1
|
Yano T, Shimaya Y, Enomoto T, Kiho T, Komoriya S, Nakashima R, Shiraki N, Kume S. A small molecule K-3 promotes PDX1 expression and potentiates the differentiation of pluripotent stem cells into insulin-producing pancreatic β cells. Stem Cells 2025; 43:sxae075. [PMID: 39556137 DOI: 10.1093/stmcls/sxae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Insulin-producing pancreatic β-like cells derived from human pluripotent stem cells (PSCs) are anticipated as a novel cell source for cell replacement therapy for patients with diabetes. Here, we describe the identification of small molecule compounds that promote the differentiation of the PSCs into insulin-producing cells by high throughput screening with a chemical library composed of 55 000 compounds. The initial hit compound K-1 and one derivative K-3 increased the proportion of PSC-derived insulin-positive endocrine cells and their glucose-stimulated insulin secretory (GSIS) functions. K-3 preferentially acts on stage 3 pancreatic progenitor cells and increases the population expressing high levels of PDX1. As a result, the ratios of the PSC-derived PDX1/NKX6.1 double-positive endocrine progenitor and INS/NKX6.1 double-positive mono-hormonal endocrine cells were increased. K-3 enhances the expression of functional pancreatic β cell markers and affects biological processes concerning organ development. K-3 also increased the yield of endocrine cells at the end of stage 5. The novel compound is a beneficial new tool for efficiently generating PSC-derived insulin-producing cells with high functionality and differentiation efficiency.
Collapse
Affiliation(s)
- Tatsuya Yano
- Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yukihiro Shimaya
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Takayuki Enomoto
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
- Bioscience Center, Research Infrastructure Management Center, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Toshihiro Kiho
- Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | - Nobuaki Shiraki
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Andersson-Rolf A, Groot K, Korving J, Begthel H, Hanegraaf MAJ, VanInsberghe M, Salmén F, van den Brink S, Lopez-Iglesias C, Peters PJ, Krueger D, Beumer J, Geurts MH, Alemany A, Gehart H, Carlotti F, de Koning EJP, Chuva de Sousa Lopes SM, van Oudenaarden A, van Es JH, Clevers H. Long-term in vitro expansion of a human fetal pancreas stem cell that generates all three pancreatic cell lineages. Cell 2024; 187:7394-7413.e22. [PMID: 39626658 DOI: 10.1016/j.cell.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/29/2024]
Abstract
The mammalian pancreas consists of three epithelial compartments: the acini and ducts of the exocrine pancreas and the endocrine islets of Langerhans. Murine studies indicate that these three compartments derive from a transient, common pancreatic progenitor. Here, we report derivation of 18 human fetal pancreas organoid (hfPO) lines from gestational weeks 8-17 (8-17 GWs) fetal pancreas samples. Four of these lines, derived from 15 to 16 GWs samples, generate acinar-, ductal-, and endocrine-lineage cells while expanding exponentially for >2 years under optimized culture conditions. Single-cell RNA sequencing identifies rare LGR5+ cells in fetal pancreas and in hfPOs as the root of the developmental hierarchy. These LGR5+ cells share multiple markers with adult gastrointestinal tract stem cells. Organoids derived from single LGR5+ organoid-derived cells recapitulate this tripotency in vitro. We describe a human fetal tripotent stem/progenitor cell capable of long-term expansion in vitro and of generating all three pancreatic cell lineages.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Kelvin Groot
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike A J Hanegraaf
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michael VanInsberghe
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Fredrik Salmén
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Stieneke van den Brink
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland
| | - Maarten H Geurts
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands
| | - Helmuth Gehart
- ETH Zurich, Institute of Molecular Health Sciences, 8093 Zürich, Schweiz
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Alexander van Oudenaarden
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands; Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland.
