1
|
Su Y, Mou S, Song Y, Zhang H, Zhang Q. Genome-wide identification of the TGF-β superfamily and their expression in the Chinese mitten crab Eriocheir sinensis. Sci Rep 2025; 15:12709. [PMID: 40223023 PMCID: PMC11994790 DOI: 10.1038/s41598-025-97772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Transforming growth factor-β superfamily genes are multifunctional cytokines that play central roles in the regulation of cell proliferation, differentiation, apoptosis, adhesion, and migration. Identifying the TGF-β superfamily in crabs could provide a basis for elucidating the genetic regulatory mechanism of growth, development, sex differentiation and environmental adaptation. To understand the complexity and evolution of the TGF-β superfamily in the Chinese mitten crab Eriocheir sinensis, this study comprehensively and systematically analysed this superfamily in the genome of E. sinensis. A total of 9 TGF-β superfamily genes have been identified, including EsBMP2, EsBMP3, EsBMP7, EsBMP10, EsBMP15, EsGDF8, EsUnivin, EsINHB and EsINHBB. A wide variation in the number of motifs and CDSs was found among different subfamilies. The expression of EsBMP2 and EsBMP7 suggested that these genes may be the main genes controlling embryonic development in E. sinensis. EsBMP2, EsBMP7 and EsBMP10 are very highly expressed in the gills. The TGF-β superfamily genes presented different expression patterns during limb regeneration and molting. In addition, this gene family also responds to environmental stresses, including nanoplastic stress, cadmium stress, air exposure, and high-salinity stress, which provides a new perspective for understanding the strong tolerance and adaptability of crabs to environmental stress. To our knowledge, this study is the first genome-wide investigation of the TGF-β superfamily in crabs. This study identified the sequence structure, phylogenetic relationship, and gene expression profiles of the TGF-β superfamily genes in the Chinese mitten crab, and the above results lay a foundation for further investigation of the evolution and biological functions of this gene family.
Collapse
Affiliation(s)
- Yu Su
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Siyu Mou
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yifan Song
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Huanglong Zhang
- Bureau of Agriculture and Rural Affairs, Quanzhou, 362100, Hui'an County, China
| | - Qian Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Wang JC, Shimizu T, Hibi M. Transforming growth factor-β-mediated regulation of atoh1-expressing neural progenitors is involved in the generation of cerebellar granule cells in larval and adult zebrafish. Dev Growth Differ 2025; 67:149-164. [PMID: 40012512 PMCID: PMC11997739 DOI: 10.1111/dgd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Granule cells in the cerebellum are the most numerous neurons in the vertebrate brain. They are derived from neural progenitor cells that express the proneural gene atoh1 (atoh1a, b, c in zebrafish) during early neurogenesis. In zebrafish, unlike in mammals, granule cells are continuously produced throughout life, from the larval stage to adulthood. Additionally, granule cells regenerate and replace damaged areas following injury in the adult cerebellum. However, the mechanisms underlying granule cell generation and their role in adult cerebellar regeneration remain largely unclear. In this study, using lineage tracing with the inducible DNA recombinase CreERT2, we found that granule cells differentiated from atoh1c-expressing neural progenitor cells and migrated to their appropriate locations in the adult stage, similar to the processes observed during early embryogenesis. Granule cells that differentiated from atoh1c-expressing neural progenitor cells in adulthood also contributed to cerebellar regeneration. Furthermore, inhibition of transforming growth factor-β (TGF-β) signaling, either via chemical inhibitors or CRISPR/Cas9, suppressed atoh1a/c expression and reduced granule cell numbers in larvae. Chemical inhibition of TGF-β signaling also suppressed neural progenitor cell proliferation, atoh1c expression, and granule cell neurogenesis in the adult cerebellum. These findings demonstrate that TGF-β signaling is essential for granule cell production from progenitor cells throughout the lifespan of zebrafish.
Collapse
Affiliation(s)
- Jui Chun Wang
- Department of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Umrath F, Frick SL, Wendt V, Naros A, Zimmerer R, Alexander D. Inhibition of TGF-β signaling enhances osteogenic potential of iPSC-derived MSCs. Sci Rep 2025; 15:7814. [PMID: 40050624 PMCID: PMC11885616 DOI: 10.1038/s41598-025-89370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most commonly utilized type of stem cell in clinical applications. However, variability in quality and quantity between different tissue sources and donors presents a significant challenge to their use. Induced pluripotent stem cells (iPSCs) are a promising and abundant alternative source of MSCs, offering a potential solution to the limitations of adult MSCs. Nevertheless, a standardized protocol for the differentiation of iPSCs into iPSC-derived mesenchymal stem cells (iMSCs) has yet to be established, as the existing methods vary significantly in terms of complexity, duration, and outcome. Many straightforward methods induce differentiation by culturing iPSCs in MSC media which are supplemented with fetal bovine serum (FBS) or human platelet lysate (hPL), followed by selection of MSC-like cells by passaging. However, in our hands, this approach yielded inconsistent quality of iMSCs, particularly in terms of osteogenic potential and premature senescence. This study examines the impact of the selective TGF-β inhibitor SB431542 on iMSC differentiation, demonstrating that TGF-β inhibition enhances osteogenic potential and reduces premature senescence. Additionally, we present a reliable, xeno-free method for producing high-quality iMSCs that can be adapted for Good Manufacturing Practice (GMP) compliance, thus enhancing the potential for clinical applications.
Collapse
Affiliation(s)
- Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany.
- Department of Orthopedic Surgery, University Hospital Tübingen, Tübingen, Germany.
| | - Sarah-Lena Frick
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Valerie Wendt
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Andreas Naros
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Rüdiger Zimmerer
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr. 2-8, Tübingen, 72076, Germany
| |
Collapse
|
4
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
5
|
Stavrén-Eriksson E, Hammarsjö A, Lindstrand A, Nordgren A, Grigelioniene G, Pigg MH. Genotypic and Phenotypic Characterization of Seven Individuals With Predicted Bone Morphogenetic Protein 2 (BMP2) Haploinsufficiency. Clin Genet 2025. [PMID: 39970956 DOI: 10.1111/cge.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Bone morphogenetic protein 2 (BMP-2), encoded by the BMP2 gene located in chromosomal region 20p12, is a signalling protein involved in formation of bone and cartilage and other developmental processes such as cardiac and neural development. Haploinsufficiency of BMP2 has been associated with distinct facial features, short stature, skeletal malformations and cardiac abnormalities. The degree of developmental delay is still controversial. We summarise clinical and genetic findings from seven individuals with BMP2 haploinsufficiency. The study participants were identified by genetic testing and their phenotypic data was collected retrospectively from medical records. One individual had a novel frameshift variant in BMP2, and six individuals had 1.3-3.7 Mb microdeletions, including BMP2. In our cohort, delayed language development (4/5) and secretory otitis media (4/5) were common. Our results, together with previous studies, suggest that individuals with sequence variants or small microdeletions can have mild developmental delay or delay in one area (e.g., verbal development or gross motor development). We propose that global developmental delay is either a rare part or not part of the phenotype. Based on our observations, we propose that evaluation of language development and regular controls of the middle ear should be included in the surveillance of these individuals.
