA-RS - Fisiopatologia e Biotécnicas da Reprodução, Santa Maria, RS, Brasil,Corresponding author:
| |
Collapse
|
37
|
Chen W, Zhai Y, Zhu B, Wu K, Fan Y, Zhou X, Liu L, Ge W. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism. PLoS Genet 2022; 18:e1010318. [PMID: 36520929 PMCID: PMC9799306 DOI: 10.1371/journal.pgen.1010318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin βAa (inhbaa), but not βAb (inhbab) and βB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Liu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
38
|
Ajafar MH, Kadhim AH, Al-Thuwaini TM, Al-Shuhaib MBS, Hussein TH. Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v45i1.57927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.
Collapse
|
39
|
Bahena-Alvarez D, Millan-Aldaco D, Rincón-Heredia R, Escamilla-Avila N, Hernandez-Cruz A. Expression of voltage-gated Ca2+ channels, Insp3Rs, and RyRs in the immature mouse ovary. J Ovarian Res 2022; 15:85. [PMID: 35869556 PMCID: PMC9306205 DOI: 10.1186/s13048-022-01015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The postnatal mammalian ovary undergoes a series of changes to ensure the maturation of sufficient follicles to support ovulation and fecundation over the reproductive life. It is well known that intracellular [Ca2+]i signals are necessary for ovulation, fertilization, and egg activation. However, we lack detailed knowledge of the molecular identity, cellular distribution, and functional role of Ca2+ channels expressed during folliculogenesis. In the neonatal period, ovarian maturation is controlled by protein growth factors released from the oocyte and granulosa cells. Conversely, during the early infantile period, maturation becomes gonadotropin-dependent and is controlled by granulosa and theca cells. The significance of intracellular Ca2+ signaling in folliculogenesis is supported by the observation that mice lacking the expression of Ca2+/calmodulin-dependent kinase IV in granulosa cells suffer abnormal follicular development and impaired fertility.
Results
Using immunofluorescence in frozen ovarian sections and confocal microscopy, we assessed the expression of high-voltage activated Ca2+ channel alpha subunits and InsP3 and ryanodine receptors in the postnatal period from 3 to 16 days. During the neonatal stage, oocytes from primordial and primary follicles show high expression of various Ca2+-selective channels, with granulosa and stroma cells expressing significantly less. These channels are likely involved in supporting Ca2+-dependent secretion of peptide growth factors. In contrast, during the early and late infantile periods, Ca2+ channel expression in the oocyte diminishes, increasing significantly in the granulosa and particularly in immature theca cells surrounding secondary follicles.
Conclusions
The developmental switch of Ca2+ channel expression from the oocytes to the perifollicular cells likely reflects the vanishing role of the oocytes once granulosa and theca cells take control of folliculogenesis in response to gonadotropins acting on their receptors.
Collapse
|
40
|
Li M, Xiao YB, Wei L, Liu Q, Liu PY, Yao JF. Beneficial Effects of Traditional Chinese Medicine in the Treatment of Premature Ovarian Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5413504. [PMID: 36471694 PMCID: PMC9719426 DOI: 10.1155/2022/5413504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/10/2023]
Abstract
Premature ovarian failure (POF) is characterized by hormonal disorders, amenorrhea, and premature loss of fertility potential in women of reproductive age. Several studies have been conducted on the effectiveness of traditional Chinese medicine (TCM) in treating POF. TCM relied primarily on apoptosis, immunity, and aging to treat POF based on the studies of domestic and foreign literature. Zuogui pills inhibited mitochondrial-dependent apoptosis in the treatment of POF. Huyang Yangkun formula regulated the downstream of the Bcl-2 family to resist apoptosis through the aquaporin-1 protein. Modified Bazhen decoction regulated apoptosis in POF by regulating X-linked inhibitors of apoptosis protein. Bushen Tianjing recipe was effective in treating POF by promoting angiogenesis and preventing apoptosis. As for immunity, Bushen Jianpi prescription and Er-Xian decoction cured autoimmunity POF models and increased follicular development-related protein expression. Bushen Huoxue Tang improved ovarian function and reduced ovarian inflammation by regulating the Nrf2/Keap1 signaling pathway and T lymphocytes. Taohong Siwu decoction promoted the proliferation and differentiation of granulosa cells of POF mice by regulating the TGF-β1/Smads signaling pathway. In addition, ginsenoside Rg1 and Jiajian Guisheng formula treated POF by regulating cell aging-related mechanisms. Si Wu Tang treated POF by activating the angiogenesis-related proteins. The goal of this review is to serve as a reference for in-depth research into the treatment of POF with TCM and provide inspiration for new diagnostic methods and treatment options.
