1
|
Yu L, Dai Z, Huang Y, Tang S, Zhou L, Zhao X, Que X, Shi R, Zhou J, Dong J, Wang F, Gu Y. A temperature-sensitive chitosan hydrogels loaded with nano-zinc oxide and exosomes from human umbilical vein endothelial cells accelerates wound healing. Regen Ther 2025; 30:63-74. [PMID: 40491560 PMCID: PMC12146491 DOI: 10.1016/j.reth.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 06/11/2025] Open
Abstract
The suboptimal therapeutic outcomes of diabetic foot ulcers (DFUs) represent a significant global challenge. In recent years, studies have indicated that novel dressings incorporating exosomes (Exos), nanomaterials, and hydrogels following debridement can synergistically promote tissue repair, which has been widely recognized as a promising emerging trend in the treatment of DFUs. In this study, a combination of zinc oxide nanoparticles (ZnO-NPs), Exos, and chitosan (CS) hydrogel (CS/ZnO-NPs@Exos) was applied to the full-thickness cutaneous defects in a diabetic rat model. This CS/ZnO-NPs@Exos hydrogel was applied to the wound site to achieve sustained and long-term release of Exos, allowing the evaluation of its therapeutic effects. This hydrogel significantly improved the wound closure rate in diabetic skin injuries and reduced oedema, erythema and inflammatory exudate at the wound site. These effects were characterized by enhanced re-epithelialization, reduced infiltration of inflammatory cells, increased collagen deposition, and enhanced angiogenesis in the wound area. This may be related to the Exos derived from human umbilical vein endothelial cells (HUVECs), which notably promote the migration and proliferation of fibroblasts. As a result, the CS/ZnO-NPs@Exos hydrogel offers a new therapeutic dressing for the management of diabetic wounds, with the potential to play a crucial role in clinical practice.
Collapse
Affiliation(s)
- Lei Yu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Zihao Dai
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Yuchen Huang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Shuo Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Lihong Zhou
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xuying Zhao
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Xianfeng Que
- Health Management Center, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Rongfeng Shi
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Jin Zhou
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu 226001, People's Republic of China
| | - Jixuan Dong
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| | - Feng Wang
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu 226001, People's Republic of China
| | - Yunjuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong University, 20 Xisi Road, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
2
|
Cui L, Song Y, Hou Z, Yang L, Guo S, Wang C. From bench to bedside: the research status and application opportunity of extracellular vesicles and their engineering strategies in the treatment of skin defects. J Nanobiotechnology 2025; 23:375. [PMID: 40414838 DOI: 10.1186/s12951-025-03461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 05/11/2025] [Indexed: 05/27/2025] Open
Abstract
Engineered extracellular vesicles (EVs), which are EVs modified to enhance certain biological properties, offer a promising therapeutic strategy for the treatment of skin defects. Conventional nanomaterials often encounter clinical translation challenges due to potential toxicity and limited targeting. Engineered EVs, utilizing inherent biocompatibility and effective physiological barrier traversal, can ameliorate the limitations of conventional EV therapies to some extent, including detection, isolation, purification, and therapeutic validation. Recent advances in EV engineering, such as genetic modification of production cells to control cargo, surface engineering for targeted delivery, and pre-treatment of parental cells to optimize production and bioactivity, have improved therapeutic efficacy in laboratory studies through enhanced targeting, prolonged retention time, and increased yield. Many studies have suggested the potential ability of engineered EVs to treat a variety of skin defects, including diabetic wounds, burns, and hypertrophic scars, providing a promising avenue for their clinical translation in this area. This paper reviews the therapeutic potential of engineered EVs in skin regeneration, highlighting their role in promoting cell migration and angiogenesis, modulating inflammation and reducing scar formation during wound healing. In addition, given the investment in this rapidly evolving field and the growing clinical trial activity, this review also explores recent global advances and provides an outlook on future application opportunities for EVs in the treatment of skin defects.
Collapse
Affiliation(s)
- Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China.
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
3
|
Wang H, Wu S, Bai X, Pan D, Ning Y, Wang C, Guo L, Guo J, Gu Y. Mesenchymal Stem Cell-Derived Exosomes Hold Promise in the Treatment of Diabetic Foot Ulcers. Int J Nanomedicine 2025; 20:5837-5857. [PMID: 40351704 PMCID: PMC12065540 DOI: 10.2147/ijn.s516533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic foot ulcers (DFU) represent one of the most common side effects of diabetes, significantly impacting patients' quality of life and imposing considerable financial burdens on families and society at large. Despite advancements in therapies targeting lower limb revascularization and various medications and dressings, outcomes for patients with severe lesions remain limited. A recent breakthrough in DFU treatment stems from the development of mesenchymal stem cells (MSCs). MSCs have shown promising results in treating various diseases and skin wounds due to their ability for multidirectional differentiation and immunomodulation. Recent studies highlight that MSCs primarily repair tissue through their paracrine activities, with exosomes playing a crucial role as the main biologically active components. These exosomes transport proteins, mRNA, DNA, and other substances, facilitating DFU treatment through immunomodulation, antioxidant effects, angiogenesis promotion, endothelial cell migration and proliferation, and collagen remodeling. Mesenchymal stem cell-derived exosomes (MSC-Exo) not only deliver comparable therapeutic effects to MSCs but also mitigate adverse reactions like immune rejection associated with MSCs transplantation. This article provides an overview of DFU pathophysiology and explores the mechanisms and research progress of MSC-Exo in DFU therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Xinyu Bai
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
4
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
5
|
Poorkazem H, Saber M, Moradmand A, Yakhkeshi S, Seydi H, Hajizadeh-Saffar E, Shekari F, Hassani SN. Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process. Int J Biochem Cell Biol 2025; 180:106737. [PMID: 39828140 DOI: 10.1016/j.biocel.2025.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied. This study aimed to evaluate the effects of two distinct subpopulations of clonal mesenchymal stromal cells (cMSC)-derived EVs (cMSC-EVs), namely 20 K and 110K-cMSC-EVs, primarily on in vitro wound healing process, providing fast and cost-effective alternatives to animal models. METHODS In vitro assays were conducted to compare the effects of 20 K and 110K-cMSC-EVs, isolated through high-speed centrifugation and differential ultracentrifugation, respectively. For evaluation the main mechanisms of wound healing, including cell proliferation, cell migration, angiogenesis, and contraction. Human dermal fibroblasts (HDF) were considered as the main cells for analysis of these procedures. Moreover, gene expression analysis was performed to assess the impact of these EV subpopulations on the related process of wound healing on HDF. RESULTS The results demonstrated that both 20 K and 110K-cMSC-EVs exhibited beneficial effects on cell proliferation, cell migration, angiogenesis, and gel contraction. RT-qPCR revealed that both EV types downregulated interleukin 6 (IL6), induced proliferation by upregulating proliferating cell nuclear antigen (PCNA), and regulated remodeling by upregulating matrix metallopeptidase 1 (MMP1) and downregulating collagen type 1 (COL1). DISCUSSION This study highlights the effects of both 20 K and 110K-cMSC-EVs on the potency of HDFs in wound healing-related process. As the notable finding, 20K-cMSC-EVs offer a more feasible and cost-effective subpopulation for isolation and follow the GMP standard, recommended to utilize this fraction for therapeutic application.
Collapse
Affiliation(s)
- Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
7
|
Xu L, Liu D, Yun HL, Zhang W, Ren L, Li WW, Han C. Effect of adipose-derived stem cells exosomes cross-linked chitosan-αβ-glycerophosphate thermosensitive hydrogel on deep burn wounds. World J Stem Cells 2025; 17:102091. [DOI: 10.4252/wjsc.v17.i2.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Burn wound management is challenging, and while mesenchymal stem cell-derived exosomes show therapeutic potential, optimal delivery methods are unclear.