Collapse
Affiliation(s)
- Elin Stavrén-Eriksson
- Centre for Clinical Research Sörmland, Uppsala University SE-Sweden, Uppasala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Maritta Hellström Pigg
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Li FL, Gu LH, Tong YL, Chen RQ, Chen SY, Yu XL, Liu N, Lu JL, Si Y, Sun JH, Chen J, Long YR, Gong LK. INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling. Acta Pharmacol Sin 2025; 46:448-461. [PMID: 39223366 PMCID: PMC11747416 DOI: 10.1038/s41401-024-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4+ T and CD8+ T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Fang-Lin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Hua Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shi-Yi Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Lu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Si
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Kun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
7
|
Chen W, Han Y, Chen Y, Liu X, Liang H, Wang C, Khan MZ. Potential Candidate Genes Associated with Litter Size in Goats: A Review. Animals (Basel) 2025; 15:82. [PMID: 39795025 PMCID: PMC11718837 DOI: 10.3390/ani15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
This review examines genetic markers associated with litter size in goats, a key reproductive trait impacting productivity in small ruminant farming. Goats play a vital socioeconomic role in both low- and high-income regions; however, their productivity remains limited due to low reproductive efficiency. Litter size, influenced by multiple genes and environmental factors, directly affects farm profitability and sustainability by increasing the output per breeding cycle. Recent advancements in genetic research have identified key genes and pathways associated with reproductive traits, including gonadotropin-releasing hormone (GnRH), inhibin (INHAA), Kit ligand (KITLG), protein phosphatase 3 catalytic subunit alpha (PPP3CA), prolactin receptor (PRLR), POU domain class 1 transcription factor 1 (POU1F1), anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMP), growth differentiation factor 9 (GDF9), and KISS1 and suppressor of mothers against decapentaplegic (SMAD) family genes, among others. These genes regulate crucial physiological processes such as folliculogenesis, hormone synthesis, and ovulation. Genome-wide association studies (GWASs) and transcriptomic analyses have pinpointed specific genes linked to increased litter size, highlighting their potential in selective breeding programs. By incorporating genomic data, breeding strategies can achieve higher selection accuracy, accelerate genetic gains, and improve reproductive efficiency. This review emphasizes the importance of genetic markers in optimizing litter size and promoting sustainable productivity in goat farming.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
8
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
9
|
Karin J, Mintz R, Raveh B, Nitzan M. Interpreting single-cell and spatial omics data using deep neural network training dynamics. NATURE COMPUTATIONAL SCIENCE 2024; 4:941-954. [PMID: 39633094 DOI: 10.1038/s43588-024-00721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Single-cell and spatial omics datasets can be organized and interpreted by annotating single cells to distinct types, states, locations or phenotypes. However, cell annotations are inherently ambiguous, as discrete labels with subjective interpretations are assigned to heterogeneous cell populations on the basis of noisy, sparse and high-dimensional data. Here we developed Annotatability, a framework for identifying annotation mismatches and characterizing biological data structure by monitoring the dynamics and difficulty of training a deep neural network over such annotated data. Following this, we developed a signal-aware graph embedding method that enables downstream analysis of biological signals. This embedding captures cellular communities associated with target signals. Using Annotatability, we address key challenges in the interpretation of genomic data, demonstrated over eight single-cell RNA sequencing and spatial omics datasets, including identifying erroneous annotations and intermediate cell states, delineating developmental or disease trajectories, and capturing cellular heterogeneity. These results underscore the broad applicability of annotation-trainability analysis via Annotatability for unraveling cellular diversity and interpreting collective cell behaviors in health and disease.
Collapse
Affiliation(s)
- Jonathan Karin
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reshef Mintz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Halloran D, Pandit V, Chukwuocha K, Nohe A. Methyl-Beta-Cyclodextrin Restores Aberrant Bone Morphogenetic Protein 2-Signaling in Bone Marrow Stromal Cells Obtained from Aged C57BL/6 Mice. J Dev Biol 2024; 12:30. [PMID: 39585031 PMCID: PMC11586967 DOI: 10.3390/jdb12040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
During aging, disruptions in various signaling pathways become more common. Some older patients will exhibit irregular bone morphogenetic protein (BMP) signaling, which can lead to osteoporosis (OP)-a debilitating bone disease resulting from an imbalance between osteoblasts and osteoclasts. In 2002, the Food and Drug Administration (FDA) approved recombinant human BMP-2 (rhBMP-2) for use in spinal fusion surgeries as it is required for bone formation. However, complications with rhBMP-2 arose and primary osteoblasts from OP patients often fail to respond to BMP-2. Although patient samples are available for study, previous medical histories can impact results. Consequently, the C57BL/6 mouse line serves as a valuable model for studying OP and aging. We find that BMP receptor type Ia (BMPRIa) is upregulated in the bone marrow stromal cells (BMSCs) of 15-month-old mice, consistent with prior data. Furthermore, conjugating BMP-2 with Quantum Dots (QDot®s) allows effective binding to BMPRIa, creating a fluorescent tag for BMP-2. Furthermore, after treating BMSCs with methyl-β-cyclodextrin (MβCD), a disruptor of cellular endocytosis, BMP signaling is restored in 15-month-old mice, as shown by von Kossa assays. MβCD has the potential to restore BMPRIa function, and the BMP signaling pathway offers a promising avenue for future OP therapies.
Collapse
Affiliation(s)
| | | | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (V.P.); (K.C.)
| |
Collapse
|
11
|
Thomas M, G R, V RT, V AT. Genomic profiling of selective sweeps through haplotype differentiation unravelled genes associated with production and reproduction traits in Indian goat breeds. Trop Anim Health Prod 2024; 56:296. [PMID: 39340615 DOI: 10.1007/s11250-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
A comprehensive genomic scan of selective sweeps was conducted in autochthonous Attappady Black and improved dual-purpose Malabari goat breeds in south India. High-throughput single nucleotide polymorphism (SNP) marker data, obtained through Illumina goat SNP50 BeadChip genotyping of 48 goats (24 each of Attappady Black and Malabari goats), were utilized for the analysis. Selection signature analysis, employing hapFLK analysis based on haplotype differentiation, identified seven significant sweep regions (p < 0.005). Notably, one of these regions encompassed the genomic area housing the casein cluster and quantitative trait loci associated with milk production on chromosome 6. Gene ontology enrichment analysis of 166 putative selective genes associated with these sweep regions revealed 13 significantly over-represented Panther pathways (p ≤ 0.05), including the TGF-beta signalling pathway and GNRHR pathway. The selective sweeps detected in this study contributed significantly to the phenotypic divergence observed between Attappady Black and Malabari goats in south India.
Collapse
Affiliation(s)
- Marykutty Thomas
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India.
| | - Radhika G
- College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| | - R Thirupathy V
- Centre for Pig Production and Research, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - Aravindakshan T V
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| |
Collapse
|
12
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
13
|
Vasishta S, Ammankallu S, Umakanth S, Keshava Prasad TS, Joshi MB. DNA methyltransferase isoforms regulate endothelial cell exosome proteome composition. Biochimie 2024; 223:98-115. [PMID: 38735570 DOI: 10.1016/j.biochi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known. Hence, our present study aimed to understand influence of DNA methylation on exosome proteome composition and their influence on endothelial cell (EC) function. DNMT isoforms (DNMT1, DNMT3A, and DNMT3B) were overexpressed using lentivirus in ECs. Exosomes were isolated and characterized from ECs overexpressing DNMT isoforms and C57BL/6 mice plasma treated with 5-aza-2'-deoxycytidine. 3D spheroid assay was performed to understand the influence of exosomes derived from cells overexpressing DNMTs on EC functions. Further, the exosomes were subjected to TMT labelled proteomics analysis followed by validation. 3D spheroid assay showed increase in the pro-angiogenic activity in response to exosomes derived from DNMT overexpressing cells which was impeded by inclusion of 5-aza-2'-deoxycytidine. Our results showed that exosome proteome and PTMs were significantly modulated and were associated with dysregulation of vascular homeostasis, metabolism, inflammation and endothelial cell functions. In vitro and in vivo validation showed elevated DNMT1 and TGF-β1 exosome proteins due to DNMT1 and DNMT3A overexpression, but not DNMT3B which was mitigated by 5-aza-2'-deoxycytidine indicating epigenetic regulation. Further, exosomes induced ED as evidenced by reduced expression of phospho-eNOSser1177. Our study unveils epigenetically regulated exosome proteins, aiding management of vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, Karnataka, India
| | | | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
14
|
Caillot C, Saurin JC, Hervieu V, Faoucher M, Reversat J, Decullier E, Poncet G, Bailly S, Giraud S, Dupuis-Girod S. Phenotypic characterisation of SMAD4 variant carriers. J Med Genet 2024; 61:734-740. [PMID: 38575304 PMCID: PMC11287639 DOI: 10.1136/jmg-2023-109632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Both hereditary haemorrhagic telangiectasia (HHT) and juvenile polyposis syndrome (JPS) are known to be caused by SMAD4 pathogenic variants, with overlapping symptoms for both disorders in some patients. Additional connective tissue disorders have also been reported. Here, we describe carriers of SMAD4 variants followed in an HHT reference centre to further delineate the phenotype. METHODS Observational study based on data collected from the Clinical Investigation for the Rendu-Osler Cohort database. RESULTS Thirty-three participants from 15 families, out of 1114 patients with HHT, had an SMAD4 variant (3%).Regarding HHT, 26 out of 33 participants (88%) had a definite clinical diagnosis based on Curaçao criteria. Complication frequencies were as follows: epistaxis (n=27/33, 82%), cutaneous telangiectases (n=19/33, 58%), pulmonary arteriovenous malformations (n=17/32, 53%), hepatic arteriovenous malformations (AVMs) (n=7/18, 39%), digestive angiodysplasia (n=13/22, 59%). No cerebral AVMs were diagnosed.Regarding juvenile polyposis, 25 out of 31 participants (81%) met the criteria defined by Jass et al for juvenile polyposis syndrome. Seven patients (21%) had a prophylactic gastrectomy due to an extensive gastric polyposis incompatible with endoscopic follow-up, and four patients (13%) developed a digestive cancer.Regarding connective tissue disorders, 20 (61%) had at least one symptom, and 4 (15%) participants who underwent echocardiography had an aortic dilation. CONCLUSION We describe a large cohort of SMAD4 variant carriers in the context of HHT. Digestive complications are frequent, early and diffuse, justifying endoscopy every 2 years. The HHT phenotype, associating pulmonary and hepatic AVMs, warrants systematic screening. Connective tissue disorders broaden the phenotype associated with SMAD4 gene variants and justify systematic cardiac ultrasound and skeletal complications screening.