| |
Collapse
|
3
|
Liu T, Gu Y, Zhang Y, Li Y. Integrin α2 in the microenvironment and the tumor compartment of digestive (gastrointestinal) cancers: emerging regulators and therapeutic opportunities. Front Oncol 2024; 14:1439709. [PMID: 39568561 PMCID: PMC11576383 DOI: 10.3389/fonc.2024.1439709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Integrins are a family of cell surface membrane receptors and play a crucial role in facilitating bidirectional cell signaling. Integrin α2 (ITGA2) is expressed across a range of cell types, including epithelial cells, platelets, megakaryocytes, and fibroblasts, where it functions as a surface marker and it is implicated in the cell movements. The most recent findings have indicated that ITAG2 has the potential to function as a novel regulatory factor in cancer, responsible for driving tumorigenesis, inducing chemoresistance, regulating genomic instability and remodeling tumor microenvironment. Hence, we primarily focus on elucidating the biological function and mechanism of ITGA2 within the digestive tumor microenvironment, while highlighting its prospective utilization as a therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Tiantian Liu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yanmei Gu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yuyu Zhang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yumin Li
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Li Y, Xun Z, Long J, Sun H, Yang X, Wang Y, Wang Y, Xue J, Zhang N, Zhang J, Bian J, Shi J, Yang X, Wang H, Zhao H. Immunosuppression and phenotypic plasticity in an atlas of human hepatocholangiocarcinoma. Hepatobiliary Surg Nutr 2024; 13:586-603. [PMID: 39175731 PMCID: PMC11336540 DOI: 10.21037/hbsn-23-400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 08/24/2024]
Abstract
Background Hepatocholangiocarcinoma (H-ChC) has the clinicopathological features of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) and is a more aggressive subtype of primary hepatic carcinoma than HCC or iCCA. Methods We sequenced 91,112 single-cell transcriptomes from 16 human samples to elucidate the molecular mechanisms underlying the coexistence of HCC and iCCA components in H-ChC. Results We observed two molecular subtypes of H-ChC at the whole-transcriptome level (CHP and CIP), where a metabolically active tumour cell subpopulation enriched in CHP was characterized by a cellular pre-differentiation property. To define the heterogeneity of tumours and their associated microenvironments, we observe greater tumour diversity in H-ChC than HCC and iCCA. H-ChC exhibits weaker immune cell infiltration and greater CD8+ exhausted T cell (Tex) dysfunction than HCC and iCCA. Then we defined two broad cell states of 6,852 CD8+ Tex cells: GZMK+ CD8+ Tex cells and terminal CD8+ Tex cells. GZMK+ CD8+ Tex cells exhibited higher infiltration of after treatment in H-ChC, the effector scores and expression of the immune checkpoints of them greatly increased after immunotherapy, which indicated that H-ChC might be more sensitive than HCC or iCCA to immunotherapy. Conclusions In this paper, H-ChC was explored, hoping to contribute to the study of mixed tumours in other cancers.
Collapse
Affiliation(s)
- Yiran Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ziyu Xun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Junyu Long
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Huishan Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xu Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yanyu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yunchao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jingnan Xue
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Nan Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Junwei Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jin Bian
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jie Shi
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haitao Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
5
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
6
|
Doke M, Álvarez-Cubela S, Klein D, Altilio I, Schulz J, Mateus Gonçalves L, Almaça J, Fraker CA, Pugliese A, Ricordi C, Qadir MMF, Pastori RL, Domínguez-Bendala J. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab 2023; 35:1944-1960.e7. [PMID: 37898119 DOI: 10.1016/j.cmet.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Collapse
Affiliation(s)
- Mayur Doke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph Schulz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alberto Pugliese
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mirza M F Qadir
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
7
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
| | - Paola Aguiari
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- David Geffen School of Medicine at UCLA - VA Healthcare System, Los Angeles, CA, 90095, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alex Rajewski
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology and Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin V Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Children's Hospital Los Angeles, Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
| | - Marie Csete
- Department of Anesthesiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
8
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
9
|