AIM To study chitosan (CS)-αβ-glycerophosphate (CS-αβ-GP) hydrogel crosslinked with adipose-derived stem cell exosomes (ASC-Exos) for healing deep burn injuries.
METHODS Rats with deep burn injuries were divided into the CS + ASCs-Exos group, the ASCs-Exos group, the CS group, and the control group. The healing rates on days 4, 7, and 14 after treatment were analyzed using ImageJ software. On day 14, the tissues were stained with hematoxylin and eosin staining, Masson’s trichrome staining, and immunohistochemical analysis to evaluate tumor necrosis factor α, interleukin-6 (IL-6), IL-1α, IL-10, transforming growth factor β, and epidermal growth factor. The mRNA levels of IL-1α, CD86, C-C motif chemokine ligand 22, and CD163 were evaluated through quantitative polymerase chain reaction.
RESULTS The CS + ASC-Exos group exhibited enhanced healing, reduced lymphocyte infiltration, blood vessels, and muscle fiber distribution. Increased IL-10, transforming growth factor β, and epidermal growth factor and decreased tumor necrosis factor α, IL-1α, and IL-6 expression were observed. Quantitative polymerase chain reaction revealed reduced IL-1α and CD86 and increased C-C motif chemokine ligand 22 and CD163 expression. Protein analysis showed downregulation of phosphorylated inhibitor of kappa Balpha and P65 in the nuclear factor κB (NF-κB) pathway. ASC-Exos crosslinked with CS-αβ-GP hydrogel demonstrates superior effects in anti-inflammation, wound healing promotion, and promotion of M1 macrophage transformation to M2 macrophage by blocking the NF-κB pathway compared to ASC-Exos alone.
CONCLUSION Our research demonstrates that the ASC-Exos cross-linked CS-αβ-GP hydrogel represents an advanced therapeutic approach for treating deep burn wounds. It has anti-inflammatory effects, promotes wound healing, and facilitates the transition of M1 macrophages to M2 macrophages by blocking the NF-κB pathway.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pathology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Dan Liu
- Department of Endocrinology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Hai-Long Yun
- Department of Pathology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Wei Zhang
- Department of Endocrinology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Li Ren
- Department of Endocrinology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Wen-Wen Li
- Department of Endocrinology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of the Western Theater Command, Chengdu 610038, Sichuan Province, China
| |
Collapse
|
8
|
Ghanta SN, Kattamuri LPV, Odueke A, Mehta JL. Molecular Insights into Ischemia-Reperfusion Injury in Coronary Artery Disease: Mechanisms and Therapeutic Implications: A Comprehensive Review. Antioxidants (Basel) 2025; 14:213. [PMID: 40002399 PMCID: PMC11851988 DOI: 10.3390/antiox14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Coronary artery disease remains a leading cause of morbidity and mortality worldwide. Acute myocardial infarction results in ischemia-induced cellular dysfunction and death. While timely reperfusion limits myocardial damage, it paradoxically triggers ischemia-reperfusion injury (IRI), exacerbating tissue damage. IRI, first observed in the 1960s, is mediated by complex molecular pathways, including oxidative stress, calcium dysregulation, endothelial dysfunction, and inflammation. This review examines emerging therapeutic strategies targeting IRI, including ischemic preconditioning, postconditioning, pharmacological agents, and anti-inflammatory therapies. Preconditioning serves as an endogenous protection mechanism, while pharmacological postconditioning has become a more clinically feasible approach to target oxidative stress, inflammation, and apoptosis during reperfusion. Pharmacological agents, such as GSK-3β inhibitors, JNK inhibitors, and mesenchymal stem cell-derived exosomes, have shown promise in modulating molecular pathways, including Wnt/β-catenin and NF-κB, to reduce myocardial injury and enhance recovery. Combination therapies, integrating pharmacological agents with mechanical postconditioning, provide a synergistic approach to further protect tissue and mitigate damage. However, translating preclinical findings to clinical practice remains challenging due to discrepancies between animal models and human conditions, particularly with comorbidities such as diabetes and hypertension. Continued research is essential to refine these therapies, optimize clinical application, and address translational challenges to improve outcomes in IRI.
Collapse
Affiliation(s)
- Sai Nikhila Ghanta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.N.G.); (A.O.)
| | - Lakshmi. P. V. Kattamuri
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - Adetayo Odueke
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.N.G.); (A.O.)
| | - Jawahar L. Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.N.G.); (A.O.)
| |
Collapse
|
9
|
Morabbi A, Karimian M. Therapeutic potential of exosomal lncRNAs derived from stem cells in wound healing: focusing on mesenchymal stem cells. Stem Cell Res Ther 2025; 16:62. [PMID: 39934913 PMCID: PMC11816792 DOI: 10.1186/s13287-025-04200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The self-renewal ability and multipotency of stem cells give them great potential for use in wound healing. Stem cell-derived exosomes, owing to their close biological resemblance to their parent cells, offer a more efficient, safer, and economical approach for facilitating cellular communication and interactions within different environments. This potential makes them particularly valuable in the treatment of both acute and chronic wounds, such as lacerations, burns, and diabetic ulcers. Long non-coding RNAs (lncRNAs) enclosed in exosomes, as one of the leading actors of these extracellular microvesicles, through interaction with miRNAs and regulation of various signaling pathways involved in inflammation, angiogenesis, cell proliferation, and migration, could heal the wounds. Exosome-derived lncRNAs from stem cells facilitate extracellular matrix remodeling through interaction between macrophages and fibroblasts. Moreover, alongside regulating the expression of inflammatory cytokines, controlling reactive oxygen species levels, and enhancing autophagic activity, they also modulate immune responses to support wound healing. Regulating the expression of genes and signaling pathways related to angiogenesis, by increasing blood supply and accelerating the delivery of essential substances to the wound environment, is another effect exosomal lncRNAs derived from stem cells for wound healing. These lncRNAs can also enhance skin wound healing by regulating homeostasis, increasing the proliferation and differentiation of cells involved in the wound-healing process, and enhancing fibroblast viability and migration to the injury site. Ultimately, exosome-derived lncRNAs from stem cells offer valuable and novel insights into the molecular mechanisms underlying improved wound healing. They can pave the way for potential therapeutic strategies, fostering further research for a better future. Meanwhile, exosomes derived from mesenchymal stem cells, due to their exceptional regenerative properties, as well as the lncRNAs derived from these exosomes, have emerged as one of the innovative tools in wound healing. This review article aims to narrate the cellular and molecular roles of exosome-derived lncRNAs from stem cells in enhancing wound healing with a focus on mesenchymal stem cells.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
10
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
11
|
Kheradmand F, Yasaman Rahimzadeh SF, Esmaeili SA, Negah SS, Farkhad NK, Nazari SE, Hajinejad M, Khodadoust MA, Fadaee A, Afshari JT, Khazaei M. Efficacy of umbilical cord-derived mesenchymal stem cells and exosomes in conjunction with standard IBD drug on immune responses in an IBD mouse model. Stem Cell Res Ther 2025; 16:5. [PMID: 39773498 PMCID: PMC11707839 DOI: 10.1186/s13287-024-04062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a persistent inflammation of the digestive system, and Mesenchymal Stem Cells (MSCs) and their exosomes have demonstrated potential as treatments for this condition. The objective of this research was to examine the possible effectiveness of intraperitoneal injection of umbilical cord-MSCs (UC-MSCs) and their exosomes through a two-time injection regimen in a mouse model. METHOD In this study, an animal model of a specific type of IBD in C57BL/6 mice, induced by dextran sulfate sodium (DSS), was utilized. The mice were treated with MSCs, exosomes, Mesalazine, and a combination of them. Upon sacrificing the mice, colon and spleen tissues were isolated to assess the changes in the mice's weight, colon length, spleen weight, and colitis' pathological symptoms. IL-10 and IL-17 levels were measured, and Treg and Th17 cell percentages were determined as well. Furthermore, colon tissue was stained to investigate histopathological changes. RESULTS In the groups that received MSCs, there was a significant reduction in the disease activity index and their combinations with exosomes and Mesalazine compared to the colitis group. Colon length increased in all groups except the exosome group. Histological measures were notably reduced in the MSC groups and their combinations. Significant increases in the IL-10 level of colon tissue and the proportion of Treg present in the spleen were observed in the groups receiving MSC and combination treatment. Furthermore, these groups showed a notable reduction in the percentage of spleen Th17 cells. However, IL17A decreased non-significantly in all groups. CONCLUSION The results showed that intraperitoneal injection of UC-MSCs and their combination with exosome and Mesalazine in a murine colitis model improved the disease's symptoms. Therefore, MSCs and their combination with exosomes can be a promising therapeutic approach along with other common drugs for IBD, but exosomes alone could not significantly reduce the symptoms of colitis.