Collapse
Affiliation(s)
- Claire Caillot
- Service de Génétique et Centre de référence pour la maladie de Rendu-Osler, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, Bron, France
| | - Jean-Christophe Saurin
- Service de Gastroenterologie, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Valérie Hervieu
- Institut de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie Faoucher
- Service de génétique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Julie Reversat
- Service de génétique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Evelyne Decullier
- Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Gilles Poncet
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Service de Chirurgie Digestive, Hôpital E. Herriot Lyon, Hospices Civils de Lyon, Lyon, France
| | - Sabine Bailly
- Biosanté Lab, Unit U1292, Health Department of IRIG, CEA de Grenoble, Grenoble, France
| | - Sophie Giraud
- Service de génétique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Sophie Dupuis-Girod
- Service de Génétique et Centre de référence pour la maladie de Rendu-Osler, Femme-Mère-Enfants Hospital, Hospices Civils de Lyon, Bron, France
- Biosanté Lab, Unit U1292, Health Department of IRIG, CEA de Grenoble, Grenoble, France
| |
Collapse
|
15
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
16
|
Sheng X, Zhang C, Zhao J, Xu J, Zhang P, Ding Q, Zhang J. Microvascular destabilization and intricated network of the cytokines in diabetic retinopathy: from the perspective of cellular and molecular components. Cell Biosci 2024; 14:85. [PMID: 38937783 PMCID: PMC11212265 DOI: 10.1186/s13578-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.
Collapse
Affiliation(s)
- Xia Sheng
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Chunmei Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jianping Xu
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Peng Zhang
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Quanju Ding
- People's Hospital of Huangdao District, Qingdao, Shandong Province, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, National Clinical Research Center for Eye Diseases, Shanghai, China.
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
- C-MER (Shenzhen) Dennis Lam Eye Hospital, Shenzhen, China.
- C-MER International Eye Care Group, C-MER Dennis Lam & Partners Eye Center, Hong Kong, China.
| |
Collapse
|
17
|
Zhang Q, Huang J, Fu Y, Chen J, Wang W. Genome-wide identification and expression profiles of sex-related gene families in the Pacific abalone Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101205. [PMID: 38364653 DOI: 10.1016/j.cbd.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited. In this study, a total of 5, 10, and 7 members of the Dmrt family, the TGF-β superfamily and the Sox family, respectively, were identified in the Pacific abalone Haliotis discus hannai. Sequence characteristics, phylogenetic relationships and spatiotemporal expression profiles of these genes were investigated. Notably, HdDmrt-04 (Dmrt1/1L-like) emerged as a potential mollusc-specific gene with a preponderance for expression in the testis. Interestingly, none of the TGF-β superfamily members exhibited specific or elevated expression in the gonads, highlighting the need for further investigation into their role in abalone sex differentiation. The Sox proteins in H. discus hannai were categorized into 7 subfamilies: B1, B2, C, D, E, F, and H. Among them, HdSox-07 (SoxH-like) was observed to play a crucial role in testis development, while HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) probably cooperate in abalone ovary development. Taken together, the results of the present study suggested that HdDmrt-04 and HdSox-07 can be used as male-specific markers for gonad differentiation in H. discus hannai and imply conservation of their functions across invertebrates and vertebrates. Our findings provide new insights into the evolution and genetic structure of the Dmrt family, the TGF-β superfamily and the Sox family in abalone and pave the way for a deeper understanding of sex differentiation in gastropods.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Jianfang Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Yangtao Fu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
18
|
Bernstein LR, Mackenzie ACL, Chaffin CL, Lee SJ, Kraemer DC, Merchenthaler I. Gonadotropin elevation is ootoxic to ovulatory oocytes and inhibits oocyte maturation, and activin decoy receptor ActRIIB:Fc therapeutically restores maturation. Reprod Biol Endocrinol 2024; 22:52. [PMID: 38711160 PMCID: PMC11071334 DOI: 10.1186/s12958-024-01224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/01/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC, Gaithersburg, MD, 20886, USA.
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine, College Station, TX, 77843, USA.
| | - Amelia C L Mackenzie
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA
- FHI 360, Durham, NC, 27701, USA
| | - Charles L Chaffin
- Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Se-Jin Lee
- University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Duane C Kraemer
- Department of Veterinary Physiology and Pharmacology, Texas A & M School of Veterinary Medicine, College Station, TX, 77843, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
19
|
Ying J, Wang P, Jin X, Luo L, Lai K, Li J. TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells. Semin Ophthalmol 2024; 39:312-319. [PMID: 38192082 DOI: 10.1080/08820538.2023.2300806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
The purpose of our study was to investigate the role of TGF-β1 in the endothelial-to-mesenchymal transition (EndoMT) and fibrosis in high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs). HRMECs were cultured not only under normal glucose (NG) conditions with or without TGF-β1, but also under HG conditions with or without the TGF-β1 inhibitor SB431542. The expression of TGF-β1 was detected by real time-PCR and enzyme-linked immunosorbent assay. Morphological changes and migration of the HRMECs were observed using electron microscopy and scratch-wound assay. Endothelial markers, such as CD31 and vascular endothelial (VE)-cadherin, and the acquisition of fibrotic markers, such as alpha smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1), were determined by immunofluorescent staining and western blot. The level of TGF-β1 was significantly upregulated in HG-treated HRMECs. And HG stimulation promoted obvious morphological changes and the migration ability in HRMECs. Our results also demonstrated increased expression of α-SMA and FSP-1, and decreased expression of CD31 and VE-cadherin, in HG-treated HRMECs. These EndoMT-related changes were promoted by TGF-β1 and abrogated by SB431542. The results of this study demonstrated the important role of TGF-β1 in HG-induced vitreoretinal fibrosis. EndoMT is likely to be involved in the associated effects.