Fu H, Sun H, Kong H, Lou B, Chen H, Zhou Y, Huang C, Qin L, Shan Y, Dai S. Discoveries in Pancreatic Physiology and Disease Biology Using Single-Cell RNA Sequencing. Front Cell Dev Biol 2022; 9:732776. [PMID: 35141228 PMCID: PMC8819087 DOI: 10.3389/fcell.2021.732776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transcriptome analysis is used to study gene expression in human tissues. It can promote the discovery of new therapeutic targets for related diseases by characterizing the endocrine function of pancreatic physiology and pathology, as well as the gene expression of pancreatic tumors. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) can detect transcriptional activity within a single cell. The scRNA-seq had an invaluable contribution to discovering previously unknown cell subtypes in normal and diseased pancreases, studying the functional role of rare islet cells, and studying various types of cells in diabetes as well as cancer. Here, we review the recent in vitro and in vivo advances in understanding the pancreatic physiology and pathology associated with single-cell sequencing technology, which may provide new insights into treatment strategy optimization for diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Haotian Fu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Lou
- Department of Surgery, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Hao Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Zhou
- Department of Biology, Boston University, Boston, MA, United States
| | - Chaohao Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Lei Qin, ; Yunfeng Shan, ; Shengjie Dai,
| |
Collapse
|
10
|
Leng S, Zhang X, Li X, Wang S, Peng J. Lineage tracing reveals the dynamic contribution of Id2+ progenitor cells to branching morphogenesis. Stem Cells Dev 2022; 31:67-77. [PMID: 35018833 DOI: 10.1089/scd.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Branching morphogenesis is an important process in shaping the arborized structures of several organs. However, the driving force that directs this process from progenitor pools remains incompletely understood. In this lineage tracing study, we investigated the role of Id2+ embryonic progenitor cells in branching organs such as the pancreas, kidney, mammary gland, thyroid gland, and salivary gland. We found that a subset of Id2+ distal progenitor cells in the embryonic pancreas and kidney can give rise to multiple lineages of progeny cells during branching morphogenesis. Id2-labelled cells also supported the postnatal development of the mammary glands. However, Id2+ cells did not contribute to the development of the salivary and thyroid glands. We found the Id2+ cells located in the tip progenitor pools of pancreas and kidney have self-renewal potential and contribute descendents to multiple epithelial cell lineages. Our findings enrich the current model of distal progenitor pools driving branching morphogenesis and provide a new marker to investigate the regularity of branching in these organs.
Collapse
Affiliation(s)
- Shaoqiu Leng
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China, 250012;
| | - Xiaoyu Zhang
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China;
| | - Xin Li
- Shandong University Qilu Hospital, 91623, Jinan, China, 250012;
| | - Shuwen Wang
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, China, 250012;
| | - Jun Peng
- Shandong University Qilu Hospital, 91623, Department of Hematology, Jinan, Shandong, China.,Shandong University Qilu Hospital, 91623, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, Shandong, China;
| |
Collapse
|
11
|
Diana A, Setzu MD, Kokaia Z, Nat R, Maxia C, Murtas D. SmartFlare TM is a reliable method for assessing mRNA expression in single neural stem cells. World J Stem Cells 2021; 13:1918-1927. [PMID: 35069990 PMCID: PMC8727230 DOI: 10.4252/wjsc.v13.i12.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND One of the most challenging tasks of modern biology concerns the real-time tracking and quantification of mRNA expression in living cells. On this matter, a novel platform called SmartFlareTM has taken advantage of fluorophore-linked nanoconstructs for targeting RNA transcripts. Although fluorescence emission does not account for the spatial mRNA distribution, NanoFlare technology has grown a range of theranostic applications starting from detecting biomarkers related to diseases, such as cancer, neurodegenerative pathologies or embryonic developmental disorders.
AIM To investigate the potential of SmartFlareTM in determining time-dependent mRNA expression of prominin 1 (CD133) and octamer-binding transcription factor 4 (OCT4) in single living cells through differentiation.
METHODS Brain fragments from the striatum of aborted human fetuses aged 8 wk postconception were processed to obtain neurospheres. For the in vitro differentiation, neurospheres were gently dissociated with Accutase solution. Single cells were resuspended in a basic medium enriched with fetal bovine serum, plated on poly-L-lysine-coated glass coverslips, and grown in a lapse of time from 1 to 4 wk. Live cell mRNA detection was performed using SmartFlareTM probes (CD133, Oct4, Actin, and Scramble). All the samples were incubated at 37 °C for 24 h. For nuclear staining, Hoechst 33342 was added. SmartFlareTM CD133- and OCT4-specific fluorescence signal was assessed using a semiquantitative visual approach, taking into account the fluorescence intensity and the number of labeled cells.