Collapse
Affiliation(s)
- Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Yasaman Rahimzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Islamic Azad University, Garmsar Branch, Faculty of Veterinary Medicine, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Kaffash Farkhad
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Science, Birjand University of Medical Science, Birjand, Iran
| | - Mohammad Ali Khodadoust
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Fadaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Zhen M, Zhu Y, Wang P, Liu X, Zhu J, Liu H, Li J, Zhao J, Shu B. HMGB1 Accelerates Wound Healing by Promoting the Differentiation of Epidermal Stem Cells via the "HMGB1-TLR4-Wnt/Notch" Axis. Adv Wound Care (New Rochelle) 2024. [PMID: 39694535 DOI: 10.1089/wound.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Objective: Impairments in the differentiation and migratory capacity of epidermal stem cells (ESCs) are pivotal factors contributing to delayed wound healing. High mobility group box1 (HMGB1) has recently emerged as a potential target for tissue repair. Therefore, we aimed to investigate the role and molecular mechanisms of HMGB1 in ESCs during the wound-healing process. Approach: Initially, we examined the expression of HMGB1 and the differentiation of ESCs in normal skin, normal wounds and chronic wounds. Then, we assessed the ESC migration and differentiation, and the key markers in the Wnt/Notch signaling pathways, after treatment of HMGB1 and inhibitor, and the knockdown of toll-like receptor 4 (TLR4), using scratch assay, qPCR, western blotting, and immunofluorescence. Finally, we conducted mice models to analyze the healing rates and quality in vivo. Results: HMGB1 was decreased across all epidermal layers, and the differentiation of ESCs was hindered in diabetic foot ulcer. In vitro, HMGB1 enhanced both the migration and differentiation of ESCs while stimulating the expression of the Wnt/Notch pathway within ESCs. However, the downregulation of TLR4 negated these effects. Finally, our in vivo experiments provided evidence that HMGB1 facilitates wound healing and epidermis differentiation via TLR4 and Wnt/Notch signaling pathways. Innovation: This study innovatively introduces HMGB1 as a novel target for skin wound healing and elucidates its mechanisms of action. Conclusions: HMGB1 accelerated wound healing by promoting the differentiation of epidermal stem cells through the "HMGB1-TLR4-Wnt/Notch" axis, which reveals a new potential mechanism and target to expedite wound healing.
Collapse
Affiliation(s)
- Miao Zhen
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongkang Zhu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Peng Wang
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junyou Zhu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hengdeng Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingling Zhao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Shu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Nouri S, Shokraneh S, Fatehi Shalamzari P, Ahmed MH, Radi UK, Idan AH, Ebrahimi MJ, Moafi M, Gholizadeh N. Application of Mesenchymal Stem Cells and Exosome alone or Combination Therapy as a Treatment Strategy for Wound Healing. Cell Biochem Biophys 2024; 82:3209-3222. [PMID: 39068609 DOI: 10.1007/s12013-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country's healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients' wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.
Collapse
Affiliation(s)
- Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Jung H, Jung Y, Seo J, Bae Y, Kim HS, Jeong W. Roles of extracellular vesicles from mesenchymal stem cells in regeneration. Mol Cells 2024; 47:100151. [PMID: 39547584 DOI: 10.1016/j.mocell.2024.100151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are highly valued in regenerative medicine due to their ability to self-renew and differentiate into various cell types. Their therapeutic benefits are primarily due to their paracrine effects, in particular through extracellular vesicles (EVs), which are related to intercellular communication. Recent advances in EV production and extraction technologies highlight the potential of MSC-derived EVs (MSC-EVs) in tissue engineering and regenerative medicine. MSC-EVs offer several advantages over traditional cell therapies, including reduced toxicity and immunogenicity compared with whole MSCs. EVs carrying functional molecules such as growth factors, cytokines, and miRNAs play beneficial roles in tissue repair, fibrosis treatment, and scar prevention by promoting angiogenesis, skin cell migration, proliferation, extracellular matrix remodeling, and reducing inflammation. Despite the potential of MSC-EVs, there are several limitations to their use, including variability in quality, the need for standardized methods, low yield, and concerns about the composition of EVs and the potential risks. Overall, MSC-EVs are a promising alternative to cell-based therapies, and ongoing studies aim to understand their actions and optimize their use for better clinical outcomes in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Hyeseong Jung
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yuyeon Jung
- Department of Dental Hygiene, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Junsik Seo
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Yeongju Bae
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Wooyoung Jeong
- Department of Biomedical Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| |
Collapse
|
15
|
Esmaeili A, Noorkhajavi G, Soleimani M, Farsinezhad H, Bagheri-Mohammadi S, Keshel SH. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024; 91:102611. [PMID: 39550901 DOI: 10.1016/j.tice.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In the medical field, wound healing poses significant challenges due to its complexity and time-consuming nature. Cell-free wound repair, notably the utilization of exosomes (EXOs), has made significant progress in recent years. Urine, saliva, umbilical cord, blood, mesenchymal stem cells and breast milk cells can be used to extract and purify EXOs, which are Nano-sized lipid bilayer vesicles. Besides their relatively little toxicity, non-specific immunogenicity and excellent biocompatibility, EXOs also contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs), and messenger RNAs (mRNAs). Their bioactive compounds have anti-inflammatory properties and can speed up wound healing. Various medicinal agents can also be contained within the EXOs. This review briefly provides new information on the different aspects of EXOs and evaluate the application of EXOs as a promising therapy in the regeneration of skin wounds in recent pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Noorkhajavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farsinezhad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Li S, Li Y, Zhu K, He W, Guo X, Wang T, Gong S, Zhu Z. Exosomes from mesenchymal stem cells: Potential applications in wound healing. Life Sci 2024; 357:123066. [PMID: 39306326 DOI: 10.1016/j.lfs.2024.123066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Wound healing is a continuous and complex process regulated by multiple factors, which has become an intractable clinical burden. Mesenchymal stem cell-derived exosomes (MSC-exos) possess low immunogenicity, easy preservation, and potent bioactivity, which is a mirror to their parental cells MSC-exos are important tools for regulating the biological behaviors of wound healing-associated cells, including fibroblasts, keratinocytes, immune cells, and endothelial cells. MSC-exos accelerate the wound healing process at cellular and animal levels by modulating inflammatory responses, promoting collagen deposition and vascularization. MSC-exos accelerate wound healing at the cellular and animal levels by modulating inflammatory responses and promoting collagen deposition and vascularization. This review summarizes the roles and mechanisms of MSC-exos originating from various sources in promoting the healing efficacy of general wounds, diabetic wounds, burn wounds, and healing-related scars. It also discusses the limitations and perspectives of MSC-exos in wound healing, in terms of exosome acquisition, mechanistic complexity, and exosome potentiation modalities. A deeper understanding of the properties and functions of MSC-exos is beneficial to advance the therapeutic approaches for achieving optimal wound healing.