Collapse
Affiliation(s)
- Jia Ying
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Peipei Wang
- Department of Stomatology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Xiao Jin
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Li Luo
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Keshuang Lai
- Department of Ophthalmology, Yunhe County Hospital of traditional Chinese medicine, Lishui, PR China
| | - Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| |
Collapse
|
20
|
Na Nan D, Klincumhom N, Trachoo V, Everts V, Ferreira JN, Osathanon T, Pavasant P. Periostin-integrin interaction regulates force-induced TGF-β1 and α-SMA expression by hPDLSCs. Oral Dis 2024; 30:2570-2579. [PMID: 37466141 DOI: 10.1111/odi.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Periostin (PN), a major matricellular periodontal ligament (PDL) protein, modulates the remodeling of the PDL and bone, especially under mechanical stress. This study investigated the requirement of PN-integrin signaling in force-induced expression of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) in human PDL stem cells (hPDLSCs). METHODS Cells were stimulated with intermittent compressive force (ICF) using computerized controlled apparatus. Cell migration was examined using in vitro scratch assay. The mRNA expression was examined using real-time polymerase chain reaction. The protein expression was determined using immunofluorescent staining and western blot analysis. RESULTS Stimulation with ICF for 24 h increased the expression of PN, TGF-β1, and α-SMA, along with increased SMAD2/3 phosphorylation. Knockdown of POSTN (PN gene) decreased the protein levels of TGF-β1 and pSMAD2/3 upon force stimulation. POSTN knockdown of hPDLSCs resulted in delayed cell migration, as determined by a scratch assay. However, migration improved after seeding these knockdown cells on pre-PN-coated surfaces. Further, the knockdown of αVβ5 significantly attenuated the force-induced TGF-β1 expression. CONCLUSION Our findings indicate the importance of PN-αVβ5 interactions in ICF-induced TGF-β1 signaling and the expression of α-SMA. Findings support the critical role of PN in maintaining the PDL's tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Daneeya Na Nan
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Klincumhom
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Cell Biology, Faculty of Dentistry, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Sun P, Wang Y, Liu X, Li Z, Cui D, Li Q, Wang Q, Wang J. Methylation-driven mechanisms of allergic rhinitis during pollen and non-pollen seasons using integrated bioinformatics analysis. Front Genet 2024; 15:1242974. [PMID: 38699230 PMCID: PMC11063319 DOI: 10.3389/fgene.2024.1242974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Allergic rhinitis (AR) is a widespread allergic airway disease that results from a complex interplay between genetic and environmental factors and affects approximately 10%-40% of the global population. Pollen is a common allergen, and exposure to pollen can cause epigenetic changes. However, the mechanism underlying pollen-induced DNA methylation changes and their potential effects on the allergic march are still unclear. The purpose of this study was to explore the methylation-driven mechanisms of AR during the pollen and non-pollen seasons using bioinformatics analysis and to investigate their relationship with asthma. Methods We downloaded DNA methylation and gene expression data from the GEO database (GSE50387: GSE50222, GSE50101) and identified differentially methylated positions (DMPs) and differentially expressed genes (DEGs) during the pollen and non-pollen seasons using the CHAMP and limma packages. Through correlation analysis, we identified methylation-driven genes and performed pathway enrichment analysis to annotate their functions. We incorporated external data on AR combined with asthma (GSE101720) for analysis to identify key CpGs that promote the transformation of AR to asthma. We also utilized external data on olive pollen allergy (GSE54522) for analysis to validate the methylation-driven genes. Weighted correlation network analysis (WGCNA) was employed to identify gene modules significantly correlated with pollen allergy. We extracted genes related to the key methylation-driven gene ZNF667-AS1 from the significant module and performed pathway intelligent clustering using KOBAS-i. We also utilized gene set enrichment analysis to explore the potential function of ZNF667-AS1. Results We identified 20 and 24 CpG-Gene pairings during the pollen and non-pollen seasons. After incorporating external data from GSE101720, we found that ZNF667-AS1 is a key gene that may facilitate the transformation of AR into asthma during the pollen season. This finding was further validated in another external dataset, GSE54522, which is associated with pollen allergy. WGCNA identified 17 modules, among which the blue module showed significant correlation with allergies. ZNF667-AS1 was located in the blue module. We performed pathway analysis on the genes correlated with ZNF667-AS1 extracted from the blue module and identified a prominent cluster of pathways in the KOBAS-i results, including Toll-like receptor (TLR) family, MyD88, MAPK, and oxidative stress. Gene set enrichment analysis around cg05508084 (paired with ZNF667-AS1) also indicated its potential involvement in initiating and modulating allergic inflammation from the perspective of TLR and MAPK signaling. Conclusion We identified methylation-driven genes and their related pathways during the pollen and non-pollen seasons in patients with AR and identified key CpGs that promote the transformation of AR into asthma due to pollen exposure. This study provides new insights into the underlying molecular mechanisms of the transformation of AR to asthma.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Diankun Cui
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianru Li
- Qinghai Golmud Jianqiao Hospital, Golmud, Qinghai, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Vang S, Helton ES, Guo Y, Burpee B, Rose E, Easter M, Bollenbecker S, Hirsch MJ, Matthews EL, Jones LI, Howze PH, Rajasekaran V, Denson R, Cochran P, Attah IK, Olson H, Clair G, Melkani G, Krick S, Barnes JW. O-GlcNAc transferase regulates collagen deposition and fibrosis resolution in idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1387197. [PMID: 38665916 PMCID: PMC11043510 DOI: 10.3389/fimmu.2024.1387197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-β) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-β1 induced collagen expression/deposition. Conclusion OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.
Collapse
Affiliation(s)
- Shia Vang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bailey Burpee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Rose
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seth Bollenbecker
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Emma Lea Matthews
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke Isaac Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Henry Howze
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip Cochran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isaac Kwame Attah
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod Wesley Barnes
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
24
|
Cañón-Beltrán K, Cajas YN, Almpanis V, Egido SG, Gutierrez-Adan A, González EM, Rizos D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol Res 2024; 57:11. [PMID: 38520036 PMCID: PMC10960404 DOI: 10.1186/s40659-024-00488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-β pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality. METHODS Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-β pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses. RESULTS We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups. CONCLUSIONS Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-β signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
- Programa de Medicina Veterinaria y Zootecnia, Corporación Universitaria del Huila (CORHUILA), Grupo Kyron, Huila, Colombia
| | - Yulia N Cajas
- Department Agrarian Production, Technical University of Madrid (UPM), Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Vasileios Almpanis
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Sandra Guisado Egido
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain.
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain.
| |
Collapse
|
25
|
Debernardi S, Liszka L, Ntala C, Steiger K, Esposito I, Carlotti E, Baker A, McDonald S, Graham T, Dmitrovic B, Feakins RM, Crnogorac‐Jurcevic T. Molecular characteristics of early-onset pancreatic ductal adenocarcinoma. Mol Oncol 2024; 18:677-690. [PMID: 38145461 PMCID: PMC10920080 DOI: 10.1002/1878-0261.13576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023] Open
Abstract
The median age of patients with pancreatic ductal adenocarcinoma (PDAC) at diagnosis is 71 years; however, around 10% present with early-onset pancreatic cancer (EOPC), i.e., before age 50. The molecular mechanisms underlying such an early onset are unknown. We assessed the role of common PDAC drivers (KRAS, TP53, CDKN2A and SMAD4) and determined their mutational status and protein expression in 90 formalin-fixed, paraffin-embedded tissues, including multiple primary and matched metastases, from 37 EOPC patients. KRAS was mutated in 88% of patients; p53 was altered in 94%, and p16 and SMAD4 were lost in 86% and 71% of patients, respectively. Meta-synthesis showed a higher rate of p53 alterations in EOPC than in late-onset PDAC (94% vs. 69%, P = 0.0009) and significantly higher loss of SMAD4 (71% vs. 44%, P = 0.0025). The majority of EOPC patients accumulated aberrations in all four drivers; in addition, high tumour heterogeneity was observed across all tissues. The cumulative effect of an exceptionally high rate of alterations in all common PDAC driver genes combined with high tumour heterogeneity suggests an important mechanism underlying the early onset of PDAC.