RESULTS In agreement with previous PCR experiments, a unique expression trend was observed for CD133 and OCT4 genes until 7 d in vitro (DIV). Fluorescence resulted in a mixture of diffuse cytoplasmic and spotted-like pattern, also detectable in the contacting neural branches. From 15 to 30 DIV, only few cells showed a scattered fluorescent pattern, in line with the differentiation progression and coherent with mRNA downregulation of these stemness-related genes.
CONCLUSION SmartFlareTM appears to be a reliable, easy-to-handle tool for investigating CD133 and OCT4 expression in a neural stem cell model, preserving cell biological properties in anticipation of downstream experiments.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Zaal Kokaia
- Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, Lund University, Lund SE-221 84, Lund, Sweden
| | - Roxana Nat
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
12
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Wiedenmann S, Breunig M, Merkle J, von Toerne C, Georgiev T, Moussus M, Schulte L, Seufferlein T, Sterr M, Lickert H, Weissinger SE, Möller P, Hauck SM, Hohwieler M, Kleger A, Meier M. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat Biomed Eng 2021; 5:897-913. [PMID: 34239116 PMCID: PMC7611572 DOI: 10.1038/s41551-021-00757-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreatic progenitors through ductal intermediates to two types of mature duct-like cells and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial-mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.
Collapse
Affiliation(s)
- Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Jessica Merkle
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, Heidemannstraße 1, 80939 Müunich, Germany
| | - Tihomir Georgiev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Michel Moussus
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Lucas Schulte
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Technical University of Munich, School of Medicine, Ismaninger Straße 22, 81675 Munich, Germany
| | | | - Peter Möller
- Institute for Pathology, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Heidemannstraße 1, 80939 Müunich, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany,Corresponding authors: ; ;
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany,Corresponding authors: ; ;
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany,Technical University of Munich, School of Medicine, Ismaninger Straße 22, 81675 Munich, Germany,Corresponding authors: ; ;
| |
Collapse
|
14
|
Gopalan V, Singh A, Rashidi Mehrabadi F, Wang L, Ruppin E, Arda HE, Hannenhalli S. A Transcriptionally Distinct Subpopulation of Healthy Acinar Cells Exhibit Features of Pancreatic Progenitors and PDAC. Cancer Res 2021; 81:3958-3970. [PMID: 34049974 PMCID: PMC8338776 DOI: 10.1158/0008-5472.can-21-0427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors can originate either from acinar or ductal cells in the adult pancreas. We re-analyze multiple pancreas and PDAC single-cell RNA-seq datasets and find a subset of nonmalignant acinar cells, which we refer to as acinar edge (AE) cells, whose transcriptomes highly diverge from a typical acinar cell in each dataset. Genes upregulated among AE cells are enriched for transcriptomic signatures of pancreatic progenitors, acinar dedifferentiation, and several oncogenic programs. AE-upregulated genes are upregulated in human PDAC tumors, and consistently, their promoters are hypomethylated. High expression of these genes is associated with poor patient survival. The fraction of AE-like cells increases with age in healthy pancreatic tissue, which is not explained by clonal mutations, thus pointing to a nongenetic source of variation. The fraction of AE-like cells is also significantly higher in human pancreatitis samples. Finally, we find edge-like states in lung, liver, prostate, and colon tissues, suggesting that subpopulations of healthy cells across tissues can exist in pre-neoplastic states. SIGNIFICANCE: These findings show "edge" epithelial cell states with oncogenic transcriptional activity in human organs without oncogenic mutations. In the pancreas, the fraction of acinar cells increases with age.