Collapse
Affiliation(s)
- Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlin He
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Song Gong
- Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
17
|
Wang Y, Tan PC, Xu X, Zhou S. Protective function of adipocyte-derived extracellular vesicles and adipose stem cells in damage repair and regeneration. CHINESE JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY 2024. [DOI: 10.1016/j.cjprs.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Jiao Y, Sun QM, Shen YC, Li QS, Piao YJ, Gong L. Stimulation of mouse hair regrowth by exosomes derived from human umbilical cord mesenchymal stem cells. Acta Histochem 2024; 126:152184. [PMID: 39053176 DOI: 10.1016/j.acthis.2024.152184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND There is an urgent need for new treatments to solve hair loss problem. As mesenchymal stem cells were proved to have effects on promoting tissue repair and regeneration, in which the exosome plays a vital role, we aim to investigate the influence of umbilical cord mesenchymal stem cells exosome (UCMSC-Exos) on hair growth and its mechanism. METHODS The hUCMSC-Exos were extracted by ultracentrifugation. Primary fibroblasts were cultured with or without hUCMSC-Exos and cell proliferation was evaluated by CCK-8 assay. C57BL/6 mice model of depilation-induced hair regrowth was treated with either hUCMSC-Exos (200 μg/mL) or PBS on one side of the dorsal back. Real time quantitative PCR, flow cytometry analysis, immunohistochemistry and Immunofluorescent staining were used to analyze the regulative effect of hUCMSC-Exos on hair follicle stem/progenitor cells and Wnt/β-catenin pathway. RESULTS The proliferation of fibroblasts incubated with hUCMSC-Exos at the concentration of 200 μg/mL was greater than other groups. Treatment with hUCMSC-Exos resulted in rapid reentry into anagen. Hair follicle stem/progenitor cell markers (K15, Lgr5, Lgr6, CD34 and Lrig1) and Wnt/β-catenin pathway related factors (Wnt5, Lef1, Lrp5 and β-catenin) were increased in hUCMSC-Exos-injected region. CONCLUSION hUCMSC-Exos promote fibroblasts proliferation and accelerate mouse hair regrowth by upregulating hair follicle stem/progenitor cell and Wnt/β-catenin pathway, which suggests potential therapeutic approaches for hair loss disorders.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Qing-Min Sun
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China; Chang Zhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou City, Jiangsu Province, China
| | - Yu-Chen Shen
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Qing-Shan Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Yong-Jun Piao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.
| | - Lin Gong
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.
| |
Collapse
|
19
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Gu Y, Mu Z, Chen Y, Wu C, Shi J, Bai N. Therapeutic potential of ADSCs in diabetic wounds: a proteomics-based approach. Front Cell Dev Biol 2024; 12:1468220. [PMID: 39345337 PMCID: PMC11427884 DOI: 10.3389/fcell.2024.1468220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background Diabetes mellitus (DM), a chronic metabolic disease characterized by elevated blood sugar, leads to delayed or non-healing wounds, increasing amputation risks, and placing a significant burden on patients and society. While extensive research has been conducted on adipose-derived stem cells (ADSCs) for promoting wound healing, there is a scarcity of studies focusing on diabetic wounds, particularly those employing proteomics and bioinformatics approaches. Objective This study aimed to investigate the mechanisms by which ADSCs promote diabetic wound healing using proteomics and bioinformatics techniques. Methods Healthy rat fat tissue was used to isolate ADSCs. A T2DM rat model with back wounds was established. The experimental group received ADSC injections around the wound, while the control group received PBS injections. Wound healing rates were documented and photographed on days 0, 3, 7, 10, and 14. On day 7, wound tissues were excised for HE and Masson's staining. Additionally, on day 7, tissues were analyzed for protein quantification using 4D-DIA, with subsequent GO and KEGG analyses for differentially expressed proteins (DEPs) and protein-protein interaction (PPI) network analysis using STRING database (String v11.5). Finally, Western blot experiments were performed on day 7 wounds to verify target proteins. Results and Conclusions In all measured days postoperatively, the wound healing rate was significantly higher in the ADSC group than in the PBS group (day 7: p < 0.001, day 10: p = 0.001, day 14: p < 0.01), except on day 3 (p > 0.05). Proteomic analysis identified 474 differentially expressed proteins, with 224 key proteins after PPI analysis (78 upregulated and 146 downregulated in the ADSC group). The main cellular locations of these proteins were "cellular anatomical entity" and "protein-containing complex", while the biological processes were "cellular processes" and "biological regulation". The primary molecular functions were "binding" and "catalytic activity", with GO enrichment focused on "Wnt-protein binding", "neural development", and "collagen-containing extracellular matrix". Further analysis of PPI network nodes using LASSO regression identified Thy1 and Wls proteins, significantly upregulated in the ADSC group, as potentially crucial targets for ADSC application in diabetic wound treatment.
Collapse
Affiliation(s)
- Yuan Gu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Zelan Mu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuanzheng Chen
- Department of Burns and Plastic Surgery, Emergency General Hospital, Beijing, China
| | - Can Wu
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| | - Jie Shi
- Plastic and Cosmetic Surgery, People′s Hospital of Liaoning Province, Shenyang, China
| | - Nan Bai
- Medical Cosmetic Plastic Surgery, Linyi People′s Hospital, Linyi, China
| |
Collapse
|
21
|
Peng C, Xu H, Zhuang Q, Liu J, Ding Y, Tang Q, Wang Z, Yao K. Placenta-derived mesenchymal stem cells promote diabetic wound healing via exosomal protein interaction networks. Wound Repair Regen 2024; 32:638-651. [PMID: 39022990 DOI: 10.1111/wrr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
There is a lack of effective treatment options for diabetic refractory wounds, which presents a critical clinical issue that needs to be addressed urgently. Our research has demonstrated that human placenta-derived mesenchymal stem cells (plaMSCs) facilitate the migration and proliferation of HaCat cells, thereby enhancing diabetic wound healing primarily via the exosomes derived from plaMSCs (plaMSCs-Ex). Using label-free proteomics, plaMSCs and their exosomes were analysed for proteome taxonomic content in order to explore the underlying effective components mechanism of plaMSCs-Ex in diabetic wound healing. Differentially expressed proteins enriched in plaMSCs-Ex were identified and underwent bioinformatics analysis including GO annotation, KEGG pathway enrichment, gene set enrichment analysis (GSEA) and protein-protein interaction analysis (PPI). Results showed that the proteins enriched in plaMSCs-Ex are significantly involved in extracellular matrix organisation, epithelium morphogenesis, cell growth, adhesion, proliferation and angiogenesis. PPI analysis filtered 2 wound healing-related clusters characterised by hub proteins such as POSTN, FN1, SPARC, TIMP1, SERPINE1, LRP1 and multiple collagens. In brief, the exosomal proteins derived from plaMSCs reveal diverse functions of regeneration and tissue remodelling based on proteomics analysis and potentially play a role in diabetic wound healing.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinya Liu
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yinhe Ding
- Department of Spine Surgery, The Xiangya Hospital of Central South University, Changsha, China
| | - Qiyu Tang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Wang
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kai Yao
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Fakouri A, Razavi ZS, Mohammed AT, Hussein AHA, Afkhami H, Hooshiar MH. Applications of mesenchymal stem cell-exosome components in wound infection healing: new insights. BURNS & TRAUMA 2024; 12:tkae021. [PMID: 39139205 PMCID: PMC11319788 DOI: 10.1093/burnst/tkae021] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024]
Abstract
The healing process at a wound is made up of many types of cells, growth factors, the extracellular matrix, nerves and blood vessels all interacting with each other in complex and changing ways. Microbial colonization and proliferation are possible at the place of injury, which makes infection more likely. Because of this, any cut has a chance of getting an infection. Researchers have found that wound infections make patients more upset and cost the healthcare system a lot of money. Surgical site infections happen a lot to people who have recently had surgery. This study shows that such surgical infection is linked to a high rate of illness and death. This is shown by the fact that 25% of patients get serious sepsis and need to be transferred to an intensive care unit. In both animal models and people, mesenchymal stem cells (MSCs) play an active role in all stages of wound healing and have positive effects. Exosomes are one of the main things MSCs release. They have effects that are similar to those of the parent MSCs. Various effector proteins, messenger RNA and microRNAs can be transported by extracellular vesicles to control the activity of target cells. This has a big impact on the healing process. These results suggest that using MSC-exosomes as a new type of cell-free therapy could be a better and safer option than whole cell therapy. This review is mostly about how to use parts of MSC-exosomes to help wound infections heal.