Collapse
Affiliation(s)
- Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Lukasz Liszka
- Department of Pathomorphology and Molecular DiagnosticsMedical University of SilesiaKatowicePoland
| | | | - Katja Steiger
- Institute of Pathology, School of Medicine and HealthTechnical University of MunichGermany
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of DusseldorfGermany
| | - Emanuela Carlotti
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Ann‐Marie Baker
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Stuart McDonald
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Trevor Graham
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineClinical Hospital Center OsijekCroatia
| | - Roger M. Feakins
- Department of Cellular PathologyRoyal Free London NHS Foundation TrustUK
| | - Tatjana Crnogorac‐Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer InstituteQueen Mary University of LondonUK
| |
Collapse
|
26
|
Sultana M, Tayyab M, Sunil, Parveen S, Hussain M, Saeed S, Riaz Z, Shabbir S. In silico molecular characterization of TGF-β gene family in Bufo bufo: genome-wide analysis. J Biomol Struct Dyn 2024:1-15. [PMID: 38345010 DOI: 10.1080/07391102.2024.2313168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/27/2024] [Indexed: 03/08/2025]
Abstract
Bufo bufo is a living example of evolutionary processes due to its numerous physiological and ecological adaptations. This is the first study to genetically characterize the TGF-β gene family in B. bufo at the genome-wide level, and a total of 28 TGF-β gene family homologs are identified. Physicochemical characteristics of TGF-β homologs exhibit a basic nature except for BMP1, BMP4, BMP10, BMP15, AMH, INHA, NODAL Modulator and TGFB1. Phylogenetic analysis divided the TGF-β gene family homologs into 2 major clades along with other vertebrate species. In domain and motif composition analysis, the gene structure for all TGF-β homologs exhibited homogeneity except BMP1. We have identified the TGF-β propeptide domain together with the TGF-β in all family homologs of TGF-β superfamily. Gene structure comparisons indicated that the TGF-β gene family have arisen by gene duplications. We also identified 10 duplicated gene pairs, all of which were detected to be segmental duplications. The Ka/Ks test ratio findings for every pair of genes revealed that none of the ratios surpassed 1 except for one gene pair (INHA/BMP1), indicating that these proteins are under positive selection. Circos analysis showed that TGF-β gene family homologs are arranged in 11 dispersed clusters and all were segmentally arrayed in the genome. This study provides a molecular basis for TGF-β ligand protein functional analysis and may serve as a reference for in-depth phylogenomics and may promote the development of novel strategies.
Collapse
Affiliation(s)
- Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | | | - Sunil
- University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | | | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Saman Shabbir
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
27
|
Paine PT, Rechsteiner C, Morandini F, Desdín-Micó G, Mrabti C, Parras A, Haghani A, Brooke R, Horvath S, Seluanov A, Gorbunova V, Ocampo A. Initiation phase cellular reprogramming ameliorates DNA damage in the ERCC1 mouse model of premature aging. FRONTIERS IN AGING 2024; 4:1323194. [PMID: 38322248 PMCID: PMC10844398 DOI: 10.3389/fragi.2023.1323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via in vivo partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined. To understand whether cellular reprogramming can ameliorate DNA damage, we created a reprogrammable accelerated aging mouse model with an ERCC1 mutation. Importantly, using enhanced partial reprogramming by combining small molecules with the Yamanaka factors, we observed potent reversion of DNA damage, significant upregulation of multiple DNA damage repair processes, and restoration of the epigenetic clock. In addition, we present evidence that pharmacological inhibition of ALK5 and ALK2 receptors in the TGFb pathway are able to phenocopy some benefits including epigenetic clock restoration suggesting a role in the mechanism of rejuvenation by partial reprogramming.
Collapse
Affiliation(s)
- Patrick Treat Paine
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA, United States
| | | | - Francesco Morandini
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alberto Parras
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Vaud, Switzerland
| | | | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA, United States
| | - Steve Horvath
- Altos Labs, San Diego, CA, United States
- Epigenetic Clock Development Foundation, Torrance, CA, United States
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, United States
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, United States
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- EPITERNA SA, Vaud, Switzerland
| |
Collapse
|
28
|
Zhang Q, Chen J, Wang W, Lin J, Guo J. Genome-wide investigation of the TGF-β superfamily in scallops. BMC Genomics 2024; 25:24. [PMID: 38166626 PMCID: PMC10763453 DOI: 10.1186/s12864-023-09942-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Transforming growth factor β (TGF-β) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-β superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS Twelve members of the TGF-β superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-β superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-β members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-β superfamily. CONCLUSION Characteristics of the TGF-β superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Jingyu Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiabao Guo
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
29
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
30
|
Wijayanti D, Bai Y, Zhu H, Qu L, Guo Z, Lan X. The 12-bp indel in the SMAD family member 2 gene is associated with goat growth traits. Anim Biotechnol 2023; 34:4271-4280. [PMID: 36373735 DOI: 10.1080/10495398.2022.2144342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SMAD family member 2 (SMAD2) is a member of the TGFβ signaling pathway and functions as an essential regulator in the processes of development, cell proliferation, and bone formation. A previous observation reported that a 12-bp deletion of this gene affected the litter size in goats. However, according to our knowledge, no study has reported an association between this polymorphism and goat body measurement traits. The purpose of this study was to investigate the association of the insertion/deletion (indel) within the SMAD2 gene with the growth traits of goats. The indel polymorphism was found to be significantly associated with chest width and bust (p < 0.05), while cannon circumference was significantly the strongest compared to other traits (p < 0.01) and individuals with the DD genotypes were more dominant genotypes than other genotypes. In summary, we found evidence that the 12-bp indel within the SMAD2 gene could improve goat body measurement traits, paving the way for marker-assisted selection in the field of goat genetics and breeding.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, Indonesia
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
31
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
32
|
Chen S, Ma Y, Qiu X, Liu M, Zhang P, Wei C, Dai Y, Ge L, Zhu H, Zhang Y, Zhang J, Lin X. MicroRNA-122-5p alleviates endometrial fibrosis via inhibiting the TGF-β/SMAD pathway in Asherman's syndrome. Reprod Biomed Online 2023; 47:103253. [PMID: 37677924 DOI: 10.1016/j.rbmo.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023]
Abstract
RESEARCH QUESTION What is the effect of miR-122 on the progression and recovery of fibrosis in Asherman's syndrome? DESIGN Endometrial tissue was collected from 21 patients, 11 with intrauterine adhesion (IUA) and 10 without IUA. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot were applied to observe the expression of mRNAs/miRNAs and protein, respectively. The endometrial physical injury was carried out in C57BL/6 mice to create an endometrial fibrosis model, with intrauterine injection of adenovirus to compare the antifibrosis and repair function of miR-122 on endometrium. The morphology of the uterus was observed using haematoxylin and eosin staining, and fibrosis markers were detected by immunohistochemistry. RESULTS miR-122 expression was reduced in patients with IUAs, accompanied by fibrosis. MiR-122 overexpression reduced the degree of fibrosis in endometrial stromal cells. Further molecular analyses demonstrated that miR-122 inhibited fibrosis through the TGF-β/SMAD pathway by directly targeting the 3' untranslated region of SMAD family member 3, suppressing its expression. Notably, miR-122 promoted endometrial regeneration and recovery of pregnancy capacity in a mouse endometrial injury model. CONCLUSIONS miR-122 is a critical regulator for repair of endometrial fibrosis and provided new insight for the clinical treatment of intrauterine adhesions.