Collapse
Affiliation(s)
- Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Yu-Bo Xiao
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Le Wei
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, China
| | - Qi Liu
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, China
| | - Pin-Yue Liu
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Jian-Feng Yao
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, China
| |
Collapse
|
41
|
Yaacobi-Artzi S, Kalo D, Roth Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS One 2022; 17:e0276642. [PMID: 36288350 PMCID: PMC9604948 DOI: 10.1371/journal.pone.0276642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
The time-lapse system is a non-invasive method that enables a continuous evaluation through embryo development. Here, we examined the association between the morphokinetics of the developing embryo and the transcriptomic profile of the formed blastocysts. Bovine oocytes were matured and fertilized in vitro; then, the putative zygotes were cultured in an incubator equipped with a time-lapse system. Based on the first-cleavage pattern, embryos were categorized as normal or abnormal (68.5±2.2 and 31.6±2.3%, respectively; P<0.001). A cleaved embryo was defined as normal when it first cleaved into two equal blastomeres; it was classified as synchronous or asynchronous according to its subsequent cleavages. An abnormal pattern was defined as direct, unequal, or reverse cleavage. Direct cleavage was classified as division from one cell directly into three or more blastomeres; unequal cleavage was classified as division that resulted in asymmetrically sized blastomeres; and reverse cleavage of the first division was classified as reduced number of blastomeres from two to one. Of the normally cleaving embryos, 60.2±3.1% underwent synchronous cleavage into 4, 8, and 16 blastomeres, and 39.7±3.1% cleaved asynchronously (P<0.001). The blastocyte formation rate was lower for the synchronously vs. the asynchronously cleaved embryos (P<0.03). The abnormally cleaved embryos showed low competence to develop to blastocysts, relative to the normally cleaved embryos (P<0.001). Microarray analysis revealed 895 and 643 differentially expressed genes in blastocysts that developed from synchronously and asynchronously cleaved embryos, respectively, relative to those that developed from directly cleaved embryos. The genes were related to the cell cycle, cell differentiation, metabolism, and apoptosis. About 180 differentially expressed genes were found between the synchronously vs. the asynchronously cleaved embryos, related to metabolism and the apoptosis mechanism. We provide the first evidence indicating that an embryo's morphokinetics is associated with the transcriptome profile of the derived blastocyst, which might be practically relevant for the embryo transfer program.
Collapse
Affiliation(s)
- Shira Yaacobi-Artzi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Dorit Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel,* E-mail:
| |
Collapse
|
42
|
Dovom MR, Noroozzadeh M, Mosaffa N, Zadeh‐Vakili A, Piryaei A, Rahmati M, Azar MF, Tehrani FR. Continued exposure to D‐galactose in postnatal period may inhibit excessive primordial follicle reduction in rats exposed prenatally to D‐galactose. Birth Defects Res 2022; 114:1112-1122. [DOI: 10.1002/bdr2.2083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Rostami Dovom
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Azita Zadeh‐Vakili
- Endocrine Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahbanoo Farhadi Azar
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
Zhang T, Ma Q, Shen Q, Jiang C, Zou F, Shen Y, Wang Y. Identification of novel biallelic variants in BMP15 in two siblings with premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:2125-2134. [PMID: 35861920 PMCID: PMC9474791 DOI: 10.1007/s10815-022-02574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) occurs in women before the age of 40 years, accompanied by amenorrhea, hypoestrogenism, hypergonadotropinism, and infertility. The pathology of POI is complex and the molecular genetic mechanisms are poorly understood. Bone morphogenetic protein 15 (BMP15) plays a crucial role in oocyte maturation and follicular development through the activation of granulosa cells. Dysfunction of BMP15 causes ovarian dysgenesis and is related to POI. Identifying pathogenic variants contributes to revealing