Collapse
Affiliation(s)
- Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Zahra-Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
23
|
Sun Y, Zhang S, Shen Y, Lu H, Zhao X, Wang X, Wang Y, Wang T, Liu B, Yao L, Wen J. Therapeutic application of mesenchymal stem cell-derived exosomes in skin wound healing. Front Bioeng Biotechnol 2024; 12:1428793. [PMID: 39161350 PMCID: PMC11330766 DOI: 10.3389/fbioe.2024.1428793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Wound healing is a complicated obstacle, especially for chronic wounds. Mesenchymal stem cell-derived exosomes may be a promising cell-free approach for treating skin wound healing. Exosomes can accelerate wound healing by attenuating inflammation, promoting angiogenesis, cell proliferation, extracellular matrix production and remodeling. However, many issues, such as off-target effects and high degradation of exosomes in wound sites need to be addressed before applying into clinical therapy. Therefore, the bioengineering technology has been introduced to modify exosomes with greater stability and specific therapeutic property. To prolong the function time and the local concentration of exosomes in the wound bed, the use of biomaterials to load exosomes emerges as a promising strategy. In this review, we summarize the biogenesis and characteristics of exosomes, the role of exosomes in wound healing, and the therapeutic applications of modified-exosomes in wound healing. The challenges and prospects of exosomes in wound healing are also discussed.
Collapse
Affiliation(s)
- Yunhan Sun
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shun Zhang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yukai Shen
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoyang Lu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xincan Zhao
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yongkai Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Taiping Wang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lan Yao
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jie Wen
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
24
|
Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, Sheykhhasan M. Unveiling therapeutic potential: Adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399. [PMID: 38944396 DOI: 10.1016/j.bcp.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Afkhami
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
25
|
Yang X, Zhang S, Chen K, Shen D, Yang Y, Shen A, Liang J, Xu M, Yang Y, Zhao Y, Li H, Tong X. Hypoxic Preconditioned ADSC Exosomes Enhance Vaginal Wound Healing via Accelerated Keratinocyte Proliferation and Migration Through AKT/HIF‑1α Axis Activation. Cell Mol Bioeng 2024; 17:295-303. [PMID: 39372552 PMCID: PMC11450125 DOI: 10.1007/s12195-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Accelerating wound healing is a main consideration in surgery. The three stages of wound healing are inflammatory response, tissue repair and cell proliferation. Much research has focused on epidermal cell proliferation and migration because this is an essential step in wound healing. Methods and Results The current study discovered that exosomes from Adipose-derived stem cell (ADSC) following hypoxic preconditioning (HExo) have a greater promotional effect on vaginal wound healing. Protein kinase B (AKT)/hypoxia-inducible factor 1-alpha (HIF-1α) play an important role in HExo-mediated HaCaT cell migration and proliferation. The promotional effect of HExo on rat wound healing was reversed by both, HIF‑1α and AKT inhibition. Phosphorylation of AKT (p-AKT) or HIF‑1α suppression reversed the protective effect of HExo on vaginal wound healing. Conclusion Taken together, our study found that hypoxic preconditioning of adipose MSC exosomes enhances vaginal wound healing via accelerated keratinocyte proliferation and migration through AKT/HIF‑1α axis activation.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Shasha Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Kewei Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Aiqun Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Junhua Liang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yanhong Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No. 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|
26
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
27
|
Lin Z, Lin D, Lin D. The Mechanisms of Adipose Stem Cell-Derived Exosomes Promote Wound Healing and Regeneration. Aesthetic Plast Surg 2024; 48:2730-2737. [PMID: 38438760 DOI: 10.1007/s00266-024-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
Chronic wound healing is a class of diseases influenced by multiple complex factors, causing severe psychological and physiological impact on patients. It is an intractable clinical challenge and its possible mechanisms are not yet clear. It has been proven that adipose stem cell-derived exosomes (ADSC-Exos) can promote wound healing and inhibit scar formation by regulating inflammation, promoting cell proliferation, migration, and angiogenesis, regulating matrix remodeling, which provides a new approach for wound healing through biological treatment. This review focuses on the mechanism, treatment, and administration methods of ADSC-Exos in wound healing, providing a comprehensive understanding the mechanisms of ADSC-Exos on wound healing. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhengjie Lin
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Danyi Lin
- Department of Pathology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China.
| | - Dane Lin
- Neonatal Intensive Care Unit, Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, China.
| |
Collapse
|
28
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Tang D, Tang W, Chen H, Liu D, Jiao F. Synergistic Effects of Icariin and Extracellular Vesicles Derived from Rabbit Synovial Membrane-Derived Mesenchymal Stem Cells on Osteochondral Repair via the Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2024; 2024:1083143. [PMID: 38946863 PMCID: PMC11214593 DOI: 10.1155/2024/1083143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and β-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/β-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and β-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.
Collapse
Affiliation(s)
- Dongming Tang
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Huanqing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Donghua Liu
- Department of Spine SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint SurgeryGuangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| |
Collapse
|
30
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
31
|
Wang Y, Shi X. The potential mechanisms and treatment effects of stem cell-derived exosomes in cardiac reengineering. NANOTECHNOLOGY 2024; 35:362005. [PMID: 38834043 DOI: 10.1088/1361-6528/ad53d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Exosomes are extracellular vesicles of diverse compositions that are secreted by numerous cell types. Exosomes contain significant bioactive components, including lipids, proteins, mRNA, and miRNA. Exosomes play an important role in regulating cellular signaling and trafficking under both normal physiological and pathological circumstances. A multitude of factors, including thermal stress, ribosomal stress, endoplasmic reticulum stress, and oxidative stress influence the concentrations of exosomal mRNA, miRNA, proteins, and lipids. It has been stated that exosomes derived from stem cells (SCs) modulate a range of stresses by preventing or fostering cell balance. Exosomes derived from SCs facilitate recovery by facilitating cross-cellular communication via the transmission of information in the form of proteins, lipids, and other components. For this reason, exosomes are used as biomarkers to diagnose a wide variety of diseases. The focus of this review is the bioengineering of artificial exosomal cargoes. This process encompasses the control and transportation of particular exosomal cargoes, including but not limited to small molecules, recombinant proteins, immune modulators, and therapeutic medications. Therapeutic approaches of this nature have the potential to deliver therapeutic medications precisely to the intended site for the cure of a variety of disorders. Notably, our attention has been directed towards the therapeutic implementations of exosomes derived from SCs in the cure of cardiovascular ailments, including but not limited to ischemic heart disease, myocardial infarction, sepsis, heart failure, cardiomyopathy, and cardiac fibrosis. In general, researchers employ two methodologies when it comes to exosomal bioengineering. This review aims to explain the function of exosomes derived from SCs in the regulation of stress and present a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Cardiology, Hangzhou Ninth People's Hospital, Hangzhou 311225, People's Republic of China
| | - Xiulian Shi
- Emergency Department, Chun'an First People's Hospital, Hangzhou 311700, People's Republic of China
| |
Collapse
|
32
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
33
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
34
|
Qian L, Li B, Pi L, Fang B, Meng X. Hypoxic adipose stem cell-derived exosomes carrying high-abundant USP22 facilitate cutaneous wound healing through stabilizing HIF-1α and upregulating lncRNA H19. FASEB J 2024; 38:e23653. [PMID: 38738548 DOI: 10.1096/fj.202301403rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.