Collapse
Affiliation(s)
- Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaoxiao Qiu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, China
| | - Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linyan Ge
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiaren Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China..
| |
Collapse
|
33
|
Li Y, Zhao H, Hu S, Zhang X, Chen H, Zheng Q. PET imaging with [ 68Ga]-labeled TGFβ-targeting peptide in a mouse PANC-1 tumor model. Front Oncol 2023; 13:1228281. [PMID: 37781175 PMCID: PMC10540840 DOI: 10.3389/fonc.2023.1228281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose Transforming growth factor β (TGFβ) is upregulated in many types of tumors and plays important roles in tumor microenvironment construction, immune escape, invasion, and metastasis. The therapeutic effect of antibodies and nuclide-conjugated drugs targeting TGFβ has not been ideal. Targeting TGFβ with small-molecule or peptide carriers labeled with diagnostic/therapeutic nuclides is a new development direction. This study aimed to explore and confirm the imaging diagnostic efficiency of TGFβ-targeting peptide P144 coupled with [68Ga] in a PANC-1 tumor model. Procedures TGFβ-targeting inhibitory peptide P144 with stable activity was prepared through peptide synthesis and screening, and P144 was coupled with biological chelator DOTA and labeled with radionuclide [68Ga] to achieve a stable TGFβ-targeting tracer [68Ga]Ga-P144. This tracer was first used for positron emission tomography (PET) molecular imaging study of pancreatic cancer in a mouse PANC-1 tumor model. Results [68Ga]Ga-P144 had a high targeted uptake and relatively long uptake retention time in tumors and lower uptakes in non-target organs and backgrounds. Target pre-blocking experiment with the cold drug P144-DOTA demonstrated that the radioactive uptake with [68Ga]Ga-P144 PET in vivo, especially in tumor tissue, had a high TGFβ-targeting specificity. [68Ga]Ga-P144 PET had ideal imaging efficiency in PANC-1 tumor-bearing mice, with high specificity in vivo and good tumor-targeting effect. Conclusion [68Ga]Ga-P144 has relatively high specificity and tumor-targeted uptake and may be developed as a promising diagnostic tool for TGFβ-positive malignancies.
Collapse
Affiliation(s)
- Yong Li
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Hong Zhao
- Department of Nuclear Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Shan Hu
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xichen Zhang
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Haojian Chen
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Qihuang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
34
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
35
|
Zhang Y, Zhong J, Lin S, Hu M, Liu J, Kang J, Qi Y, Basabrain MS, Zou T, Zhang C. Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion. Int Endod J 2023; 56:1092-1107. [PMID: 37294792 DOI: 10.1111/iej.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
AIM Prevascularization is vital to accelerate functional blood circulation establishment in transplanted engineered tissue constructs. Mesenchymal stem cells (MSCs) or mural cells could promote the survival of implanted endothelial cells (ECs) and enhance the stabilization of newly formed blood vessels. However, the dynamic cell-cell interactions between MSCs, mural cells and ECs in the angiogenic processes remain unclear. This study aimed to explore the interactions of human umbilical vein ECs (HUVECs) and dental pulp stem cells (DPSCs) in an in vitro cell coculture model. METHODOLOGY Human umbilical vascular ECs and DPSCs were directly cocultured or indirectly cocultured with transwell inserts in endothelial basal media-2 (EBM-2) supplemented with 5% FBS for 6 days. Expression of SMC-specific markers in DPSCs monoculture and HUVEC+DPSC cocultures was assessed by western blot and immunofluorescence. Activin A and transforming growth factor-beta 1 (TGF-β1) in conditioned media (CM) of HUVECs monoculture (E-CM), DPSCs monoculture (D-CM) and HUVEC+DPSC cocultures (E+D-CM) were analysed by enzyme-linked immunosorbent assay. TGF-β RI kinase inhibitor VI, SB431542, was used to block TGF-β1/ALK5 signalling in DPSCs. RESULTS The expression of SMC-specific markers, α-SMA, SM22α and Calponin, were markedly increased in HUVEC+DPSC direct cocultures compared to that in DPSCs monoculture, while no differences were demonstrated between HUVEC+DPSC indirect cocultures and DPSCs monoculture. E+D-CM significantly upregulated the expression of SMC-specific markers in DPSCs compared to E-CM and D-CM. Activin A and TGF-β1 were considerably higher in E+D-CM than that in D-CM, with upregulated Smad2 phosphorylation in HUVEC+DPSC cocultures. Treatment with activin A did not change the expression of SMC-specific markers in DPSCs, while treatment with TGF-β1 significantly enhanced these markers' expression in DPSCs. In addition, blocking TGF-β1/ALK5 signalling inhibited the expression of α-SMA, SM22α and Calponin in DPSCs. CONCLUSIONS TGF-β1 was responsible for DPSC differentiation into SMCs in HUVEC+DPSC cocultures, and TGF-β1/ALK5 signalling pathway played a vital role in this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mohammed S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
Costantini A, Guasto A, Cormier-Daire V. TGF-β and BMP Signaling Pathways in Skeletal Dysplasia with Short and Tall Stature. Annu Rev Genomics Hum Genet 2023; 24:225-253. [PMID: 37624666 DOI: 10.1146/annurev-genom-120922-094107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways play a pivotal role in bone development and skeletal health. More than 30 different types of skeletal dysplasia are now known to be caused by pathogenic variants in genes that belong to the TGF-β superfamily and/or regulate TGF-β/BMP bioavailability. This review describes the latest advances in skeletal dysplasia that is due to impaired TGF-β/BMP signaling and results in short stature (acromelic dysplasia and cardiospondylocarpofacial syndrome) or tall stature (Marfan syndrome). We thoroughly describe the clinical features of the patients, the underlying genetic findings, and the pathomolecular mechanisms leading to disease, which have been investigated mainly using patient-derived skin fibroblasts and mouse models. Although no pharmacological treatment is yet available for skeletal dysplasia due to impaired TGF-β/BMP signaling, in recent years advances in the use of drugs targeting TGF-β have been made, and we also discuss these advances.
Collapse
Affiliation(s)
- Alice Costantini
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alessandra Guasto
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
| | - Valérie Cormier-Daire
- Paris Cité University, INSERM UMR 1163, Institut Imagine, Paris, France; , ,
- Reference Center for Skeletal Dysplasia, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
37
|
Xu M, Zhao C, Song H, Wang C, Li H, Qiu X, Jing H, Zhuang W. Inhibitory effects of Schisandrin C on collagen behavior in pulmonary fibrosis. Sci Rep 2023; 13:13475. [PMID: 37596361 PMCID: PMC10439186 DOI: 10.1038/s41598-023-40631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-β1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-β1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.
Collapse
Affiliation(s)
- Mingchen Xu
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chenghe Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Haiming Song
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xudong Qiu
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - He Jing
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
38
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
39
|
Voss AJ, Lanjewar SN, Sampson MM, King A, Hill EJ, Sing A, Sojka C, Bhatia TN, Spangle JM, Sloan SA. Identification of ligand-receptor pairs that drive human astrocyte development. Nat Neurosci 2023; 26:1339-1351. [PMID: 37460808 PMCID: PMC11046429 DOI: 10.1038/s41593-023-01375-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/08/2023] [Indexed: 08/05/2023]
Abstract
Extrinsic signaling between diverse cell types is crucial for nervous system development. Ligand binding is a key driver of developmental processes. Nevertheless, it remains a significant challenge to disentangle which and how extrinsic signals act cooperatively to affect changes in recipient cells. In the developing human brain, cortical progenitors transition from neurogenesis to gliogenesis in a stereotyped sequence that is in part influenced by extrinsic ligands. Here we used published transcriptomic data to identify and functionally test five ligand-receptor pairs that synergistically drive human astrogenesis. We validate the synergistic contributions of TGFβ2, NLGN1, TSLP, DKK1 and BMP4 ligands on astrocyte development in both hCOs and primary fetal tissue. We confirm that the cooperative capabilities of these five ligands are greater than their individual capacities. Additionally, we discovered that their combinatorial effects converge in part on the mTORC1 signaling pathway, resulting in transcriptomic and morphological features of astrocyte development. Our data-driven framework can leverage single-cell and bulk genomic data to generate and test functional hypotheses surrounding cell-cell communication regulating neurodevelopmental processes.