genetic mechanisms and making clinical diagnoses of POI. METHODS The study involved two sisters diagnosed with POI. Whole-exome sequencing (WES) was performed to identify causative genes. Sanger sequencing was used to validate the mutations in patients with POI and members of the family with no clinical signs or symptoms. The effect of the novel mutations on the BMP15 structure was analyzed by PSIPRED. By over-expressing wild-type (WT) or mutant BMP15 plasmids in vitro, a functional study of the BMP15 mutant was conducted by real-time qPCR and western blotting. Through cocultivation with HEK293T cells, the effects of secreted BMP15 WT and variants on granulosa cell proliferation and apoptosis were detected through a cell counting kit-8 assay and flow cytometric analysis. RESULTS We identified biallelic variants in BMP15, c.791G > A (p. R264Q) and c.1076C > T (p. P359L), in two siblings with POI. Both sisters carried the same biallelic variants, while the other female members of their family carried only one of them. Structural prediction showed that the variants have not affected the secondary structure of BMP15 but may change the conformation of water molecules around protein surfaces and thermal stability of BMP15. Real-time qPCR showed no significant difference in mRNA levels among WT and the two variants. Western blotting indicated a reduction in BMP15 expression with the c.791G > A and c.1076C > T variants compared to WT. Moreover, mutants 791G > A and 1076C > T impaired the function of secreted BMP15 in promoting granulosa cell proliferation and suppressing cell apoptosis caused by reactive oxygen species. CONCLUSIONS This study identified novel biallelic variants, c.791G > A and c.1076C > T, of BMP15 in two siblings with POI. Both missense variants reduced the level of the BMP15 protein and impaired the function of BMP15 in promoting granulosa cell proliferation in vitro. Taken together, our findings provide a novel molecular genetic basis and potential pathogenesis of BMP15 variants in POI.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qianhong Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiongyan Shen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Cadenas J, Pors SE, Kumar A, Kalra B, Kristensen SG, Andersen CY, Mamsen LS. Concentrations of oocyte secreted GDF9 and BMP15 decrease with MII transition during human IVM. Reprod Biol Endocrinol 2022; 20:126. [PMID: 35986324 PMCID: PMC9389727 DOI: 10.1186/s12958-022-01000-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The suggested effects of the oocyte secreted GDF9 and BMP15 growth factors on oocyte maturation are currently based on recombinant proteins, and little is known about native GDF9 and BMP15 in humans. METHODS Human immature cumulus-oocyte complexes (COCs) obtained in connection with ovarian tissue cryopreservation (OTC) underwent in vitro maturation (IVM). Oocyte-produced GDF9 and BMP15 were detected in COCs using immunofluorescence, and in fresh GV oocytes and in GV and MII oocytes after IVM by western blot. Concentrations of GDF9, BMP15 homodimers, and GDF9/BMP15 heterodimer in spent media after IVM were measured by ELISA. The relative expression of seven genes from the GDF9 and BMP15 signaling pathways (BMPR2, ALK5, ALK6, SMAD1, SMAD2, SMAD3, and SMAD5) was evaluated in fresh cumulus cells (before IVM) and in cumulus cells from GV and MII oocytes after IVM by RT-qPCR. RESULTS We detected native pro-mature GDF9 and BMP15 in human oocytes with molecular weights (Mw) of 47 kDa and 43 kDa, respectively. Concentrations of GDF9 and BMP15 in spent media after IVM were detected in 99% and 64% of the samples, respectively. The GDF9/BMP15 heterodimer was detected in 76% of the samples. Overall, the concentration of GDF9 was approximately 10-times higher than BMP15. The concentrations of both GDF9 and BMP15 were significantly lower in spent medium from MII oocytes than in media from oocytes that remained at the GV stage. Concentrations of the GDF9/BMP15 heterodimer did not differ between GV and MII oocytes. Furthermore, BMPR2, SMAD3, and SMAD5 were significantly upregulated in cumulus cells from MII oocytes, indicating that both GDF9 and BMP15 signaling were active during oocyte meiotic resumption in vitro. CONCLUSION These data suggest that the driving mechanisms for oocyte nuclear maturation may involve both GDF9 and BMP15 homodimers, while the role of the GDF9/BMP15 heterodimer is questionable.