Collapse
Affiliation(s)
- Li Qian
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Li
- Department of Plastic & Laser Cosmetic, Hunan Provincial People's Hospital, 1st Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China
| | - Li Pi
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
35
|
Zhang D, Gu J, Xu Y, Yu X, Jin H. Exploring the mechanism of Huanglian ointment in alleviating wound healing after anal fistula surgery through metabolomics and proteomics. Heliyon 2024; 10:e29809. [PMID: 38699024 PMCID: PMC11064137 DOI: 10.1016/j.heliyon.2024.e29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Anal fistula is a common anal and intestinal disease. The wound of anal fistula surgery is open and polluting, which is the most difficult to heal among all surgical incisions. To investigate the mechanism of Huanglian ointment (HLO) on wound healing after anal fistula incision. The S. aureus infected wound in SD rats were used to imitate poor healing wound after anal fistula surgery. SD rats with wound sites (n = 24) were randomly divided into four groups (Control group, Model group, Potassium permanganate (PP) treatment group, and HLO treatment group). The wound healing rate was evaluated, HE staining was used to evaluate the pathological changes of each group, ELISA was used to detect the secretion of inflammatory factors in each group, and the mechanism was explored through metabolomics and proteomics in plasma rat. Compared to other groups, the rate of wound healing in the HLO group was higher on days 7 and 14. Histological analysis showed that collagen and fibroblast in HLO rats were significantly increased, inflammatory cells were reduced, and vascular endothelial permeability was increased. ELISA results showed that the secretion of inflammatory factors in HLO rats was significantly lower. Significant proteins and metabolites were identified in the wound tissues of the infected rats and HLO-treated rats, which were mainly attributed to Cdc42, Ctnnb1, Actr2, Actr3, Arpc1b, Itgam, Itgb2, Cttn, Linoleic acid metabolism, d-Glutamine and d-glutamate metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Phenylalanine metabolism, alpha-Linolenic acid metabolism, and Ascorbate and aldarate metabolism. In conclusion, this study showed that HLO can promote S. aureus infected wound healing, and the data provide a theoretical basis for the treatment of wounds after anal fistula surgery with HLO.
Collapse
Affiliation(s)
- Dongliang Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Colorectal and Anal Surgery, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, 212001, China
| | - Jiabo Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| | - Yanyan Xu
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| | - Xiaowen Yu
- Department of Colorectal and Anal Surgery, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, 212001, China
| | - Heiying Jin
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| |
Collapse
|
36
|
Chang L, Fan WW, Yuan HL, Liu X, Wang Q, Ruan GP, Pan XH, Zhu XQ. Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. NPJ Regen Med 2024; 9:20. [PMID: 38729990 PMCID: PMC11087646 DOI: 10.1038/s41536-024-00363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Aging is the main cause of many degenerative diseases. The skin is the largest and the most intuitive organ that reflects the aging of the body. Under the interaction of endogenous and exogenous factors, there are cumulative changes in the structure, function, and appearance of the skin, which are characterized by decreased synthesis of collagen and elastin, increased wrinkles, relaxation, pigmentation, and other aging characteristics. skin aging is inevitable, but it can be delayed. The successful isolation of mesenchymal stromal cells (MSC) in 1991 has greatly promoted the progress of cell therapy in human diseases. The International Society for Cellular Therapy (ISCT) points out that the MSC is a kind of pluripotent progenitor cells that have self-renewal ability (limited) in vitro and the potential for mesenchymal cell differentiation. This review mainly introduces the role of perinatal umbilical cord-derived MSC(UC-MSC) in the field of skin rejuvenation. An in-depth and systematic understanding of the mechanism of UC-MSCs against skin aging is of great significance for the early realization of the clinical transformation of UC-MSCs. This paper summarized the characteristics of skin aging and summarized the mechanism of UC-MSCs in skin rejuvenation reported in recent years. In order to provide a reference for further research of UC-MSCs to delay skin aging.
Collapse
Affiliation(s)
- Le Chang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Wei-Wen Fan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - He-Ling Yuan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xin Liu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Research Center of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
37
|
Li Y, Huang H, Gu C, Huang W, Chen X, Lu X, You A, Ye S, Zhong J, Zhao Y, Yan Y, Li C. Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway. Wound Repair Regen 2024; 32:279-291. [PMID: 38353052 DOI: 10.1111/wrr.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 05/23/2024]
Abstract
Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.
Collapse
Affiliation(s)
- Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiting Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuijin Gu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia You
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sen Ye
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhao
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Zocchi ML, Prantl L, Oliinyk D, Knoedler L, Siegmund A, Ahmad N, Duscher D, Larcher L, Raposio E, Pagani A. Potential benefits of adipose–derived SVF and MSCs to regenerate damaged tissues from alloplastic synthetic materials. EUROPEAN JOURNAL OF PLASTIC SURGERY 2024; 47:48. [DOI: 10.1007/s00238-024-02196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 01/06/2025]
Abstract
AbstractRecent advancements in Plastic Surgery and Regenerative MedicineQuery have revolutionized tissue repair, remodeling, and regeneration. A promising approach involves Mesenchymal Stem cells and from the adipose–derived Stromal Vascular Fraction, aimed at improving tissue healing post the use of synthetic materials. This integration shows potential in mitigating adverse effects of synthetic materials like dermal fillers, offering new clinical interventions for tissue repair and regeneration. This article explores the benefits, complications, and applications of these technologies in Plastic Surgery and Cosmetic Medicine, focusing on their mechanisms of action and future perspectives. Level of evidence: Not ratable
Collapse
|
39
|
Yu HR, Huang HC, Chen IL, Li SC. Exosomes Secreted by Wharton's Jelly-Derived Mesenchymal Stem Cells Promote the Ability of Cell Proliferation and Migration for Keratinocyte. Int J Mol Sci 2024; 25:4758. [PMID: 38731977 PMCID: PMC11084911 DOI: 10.3390/ijms25094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - I-Lun Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (I.-L.C.)
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821004, Taiwan
| |
Collapse
|
40
|
Svolacchia F, Svolacchia L, Falabella P, Scieuzo C, Salvia R, Giglio F, Catalano A, Saturnino C, Di Lascio P, Guarro G, Imbriani GC, Ferraro G, Giuzio F. Exosomes and Signaling Nanovesicles from the Nanofiltration of Preconditioned Adipose Tissue with Skin-B ® in Tissue Regeneration and Antiaging: A Clinical Study and Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:670. [PMID: 38674316 PMCID: PMC11051917 DOI: 10.3390/medicina60040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: This three-year clinical trial aimed to demonstrate that only the signaling vesicles produced by ADSCa, containing mRNA, microRNA, growth factors (GFs), and bioactive peptides, provide an advantage over classical therapy with adipose disaggregate to make the tissue regeneration technique safer due to the absence of interfering materials and cells, while being extremely minimally invasive. The infiltration of disaggregated adipose nanofat, defined by the Tonnard method, for the regeneration of the dermis and epidermis during physiological or pathological aging continues to be successfully used for the presence of numerous adult stem cells in suspension (ADSCa). An improvement in this method is the exclusion of fibrous shots and cellular debris from the nanofat to avoid inflammatory phenomena by microfiltration. Materials and Methods: A small amount of adipose tissue was extracted after surface anesthesia and disaggregated according to the Tonnard method. An initial microfiltration at 20/40 microns was performed to remove fibrous shots and cellular debris. The microfiltration was stabilized with a sterile solution containing hyaluronic acid and immediately ultrafiltered to a final size of 0.20 microns to exclude the cellular component and hyaluronic acid chains of different molecular weights. The suspension was then injected into the dermis using a mesotherapy technique with microinjections. Results: This study found that it is possible to extract signaling microvesicles using a simple ultrafiltration system. The Berardesca Scale, Numeric Rating Scale (NRS), and Modified Vancouver Scale (MVS) showed that it is possible to obtain excellent results with this technique. The ultrafiltrate can validly be used in a therapy involving injection into target tissues affected by chronic and photoaging with excellent results. Conclusions: This retrospective clinical evaluation study allowed us to consider the results obtained with this method for the treatment of dermal wrinkles and facial tissue furrows as excellent. The method is safe and an innovative regenerative therapy as a powerful and viable alternative to skin regeneration therapies, antiaging therapies, and chronic inflammatory diseases because it lacks the inflammatory component produced by cellular debris and fibrous sprouts and because it can exclude the mesenchymal cellular component by reducing multiple inflammatory cytokine levels.