Collapse
Affiliation(s)
- Anna J Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Samantha N Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maureen M Sampson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
40
|
Yin D, Yan X, Bai X, Tian A, Gao Y, Li J. Prognostic value of Growth differentiation factors 15 in Acute heart failure patients with preserved ejection fraction. ESC Heart Fail 2023; 10:1025-1034. [PMID: 36519216 PMCID: PMC10053169 DOI: 10.1002/ehf2.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
AIMS There is an increasing proportion of hospitalized heart failure (HF) patients classified as HF with preserved ejection fraction (HFpEF) around the world. Growth differentiation factor 15 (GDF-15) is a promising biomarker in HFpEF prognostication; however, the majority of the existing data has been derived from the research on undifferentiated HF, whereas the studies focusing on HFpEF are still limited. This study aimed to determine the prognostic power of GDF-15 in the hospitalized patients with HFpEF in a Chinese cohort. METHODS AND RESULTS We analysed the levels of serum GDF-15 in 380 patients hospitalized for acute onset of HFpEF measured by heart ultrasound at admission in a prospective cohort. The associations of GDF-15 with 1 year risk of all-cause death and 1 year HF readmission were assessed by the Cox proportional hazards model. Area under the receiver operating characteristic curves was used to compare predictive accuracy. GDF-15 was strongly correlated with 1 year HF readmission and 1 year all-cause death, with event rates of 24.8%, 40.0%, and 50.0% for 1 year HF readmission (P < 0.001), respectively, and with 11.2%, 13.6%, and 24.6% for 1 year all-cause death (P = 0.004) in the corresponding tertile, respectively. In the multivariate linear regression model, GDF-15 had a significantly negative correlation with haemoglobin (P = 0.01) and a positive correlation with creatinine (P = 0.01), alanine transaminase (P = 0.001), and therapy of aldosterone antagonist (P = 0.018). The univariate Cox regression model of GDF-15 showed that c-statistic was 0.632 for 1 year HF readmission and 0.644 for 1 year all-cause death, which were superior to the N-terminal pro-brain natriuretic peptide (NT-proBNP) model with c-statistics of 0.595 and 0.610, respectively. In the multivariable Cox regression model, GDF-15 tertiles independently predicted 1 year HF readmission (hazard ratio 2.25, 95% confidence interval: 1.43-3.54, P < 0.001) after adjusting for baseline Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure (ASCEND-HF) risk score, history of HF, NT-proBNP, and high-sensitivity cardiac troponin T. Compared with the model including all the adjusted variables, the model with the addition of GDF-15 improved predictive power, with c-statistic increasing from 0.643 to 0.657 for 1 year HF readmission and from 0.638 to 0.660 for 1 year all-cause death. CONCLUSIONS In hospitalized patients with HFpEF, GDF-15 measured within 48 h of admission is a strong independent biomarker for 1 year HF readmission and even better than NT-proBNP. GDF-15 combined with the traditional indicators provided incremental prognostic value in this population.
Collapse
Affiliation(s)
- Dan Yin
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xiaofang Yan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Xueke Bai
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Aoxi Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
| | - Jing Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College167 Beilishi RoadBeijing100037People's Republic of China
- Fuwai HospitalChinese Academy of Medical Sciences12 Langshan Road, Nanshan DistrictShenzhenChina
| |
Collapse
|
41
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
42
|
The role of transforming growth factor-β2 in cigarette smoke-induced lung inflammation and injury. Life Sci 2023; 320:121539. [PMID: 36870385 DOI: 10.1016/j.lfs.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
AIMS Transforming growth factor-β2 (TGF-β2) plays an important role in pleiotropic functions and has been reported to be involved in the pathogenesis of chronic obstructive lung disease. The role of TGF-β2 in regulating cigarette smoke (CS)-induced lung inflammation and injury has not been investigated, and its underlying mechanism remains unclear. MAIN METHODS Primary bronchial epithelial cells (PBECs) were treated with cigarette smoke extract (CSE), and the signaling pathway of TGF-β2 regulating lung inflammation was investigated. Mice were exposed to CS and treated with TGF-β2 i.p. or bovine whey protein extract containing TGF-β2 p.o., and the role of TGF-β2 in alleviating lung inflammation/injury was studied. KEY FINDINGS In vitro, we demonstrated that TGF-β2 attenuated CSE-induced IL-8 production from PBECs through the TGF-β receptor I (TGF-βRI), Smad3, and mitogen-activated protein kinase signaling pathways. Selective TGF-βRI inhibitor (LY364947) and antagonist of Smad3 (SIS3) abolished the effect of TGF-β2 on alleviating CSE-induced IL-8 production. In vivo, CS exposure for 4 weeks in mice increased the levels of total protein, inflammatory cell counts, and monocyte chemoattractant protein-1 in bronchoalveolar fluid and induced lung inflammation/injury, as revealed by immunohistochemistry. Administration of TGF-β2 through intraperitoneal injection or oral feeding with bovine whey protein extract containing TGF-β2 significantly reduced CS-induced lung inflammation and injury. SIGNIFICANCE We concluded that TGF-β2 reduced CSE-induced IL-8 production through the Smad3 signaling pathway in PBECs and alleviated lung inflammation/injury in CS-exposed mice. The anti-inflammatory effect of TGF-β2 on CS-induced lung inflammation in humans deserves further clinical study.
Collapse
|
43
|
Reny SE, Mukherjee A, Mol PM. The curious case of testicular descent: factors controlling testicular descent with a note on cryptorchidism. AFRICAN JOURNAL OF UROLOGY 2023. [DOI: 10.1186/s12301-023-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Background
The testicular descent is a uniquely complex process depending upon multiple factors like growth and reorganisation of the specific gonadal ligaments, hormones, etc., which interplay with each other. Though an unambiguous event, it is still laced with incredulity since the data interpretation were intermingled between different species creating more ambiguity in certain aspects of this process. In order to understand the aetiopathology of cryptorchidism the extensive study of the factors controlling the descent is necessitous.
Main body
Though testes originate in the abdomen, they migrate to an extra abdominal site the scrotum, which makes it vulnerable to pathological conditions associated with the descent. The hormones that play vital role in the first phase of descent are insulin-like hormone 3 (INSL3), Anti-müllerian hormone as well as testosterone, whereas androgens, genitofemoral nerve and its neurotransmitter calcitonin gene-related peptide (CGRP) influence the second phase. Despite the vast research regarding the complex nexus of events involving the descent there are disparities among the cross species studies. However all these discrepancies make testicular descent yet again fascinating and perplexing. Our aim is to provide a comprehensive review including recent advances which provides thorough coverage of anatomical and hormonal factors in the descent as well as cryptorchidism.
Conclusion
Though our understanding on testicular descent has evolved over the decades there still has obscurity surrounding it and the studies on the factors responsible for descent are becoming more intense with the time. Our knowledge on many factors such as INSL3 and CGRP is more established now; however, on the other hand the role of androgens still remains speculative. As the knowledge and understanding of the biological process of testicular descent increases it will pave ways to new treatment plans to treat cryptorchidism more effectively.
Collapse
|
44
|
Resolving the challenge of insoluble production of mature human growth differentiation factor 9 protein (GDF9) in E. coli using bicistronic expression with thioredoxin. Int J Biol Macromol 2023; 230:123225. [PMID: 36649874 DOI: 10.1016/j.ijbiomac.2023.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Growth differentiation factor 9 (GDF9) is an oocyte-derived protein with fundamental functions in folliculogenesis. While the crucial contributions of GDF9 in follicular survival have been revealed, crystallographic studies of GDF9 structure have not yet been carried out, essentially due to the insoluble expression of GDF9 in E. coli and lack of appropriate source for structural studies. Therefore, in this study, we investigated the impact of different expression rate of bacterial thioredoxin (TrxA) using bicistronic expression constructs to induce the soluble expression of mature human GDF9 (hGDF9) driven by T7 promoter in E. coli. Our findings revealed that in BL21(DE3), the high rate of TrxA co-expression at 30 °C was sufficiently potent for the soluble expression of hGDF9 and reduction of inclusion body formation by 4 fold. We also successfully confirmed the bioactivity of the purified soluble hGDF9 protein by evaluation of follicle-stimulating hormone receptor gene expression in bovine cumulus cells derived from small follicles. This study is the first to present an effective approach for expression of bioactive form of hGDF9 using TrxA co-expression in E. coli, which may unravel the current issues regarding structural analysis of hGDF9 protein and consequently provide a better insight into hGDF9 functions and interactions.