Collapse
Affiliation(s)
- Jesús Cadenas
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Ajay Kumar
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Bhanu Kalra
- Ansh Labs LLC, 445 W. Medical Center Blvd, Webster, TX, 77598, USA
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| |
Collapse
|
45
|
Wiesak T, Goryszewska-Szczurek E. Effect of vitrification on the expression of genes in porcine blastocysts derived from in vitro matured oocytes. Syst Biol Reprod Med 2022; 68:239-246. [PMID: 35722676 DOI: 10.1080/19396368.2022.2072788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to examine the effect of vitrification on the expression of genes that are crucial for porcine early embryo development; cathepsin B (CTSB), growth differentiation factor 9 (GDF9), caudal type homeobox 2 (CDX2), and OCT-4, which play an important role in the maintenance of embryonic cell pluripotency. Their gene expression was investigated in expanded blastocysts (day 6-7) derived from in vitro matured oocytes. The quantitative real-time PCR method was used to assess the amount of relative specific transcripts in 20 vitrified (treatment group) and 32 fresh non-vitrified (control group) blastocysts. Vitrification was performed using 7.5% dimethyl sulfoxide (DMSO) plus 7.5% ethylene glycol (EG), and in the final step, 15% DMSO plus 15% EG and a 0.5 M sucrose solution and cryotop as a vitrification device. The blastocysts were warmed in 1 M, 0.5 M, and 0.25 M sucrose solution and kept in a culture medium for six hours before their fixation and further qPCR analysis. A significant upregulation in the targeted genes CTSB (p<.006), GDF9 (p<.04), and CDX2 (p<.003) was observed in the vitrified embryos compared to the fresh control group. Interestingly, the OCT-4 mRNA expression level was not affected by vitrification and remained comparable to that of the fresh non-vitrified embryos. In summary, the results of this pilot study showed, that vitrification induced substantial alteration in the expression of CTSB, GDF9, and CDX2 genes but did not influence the expression of OCT-4 gene in porcine in vitro derived blastocysts. Our data on the expression of developmentally important genes in vitrified porcine blastocyst may facilitate: (1) future improvements in culture conditions and/or cryopreservation protocol and (2) understanding the mechanism(s) of cryoinjuries inducing compromised post-thaw embryo development followed by the poor pregnancy outcome after blastocyst transfer.
Collapse
Affiliation(s)
- Teresa Wiesak
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ewelina Goryszewska-Szczurek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
46
|
Kristensen SG, Kumar A, Mamsen LS, Kalra B, Pors SE, Bøtkjær JA, Macklon KT, Fedder J, Ernst E, Hardy K, Franks S, Andersen CY. Intrafollicular Concentrations of the Oocyte-secreted Factors GDF9 and BMP15 Vary Inversely in Polycystic Ovaries. J Clin Endocrinol Metab 2022; 107:e3374-e3383. [PMID: 35511085 PMCID: PMC9282257 DOI: 10.1210/clinem/dgac272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) play essential roles in follicle development and oocyte maturation, and aberrant regulation might contribute to the pathogenesis of polycystic ovary syndrome. OBJECTIVE Are there measurable differences in concentrations of GDF9, BMP15, and the GDF9/BMP15 heterodimer in small antral follicle fluids from women with and without polycystic ovaries (PCO)? DESIGN AND SETTING Follicle fluids (n = 356) were collected from 4- to 11-mm follicles in unstimulated ovaries of 87 women undergoing ovarian tissue cryopreservation for fertility preservation. PATIENTS Twenty-seven women with PCO were identified and 60 women without PCO-like characteristics (non-PCO women) were matched according to age and follicle size. MAIN OUTCOME MEASURES Intrafollicular concentrations of GDF9, BMP15, GDF9/BMP15 heterodimer, anti-Mullerian hormone (AMH), inhibin-A and -B, total inhibin, activin-B and -AB, and follistatin were measured using enzyme-linked immunosorbent assays. RESULTS The detectability of GDF9, BMP15, and the GDF9/BMP15 heterodimer were 100%, 94.4%, and 91.5%, respectively, and concentrations were significantly negatively correlated with increasing follicle size (P < 0.0001). GDF9 was significantly higher in women with PCO (PCO: 4230 ± 189 pg/mL [mean ± SEM], n = 188; non-PCO: 3498 ± 199 pg/mL, n = 168; P < 0.03), whereas BMP15 was lower in women with PCO (PCO: 431 ± 40 pg/mL, n = 125; non-PCO: 573 ± 55 pg/mL, n = 109; P = 0.10), leading to a significantly higher GDF9:BMP15 ratio in women with PCO (P < 0.01). Significant positive associations between BMP15 and AMH, activins, and inhibins in non-PCO women switched to negative associations in women with PCO. CONCLUSIONS Intrafollicular concentrations of GDF9 and BMP15 varied inversely in women with PCO reflecting an aberrant endocrine environment. An increased GDF9:BMP15 ratio may be a new biomarker for PCO.