Collapse
Affiliation(s)
- Fabiano Svolacchia
- Department of Sense Organs, University of Rome “La Sapienza”, 00184 Rome, Italy
| | - Lorenzo Svolacchia
- Department of General Surgery, University of Rome “La Sapienza”, 00184 Rome, Italy;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (P.F.); (C.S.); (R.S.); (F.G.); (C.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (P.F.); (C.S.); (R.S.); (F.G.); (C.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (P.F.); (C.S.); (R.S.); (F.G.); (C.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fabiana Giglio
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (P.F.); (C.S.); (R.S.); (F.G.); (C.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Carmela Saturnino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (P.F.); (C.S.); (R.S.); (F.G.); (C.S.)
| | - Pierpaolo Di Lascio
- Department of General Surgery AOR San Carlo, Basilicata, 85100 Potenza, Italy;
| | - Giuseppe Guarro
- Department of Plastic and Reconstructive Surgery, ASL Umbria 1, Umbria, 06127 Perugia, Italy;
| | - Giusy Carmen Imbriani
- Department of Surgical Oncology, Aorn Sant’Anna e San Sebastiano, Campania, 81100 Caserta, Italy;
| | - Giuseppe Ferraro
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Federica Giuzio
- Spinoff TNcKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy;
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, Italy
| |
Collapse
|
41
|
Wang Y, Huo Y, Zhao C, Liu H, Shao Y, Zhu C, An L, Chen X, Chen Z. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J Control Release 2024; 368:170-183. [PMID: 38382811 DOI: 10.1016/j.jconrel.2024.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Due to the blood-brain barrier (BBB), the application of chemical drugs for glioblastoma treatment is severely limited. Recently, exosomes have been widely applied for drug delivery to the brain. However, the differences in brain targeting efficiency among exosomes derived from different cell sources, as well as the premature drug leakage during circulation, still limit the therapeutic efficacy. Here, we designed a functional oligopeptide-modified exosome loaded with doxorubicin (Pep2-Exos-DOX) for glioblastoma treatment. BV2 mouse microglial cell line was selected as the exosome source due to the favorable BBB penetration. To avoid drug release in the circulation, a redox-response oligopeptide was designed for incorporation into the membranes of exosomes to lock the drug during circulation. The enrichment of the drug in glioblastoma was confirmed. Pharmacodynamic evaluation showed Pep2-Exos-DOX possessed significant anti-cancer activity against glioblastoma as well as relative biosafety. This exosome-based drug delivery system modified with redox-response oligopeptides provides us a novel strategy for brain diseases treatment.
Collapse
Affiliation(s)
- Yutong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiming Huo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyuan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, China
| | - Yurou Shao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenqi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lan An
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
42
|
Prišlin M, Butorac A, Bertoša R, Kunić V, Ljolje I, Kostešić P, Vlahović D, Naletilić Š, Turk N, Brnić D. In vitro aging alters the gene expression and secretome composition of canine adipose-derived mesenchymal stem cells. Front Vet Sci 2024; 11:1387174. [PMID: 38605926 PMCID: PMC11006985 DOI: 10.3389/fvets.2024.1387174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Canine adipose-derived mesenchymal stem cells (cAD-MSCs) hold therapeutic promise due to their regenerative potential, particularly within their secretome. However, concerns arise regarding the impact of in vitro cultivation necessitated for storing therapeutic doses, prompting this study to comprehensively explore the impact of in vitro aging on gene expression and secretome composition. Methods The study involved collecting abdominal adipose tissue samples from nine healthy female dogs, from which cAD-MSCs were extracted and cultured. Stem cells were validated through trilineage differentiation assays and flow cytometry immunophenotyping. Gene expression profiling using RT-qPCR array, and cAD-MSCs secretome LC-MS/MS analysis, were conducted at passages 3 and 6 to reveal gene expression and protein composition alterations during in vitro culture. Results and Discussion The results demonstrate that the gene expression and secretome composition of cAD-MSCs were impacted by in vitro aging. Among many alterations in gene expression between two passages, two significant downregulations were noted in the MSC-associated PTPRC and IL10 genes. While the majority of proteins and their functional characteristics were shared between passages, the influence of cell aging on secretome composition is highlighted by 10% of proteins being distinctively expressed in each passage, along with 21 significant up- and downregulations. The functional attributes of proteins detected in passage 3 demonstrated a greater inclination towards supporting the regenerative capacity of cAD-MSCs. Moreover, proteins in passage 6 exhibited a noteworthy correlation with the blood coagulation pathway, suggesting an elevated likelihood of coagulation events. To the best of our knowledge, this study presents the first original perspective on the changes in secretome composition that occur when cAD-MSCs age in vitro. Furthermore, it contributes to broadening the currently restricted knowledge base concerning the secretome of cAD-MSCs. In conclusion, our findings show that the regenerative potential of cAD-MSCs, as well as their secretome, may be compromised by in vitro aging. Therefore, our study suggests a preference for earlier passages when considering these cells for therapeutic applications.
Collapse
Affiliation(s)
- Marina Prišlin
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ana Butorac
- Bioanalytical Laboratory II—Proteomics, Bicro Biocentre Ltd., Zagreb, Croatia
| | - Rea Bertoša
- Bioanalytical Laboratory II—Proteomics, Bicro Biocentre Ltd., Zagreb, Croatia
| | - Valentina Kunić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Zagreb, Croatia
| | - Petar Kostešić
- Surgery, Orthopedics and Ophthalmology Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dunja Vlahović
- Department for Pathological Morphology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Šimun Naletilić
- Department for Pathological Morphology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Nenad Turk
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| |
Collapse
|
43
|
Vahidinia Z, Azami Tameh A, Barati S, Izadpanah M, Seyed Hosseini E. Nrf2 activation: a key mechanism in stem cell exosomes-mediated therapies. Cell Mol Biol Lett 2024; 29:30. [PMID: 38431569 PMCID: PMC10909300 DOI: 10.1186/s11658-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes are nano-sized membrane extracellular vesicles which can be released from various types of cells. Exosomes originating from inflammatory or injured cells can have detrimental effects on recipient cells, while exosomes derived from stem cells not only facilitate the repair and regeneration of damaged tissues but also inhibit inflammation and provide protective effects against various diseases, suggesting they may serve as an alternative strategy of stem cells transplantation. Exosomes have a fundamental role in communication between cells, through the transfer of proteins, bioactive lipids and nucleic acids (like miRNAs and mRNAs) between cells. This transfer significantly impacts both the physiological and pathological functions of recipient cells. Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor, is able to mitigate damage caused by oxidative stress and inflammation through various signaling pathways. The positive effects resulting from the activation of the Nrf2 signaling pathway in different disorders have been documented in various types of literature. Studies have confirmed that exosomes derived from stem cells could act as Nrf2 effective agonists. However, limited studies have explored the Nrf2 role in the therapeutic effects of stem cell-derived exosomes. This review provides a comprehensive overview of the existing knowledge concerning the role of Nrf2 signaling pathways in the impact exerted by stem cell exosomes in some common diseases.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Seyed Hosseini
- Gametogenesis Research Center, Institute for Basic Sciences, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
44
|
Li S, Rong Q, Zhou Y, Che Y, Ye Z, Liu J, Wang J, Zhou M. Osteogenically committed hUCMSCs-derived exosomes promote the recovery of critical-sized bone defects with enhanced osteogenic properties. APL Bioeng 2024; 8:016107. [PMID: 38327715 PMCID: PMC10849773 DOI: 10.1063/5.0159740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Low viability of seed cells and the concern about biosafety restrict the application of cell-based tissue-engineered bone (TEB). Exosomes that bear similar bioactivities to donor cells display strong stability and low immunogenicity. Human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-Exos) show therapeutic efficacy in various diseases. However, little is known whether hUCMSCs-Exos can be used to construct TEB to repair bone defects. Herein, PM-Exos and OM-Exos were separately harvested from hUCMSCs which were cultured in proliferation medium (PM) or osteogenic induction medium (OM). A series of in-vitro studies were performed to evaluate the bioactivities of human bone marrow mesenchymal stem cells (hBMSCs) when co-cultured with PM-Exos or OM-Exos. Differential microRNAs (miRNAs) between PM-Exos and OM-Exos were sequenced and analyzed. Furthermore, PM-Exos and OM-Exos were incorporated in 3D printed tricalcium phosphate scaffolds to build TEBs for the repair of critical-sized calvarial bone defects in rats. Results showed that PM-Exos and OM-Exos bore similar morphology and size. They expressed representative surface markers of exosomes and could be internalized by hBMSCs to promote cellular migration and proliferation. OM-Exos outweighed PM-Exos in accelerating the osteogenic differentiation of hBMSCs, which might be attributed to the differentially expressed miRNAs. Furthermore, OM-Exos sustainably released from the scaffolds, and the resultant TEB showed a better reparative outcome than that of the PM-Exos group. Our study found that exosomes isolated from osteogenically committed hUCMSCs prominently facilitated the osteogenic differentiation of hBMSCs. TEB grafts functionalized by OM-Exos bear a promising application potential for the repair of large bone defects.