Collapse
|
45
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
46
|
Silvestri L, Pettinato M, Furiosi V, Bavuso Volpe L, Nai A, Pagani A. Managing the Dual Nature of Iron to Preserve Health. Int J Mol Sci 2023; 24:ijms24043995. [PMID: 36835406 PMCID: PMC9961779 DOI: 10.3390/ijms24043995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Because of its peculiar redox properties, iron is an essential element in living organisms, being involved in crucial biochemical processes such as oxygen transport, energy production, DNA metabolism, and many others. However, its propensity to accept or donate electrons makes it potentially highly toxic when present in excess and inadequately buffered, as it can generate reactive oxygen species. For this reason, several mechanisms evolved to prevent both iron overload and iron deficiency. At the cellular level, iron regulatory proteins, sensors of intracellular iron levels, and post-transcriptional modifications regulate the expression and translation of genes encoding proteins that modulate the uptake, storage, utilization, and export of iron. At the systemic level, the liver controls body iron levels by producing hepcidin, a peptide hormone that reduces the amount of iron entering the bloodstream by blocking the function of ferroportin, the sole iron exporter in mammals. The regulation of hepcidin occurs through the integration of multiple signals, primarily iron, inflammation and infection, and erythropoiesis. These signals modulate hepcidin levels by accessory proteins such as the hemochromatosis proteins hemojuvelin, HFE, and transferrin receptor 2, the serine protease TMPRSS6, the proinflammatory cytokine IL6, and the erythroid regulator Erythroferrone. The deregulation of the hepcidin/ferroportin axis is the central pathogenic mechanism of diseases characterized by iron overload, such as hemochromatosis and iron-loading anemias, or by iron deficiency, such as IRIDA and anemia of inflammation. Understanding the basic mechanisms involved in the regulation of hepcidin will help in identifying new therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226436889; Fax: +39-0226434723
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Letizia Bavuso Volpe
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
47
|
Qin S, Zhu J, Zhang G, Sui Q, Niu Y, Ye W, Ma G, Liu H. Research progress of functional motifs based on growth factors in cartilage tissue engineering: A review. Front Bioeng Biotechnol 2023; 11:1127949. [PMID: 36824354 PMCID: PMC9941568 DOI: 10.3389/fbioe.2023.1127949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disease that exerts significant impacts on personal life quality, and cartilage tissue engineering is a practical treatment in clinical. Various growth factors are involved in cartilage regeneration and play important roles therein, which is the focus of current cartilage repair strategy. To compensate for the purification difficulty, high cost, poor metabolic stability, and circulating dilution of natural growth factors, the concept of functional motifs (also known as mimetic peptides) from original growth factor was introduced in recent studies. Here, we reviewed the selection mechanisms, biological functions, carrier scaffolds, and modification methods of growth factor-related functional motifs, and evaluated the repair performance in cartilage tissue engineering. Finally, the prospects of functional motifs in researches and clinical application were discussed.
Collapse
Affiliation(s)
- Shengao Qin
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Jiaman Zhu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China,Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Zhang
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Qijia Sui
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China
| | - Weilong Ye
- School of Stomatology, Dalian Medical University, Dalian, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Weilong Ye, ; Guowu Ma, ; Huiying Liu,
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China,*Correspondence: Weilong Ye, ; Guowu Ma, ; Huiying Liu,
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, China,*Correspondence: Weilong Ye, ; Guowu Ma, ; Huiying Liu,
| |
Collapse
|
48
|
KNTC1, regulated by HPV E7, inhibits cervical carcinogenesis partially through Smad2. Exp Cell Res 2023; 423:113458. [PMID: 36608837 DOI: 10.1016/j.yexcr.2023.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Cervical cancer is the second most common malignancy of the female reproductive tract worldwide. Although cervical cancer is caused by human papillomavirus (HPV) infection, its underlying pathogenesis requires further investigation. The present study investigated the role of kinetochore associated protein 1 (KNTC1) in cervical cancer and its association with the key virus oncoprotein, HPV E7. A series of bioinformatic analyses revealed that KNTC1 might be involved in the tumorigenesis of multiple human malignancies, including cervical cancer. Tissue microarray analysis showed that in vivo KNTC1 expression was higher in high-grade squamous intraepithelial lesions (HSILs) than in normal cervix and even higher in cervical cancer. In vitro silencing of KNTC1 increased the proliferation, invasion and migration of cervical cancer cell lines. Although not affecting apoptosis, KNTC1 silencing significantly promoted G1/S phase transition of the cell cycle. High-throughput analysis of mRNA expression showed that KNTC1 could regulate its downstream target protein Smad2 at the transcriptional level. Moreover, as the key oncoprotein of the virus, HPV E7 could inhibit the expression of KNTC1 protein, and decrease Smad2 protein expression with or without the aid of KNTC1. These results indicated that KNTC1 is a novel tumor suppressor that can impede the initiation and progression of cervical carcinoma, providing insight into the molecular mechanism by which HPV induces cervical cancer.
Collapse
|
49
|
Astragaloside IV alleviates sepsis-induced muscle atrophy by inhibiting the TGF-β1/Smad signaling pathway. Int Immunopharmacol 2023; 115:109640. [PMID: 36586273 DOI: 10.1016/j.intimp.2022.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle atrophy occurs in patients with sepsis and increases mortality and disability. Remission of muscle atrophy may improve the quality of life in patients with sepsis. Astragaloside IV (ASIV) has been shown to have excellent anti-inflammatory and anti-fibrotic effects and to reduce organ damage caused by sepsis. However, the effect of ASIV on sepsis-induced muscle atrophy has not been reported. Therefore, this study explored the pharmacological effects and mechanisms of ASIV in sepsis-induced muscle atrophy. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and lipopolysaccharide (LPS)-stimulated C2C12 myotubes. After administration of ASIV, the body weight, tibialis anterior (TA) and gastrocnemius muscle weight and fiber cross-sectional area of the mice were measured. The diameter of myotubes was observed by immunofluorescence staining. ELISA was used to assess inflammatory factors in plasma and cell culture supernatants. RT-PCR and Western blotting were used to detect the expression of MuRF1, Atrogin-1 and TGF-β1/Smad signaling pathway components in TA and C2C12 myotubes. RESULTS Our study found that ASIV reduced serum inflammatory factors and improved survival in septic mice. ASIV alleviated muscle mass reduction, myofiber cross-sectional area reduction, and C2C12 myotube atrophy by inhibiting the expression of the E3 ubiquitin ligases MuRF1 and atrogin-1. In addition, we observed that ASIV inhibited TGF-β1/Smad signaling. Inhibition of the TGF-β1/Smad signaling pathway partly blocked the anti-muscle atrophy effect of ASIV. CONCLUSION ASIV can alleviate sepsis-induced muscle atrophy, which may be related to the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
|
50
|
Dijkstra J, Neikes HK, Rezaeifard S, Ma X, Voest EE, Tauriello DVF, Vermeulen M. Multiomics of Colorectal Cancer Organoids Reveals Putative Mediators of Cancer Progression Resulting from SMAD4 Inactivation. J Proteome Res 2023; 22:138-151. [PMID: 36450103 PMCID: PMC9830641 DOI: 10.1021/acs.jproteome.2c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of metastasis severely reduces the life expectancy of patients with colorectal cancer (CRC). Although loss of SMAD4 is a key event in CRC progression, the resulting changes in biological processes in advanced disease and metastasis are not fully understood. Here, we applied a multiomics approach to a CRC organoid model that faithfully reflects the metastasis-supporting effects of SMAD4 inactivation. We show that loss of SMAD4 results in decreased differentiation and activation of pro-migratory and cell proliferation processes, which is accompanied by the disruption of several key oncogenic pathways, including the TGFβ, WNT, and VEGF pathways. In addition, SMAD4 inactivation leads to increased secretion of proteins that are known to be involved in a variety of pro-metastatic processes. Finally, we show that one of the factors that is specifically secreted by SMAD4-mutant organoids─DKK3─reduces the antitumor effects of natural killer cells (NK cells). Altogether, our data provide new insights into the role of SMAD4 perturbation in advanced CRC.
Collapse
Affiliation(s)
- Jelmer
J. Dijkstra
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Hannah K. Neikes
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Somayeh Rezaeifard
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Xuhui Ma
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Emile E. Voest
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Daniele V. F. Tauriello
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Michiel Vermeulen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands,
| |
Collapse
|