Collapse
Affiliation(s)
- Stine Gry Kristensen
- Correspondence: Stine Gry Kristensen, PhD, Laboratory of Reproductive Biology, Section 5701, Copenhagen University Hospital – Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirsten Tryde Macklon
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, 5000 Odense, Denmark
| | - Erik Ernst
- Department of Gynecology and Obstetrics, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Lundberg AL, Jaskiewicz NM, Maucieri AM, Townson DH. Stimulatory effects of TGFα in granulosa cells of bovine small antral follicles. J Anim Sci 2022; 100:6620783. [PMID: 35772748 DOI: 10.1093/jas/skac105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Intraovarian growth factors play a vital role in influencing the fate of ovarian follicles. They affect proliferation and apoptosis of granulosa cells (GC) and can influence whether small antral follicles continue their growth or undergo atresia. Transforming growth factor-alpha (TGFα), an oocyte-derived growth factor, is thought to regulate granulosa cell function; yet its investigation has been largely overshadowed by emerging interest in TGF-beta superfamily members, such as bone morphogenetic proteins (BMP) and anti-Mullerian hormone (AMH). Here, effects of TGFα on bovine GC proliferation, intracellular signaling, and cytokine-induced apoptosis were evaluated. Briefly, all small antral follicles (3-5 mm) from slaughterhouse specimens of bovine ovary pairs were aspirated and the cells were plated in T25 flasks containing DMEM/F12 medium, 10% FBS, and antibiotic-antimycotic, and incubated at 37 °C in 5% CO2 for 3 to 4 d. Once confluent, the cells were sub-cultured for experiments (in 96-, 12-, or 6-well plates) in serum-free conditions (DMEM/F12 medium with ITS). Exposure of the bGC to TGFα (10 or 100 ng/mL) for 24 h stimulated cell proliferation compared to control (P < 0.05; n = 7 ovary pairs). Proliferation was accompanied by a concomitant increase in mitogen-activated protein kinase (MAPK) signaling within 2 h of treatment, as evidenced by phosphorylated ERK1/2 expression (P < 0.05, n = 3 ovary pairs). These effects were entirely negated, however, by the MAPK inhibitor, U0126 (10uM, P < 0.05). Additionally, prior exposure of the bGC to TGFα (100 ng/mL) failed to prevent Fas Ligand (100 ng/mL)-induced apoptosis, as measured by caspase 3/7 activity (P < 0.05, n = 7 ovary pairs). Collectively, the results indicate TGFα stimulates proliferation of bGC from small antral follicles via a MAPK/ERK-mediated mechanism, but this action alone fails to prevent apoptosis, suggesting that TGFα may be incapable of promoting their persistence in follicles during the process of follicular selection/dominance.
Collapse
Affiliation(s)
| | - Nicole M Jaskiewicz
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Abigail M Maucieri
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
48
|
Alvandian F, Hosseini E, Hashemian Z, Khosravifar M, Movaghar B, Shahhoseini M, Shiva M, Afsharian P. TGFß Gene Members and Their Regulatory Factors in Granulosa Compared to Cumulus Cells in PCOS: A Case-Control Study. CELL JOURNAL 2022; 24:410-416. [PMID: 36043409 PMCID: PMC9428480 DOI: 10.22074/cellj.2022.8051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Transforming growth factor-beta (TGF-β) superfamily and its members that include bone morphogenetic protein 15 (BMP15), anti-Mullerian hormone (AMH), growth /differentiation factor-9 (GDF9), and their respective receptors: BMPR1A, BMPR1B, and BMPR2 have been implicated as key regulators in various aspects of ovarian function. The abnormal function of the ovaries is one of the main contributing factors to polycystic ovarian syndrome (PCOS), so this study aimed to investigate the mRNA expression profile of these factors in granulosa (GCs) and cumulus cells (CCs) of those patients. MATERIALS AND METHODS The case-control research was conducted on 30 women (15 infertile PCOS and 15 normo-ovulatory patients, 22≤age ≤38 years old) who underwent ovarian stimulation for in vitro fertilization (IVF)/ intracytoplasmic sperm injection (ICSI) cycle. GCs/CCs were obtained during ovarian puncture. The expression analysis of the aforementioned genes was quantified using real-time polymerase chain reaction (PCR). RESULTS AMH and BMPR1A expression levels were significantly increased in GCs of PCOS compared to the control group. In contrast, GDF9, BMP15, BMPR1B, and BMPR2 expressions were decreased. PCOS' CC showed the same expression patterns. GDF9 and AMH were effectively expressed in normal CCs, and BMP15 and BMPR1B in normal GCs (P<0.05). CONCLUSION Differential gene expression levels of AMH and its regulatory factors and their primary receptors were detected in granulosa and cumulus cells in PCOS women. Since the same antagonist protocol for ovarian stimulation was used in both PCOS and control groups, the results were independent of the protocols. This diversity in gene expression pattern may contribute to downstream pathways alteration of these genes, which are involved in oocyte competence and maturation.