Collapse
Affiliation(s)
- Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Farid Rashidi Mehrabadi
- Cancer Data Science Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
- Department of Computer Science, Indiana University, Bloomington, Indiana
| | - Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
16
|
Domínguez-Bendala J, Qadir MMF, Pastori RL. Temporal single-cell regeneration studies: the greatest thing since sliced pancreas? Trends Endocrinol Metab 2021; 32:433-443. [PMID: 34006411 PMCID: PMC8239162 DOI: 10.1016/j.tem.2021.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
The application of single-cell analytic techniques to the study of stem/progenitor cell niches supports the emerging view that pancreatic cell lineages are in a state of flux between differentiation stages. For all their value, however, such analyses merely offer a snapshot of the cellular palette of the tissue at any given time point. Conclusions about potential developmental/regeneration paths are solely based on bioinformatics inferences. In this context, the advent of new techniques for the long-term culture and lineage tracing of human pancreatic slices offers a virtual window into the native organ and presents the field with a unique opportunity to serially resolve pancreatic regeneration dynamics at the single-cell level.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
17
|
A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat Commun 2021; 12:3144. [PMID: 34035279 PMCID: PMC8149728 DOI: 10.1038/s41467-021-23295-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Human organogenesis remains relatively unexplored for ethical and practical reasons. Here, we report the establishment of a single-cell transcriptome atlas of the human fetal pancreas between 7 and 10 post-conceptional weeks of development. To interrogate cell–cell interactions, we describe InterCom, an R-Package we developed for identifying receptor–ligand pairs and their downstream effects. We further report the establishment of a human pancreas culture system starting from fetal tissue or human pluripotent stem cells, enabling the long-term maintenance of pancreas progenitors in a minimal, defined medium in three-dimensions. Benchmarking the cells produced in 2-dimensions and those expanded in 3-dimensions to fetal tissue identifies that progenitors expanded in 3-dimensions are transcriptionally closer to the fetal pancreas. We further demonstrate the potential of this system as a screening platform and identify the importance of the EGF and FGF pathways controlling human pancreas progenitor expansion. From single-cell transcriptome analyses to defining culture media for spheroids, the authors provide a census of information to understand the development of human pancreatic progenitors. This approach identifies signalling pathways (EGF and FGF) regulating progenitor proliferation.
Collapse
|
18
|
Ding LY, Hou YC, Kuo IY, Hsu TY, Tsai TC, Chang HW, Hsu WY, Tsao CC, Tian CC, Wang PS, Wang HC, Lee CT, Wang YC, Lin SH, Hughes MW, Chuang WJ, Lu PJ, Shan YS, Huang PH. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. Clin Epigenetics 2020; 12:87. [PMID: 32552862 PMCID: PMC7301993 DOI: 10.1186/s13148-020-00878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). Results By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. Conclusion Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.
Collapse
Affiliation(s)
- Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yi Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Ching Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Wei Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chieh Tsao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Chen Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Shun Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Yan W, Liu X, Wang Y, Han S, Wang F, Liu X, Xiao F, Hu G. Identifying Drug Targets in Pancreatic Ductal Adenocarcinoma Through Machine Learning, Analyzing Biomolecular Networks, and Structural Modeling. Front Pharmacol 2020; 11:534. [PMID: 32425783 PMCID: PMC7204992 DOI: 10.3389/fphar.2020.00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death and has an extremely poor prognosis. Thus, identifying new disease-associated genes and targets for PDAC diagnosis and therapy is urgently needed. This requires investigations into the underlying molecular mechanisms of PDAC at both the systems and molecular levels. Herein, we developed a computational method of predicting cancer genes and anticancer drug targets that combined three independent expression microarray datasets of PDAC patients and protein-protein interaction data. First, Support Vector Machine–Recursive Feature Elimination was applied to the gene expression data to rank the differentially expressed genes (DEGs) between PDAC patients and controls. Then, protein-protein interaction networks were constructed based on the DEGs, and a new score comprising gene expression and network topological information was proposed to identify cancer genes. Finally, these genes were validated by “druggability” prediction, survival and common network analysis, and functional enrichment analysis. Furthermore, two integrins were screened to investigate their structures and dynamics as potential drug targets for PDAC. Collectively, 17 disease genes and some stroma-related pathways including extracellular matrix-receptor interactions were predicted to be potential drug targets and important pathways for treating PDAC. The protein-drug interactions and hinge sites predication of ITGAV and ITGA2 suggest potential drug binding residues in the Thigh domain. These findings provide new possibilities for targeted therapeutic interventions in PDAC, which may have further applications in other cancer types.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shuqing Han
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fan Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|