Collapse
Affiliation(s)
- Faezeh Alvandian
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Deputy of Research and Technology, Hamadam University of Medical Sciences, Hamadan, Iran
| | - Elham Hosseini
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zohre Hashemian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mona Khosravifar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Shiva
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive
Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635-148Department of Endocrinology and Female InfertilityReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
Department of GeneticsReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
Emails:,
| | - Parvaneh Afsharian
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635-148Department of Endocrinology and Female InfertilityReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
Department of GeneticsReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
Emails:,
| |
Collapse
|
49
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
50
|
Witek P, Grzesiak M, Koziorowski M, Slomczynska M, Knapczyk-Stwora K. Long-Term Changes in Ovarian Follicles of Gilts Exposed Neonatally to Methoxychlor: Effects on Oocyte-Derived Factors, Anti-Müllerian Hormone, Follicle-Stimulating Hormone, and Cognate Receptors. Int J Mol Sci 2022; 23:ijms23052780. [PMID: 35269923 PMCID: PMC8911393 DOI: 10.3390/ijms23052780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities on ovarian follicles of adult pigs. Piglets were injected with MXC (20 μg/kg body weight) or corn oil (controls) from postnatal Day 1 to Day 10 (n = 5 per group). Then, mRNA expression, protein abundance and immunolocalization of growth and differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), anti-Müllerian hormone (AMH) and cognate receptors (ACVR1, BMPR1A, BMPR1B, TGFBR1, BMPR2, and AMHR2), as well as FSH receptor (FSHR) were examined in preantral and small antral ovarian follicles of sexually mature gilts. The plasma AMH and FSH levels were also assessed. In preantral follicles, neonatal exposure to MXC increased GDF9, BMPR1B, TGFBR1, and BMPR2 mRNAs, while the levels of AMH and BMP15 mRNAs decreased. In addition, MXC also decreased BMP15 and BMPR1B protein abundance. Regarding small antral follicles, neonatal exposure to MXC upregulated mRNAs for BMPR1B, BMPR2, and AMHR2 and downregulated mRNAs for AMH, BMPR1A, and FSHR. MXC decreased the protein abundance of AMH, and all examined receptors in small antral follicles. GDF9 and BMP15 were immunolocalized in oocytes and granulosa cells of preantral follicles of control and treated ovaries. All analyzed receptors were detected in the oocytes and granulosa cells of preantral follicles, and in the granulosa and theca cells of small antral follicles. The exception, however, was FSHR, which was detected only in the granulosa cells of small antral follicles. In addition, MXC decreased the plasma AMH and FSH concentrations. In conclusion, the present study may indicate long-term effects of neonatal MXC exposure on GDF9, BMP15, AMH, and FSH signaling in ovaries of adult pigs. However, the MXC effects varied at different stages of follicular development. It seems that neonatal MXC exposure may result in accelerated initial recruitment of ovarian follicles and impaired cyclic recruitment of antral follicles.
Collapse
Affiliation(s)
- Patrycja Witek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Marek Koziorowski
- Department of Physiology and Reproduction of Animals, Institute of Biotechnology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland;
| | - Maria Slomczynska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (M.G.); (M.S.)
- Correspondence: (P.W.); (K.K.-S.)
| |
Collapse
|