Collapse
Affiliation(s)
| | | | | | - Yuejuan Che
- Department of Anesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Junfang Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Zhou
- Author to whom correspondence should be addressed:. Tel/Fax: +86 020 33976070
| |
Collapse
|
45
|
Ren H, Su P, Zhao F, Zhang Q, Huang X, He C, Wu Q, Wang Z, Ma J, Wang Z. Adipose mesenchymal stem cell-derived exosomes promote skin wound healing in diabetic mice by regulating epidermal autophagy. BURNS & TRAUMA 2024; 12:tkae001. [PMID: 38434722 PMCID: PMC10905655 DOI: 10.1093/burnst/tkae001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Adipose mesenchymal stem cell-derived exosomes (ADSC-Exos) have great potential in the field of tissue repair and regenerative medicine, particularly in cases of refractory diabetic wounds. Interestingly, autophagy plays a role in wound healing, and recent research has demonstrated that exosomes are closely associated with intracellular autophagy in biogenesis and molecular signaling mechanisms. Therefore, this study aimed to investigate whether ADSC-Exos promote the repair of diabetic wounds by regulating autophagy to provide a new method and theoretical basis for the treatment of diabetic wounds. METHODS Western blot analysis and autophagy double-labelled adenovirus were used to monitor changes in autophagy flow in human immortalized keratinocyte cell line (HaCaT) cells. ADSC-Exos were generated from ADSC supernatants via ultracentrifugation. The effectiveness of ADSC-Exos on HaCaT cells was assessed using a live-cell imaging system, cell counting kit-8 and cell scratch assays. The cells were treated with the autophagy inhibitor bafilomycin A1 to evaluate the effects of autophagy on cell function. The recovery of diabetic wounds after ADSC-Exo treatment was determined by calculating the healing rates and performing histological analysis. High-throughput transcriptome sequencing was used to analyze changes in mRNA expression after the treatment of HaCaT cells with ADSC-Exos. RESULTS ADSC-Exos activated autophagy in HaCaT cells, which was inhibited by high glucose levels, and potentiated their cellular functions. Moreover, ADSC-Exos in combination with the autophagy inhibitor bafilomycin A1 showed that autophagy defects further impaired the biological function of epidermal cells under high-glucose conditions and partially weakened the healing effect of ADSC-Exos. Using a diabetes wound model, we found that ADSC-Exos promoted skin wound healing in diabetic mice, as evidenced by increased epidermal autophagy and rapid re-epithelialization. Finally, sequencing results showed that increased expression of autophagy-related genes nicotinamide phosphoribosyltransferase (NAMPT), CD46, vesicle-associated membrane protein 7 (VAMP7), VAMP3 and eukaryotic translation initiation factor 2 subunit alpha (EIF2S1) may contribute to the underlying mechanism of ADSC-Exo action. CONCLUSIONS This study elucidated the molecular mechanism through which ADCS-Exos regulate autophagy in skin epithelial cells, thereby providing a new theoretical basis for the treatment and repair of skin epithelial damage by ADSC-Exos.
Collapse
Affiliation(s)
- Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| |
Collapse
|
46
|
Zuo C, Fan P, Yang Y, Hu C. MiR-488-3p facilitates wound healing through CYP1B1-mediated Wnt/β-catenin signaling pathway by targeting MeCP2. J Diabetes Investig 2024; 15:145-158. [PMID: 37961023 PMCID: PMC10804895 DOI: 10.1111/jdi.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Diabetic wounds are difficult to heal, but the pathogenesis is unknown. MicroRNAs (miRNAs) are thought to play important roles in wound healing. The effect of miR-488-3p in wound healing was studied in this article. MATERIALS AND METHODS The gene methylation was measured by methylation specific PCR (MSP) assay. A dual-luciferase reporter assay was adopted to analyze the interaction between miR-488-3p and MeCP2. RESULTS Cytochrome P450 1B1 (CYP1B1) is a monooxygenase belonging to the cytochrome P450 family that aids in wound healing. Our findings showed that the miR-488-3p and CYP1B1 expression levels were much lower in wound tissues of diabetics with skin defects, but the methyl-CpG-binding protein 2 (MeCP2) level was significantly higher than that in control skin tissues. MiR-488-3p overexpression increased cell proliferation and migration, as well as HUVEC angiogenesis, while inhibiting apoptosis, according to function experiments. In vitro, MeCP2 inhibited wound healing by acting as a target of miR-488-3p. We later discovered that MeCP2 inhibited CYP1B1 expression by enhancing its methylation state. In addition, CYP1B1 knockdown inhibited wound healing. Furthermore, MeCP2 overexpression abolished the promoting effect of miR-488-3p on wound healing. It also turned out that CYP1B1 promoted wound healing by activating the Wnt4/β-catenin pathway. Animal experiments also showed that miR-488-3p overexpression could accelerate wound healing in diabetic male SD rats. CONCLUSIONS MiR-488-3p is a potential therapeutic target for diabetic wound healing since it improved wound healing by activating the CYP1B1-mediated Wnt4/-catenin signaling cascade via MeCP2.
Collapse
Affiliation(s)
- Chenchen Zuo
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Pengju Fan
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Yang
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chengjun Hu
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
47
|
Xiang K, Chen J, Guo J, Li G, Kang Y, Wang C, Jiang T, Zhang M, Jiang G, Yuan M, Xiang X, Xu Y, Ren S, Xiong H, Xu X, Li W, Yang X, Chen Z. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing. Mater Today Bio 2023; 23:100863. [PMID: 38089434 PMCID: PMC10711188 DOI: 10.1016/j.mtbio.2023.100863] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 07/02/2024] Open
Abstract
Non-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of natural extracellular matrix and abundant bioactive factors, has been successfully developed to treat various wounds, including burns and diabetic ulcers. Protocatechualdehyde (PA) & trivalent iron ion (Fe3+) complex (Fe3+@PA) exhibits potential antioxidant and antibacterial properties. In this study, we developed a dual hydrogel network by combining Fe3+@PA complex-modified ADM with light-cured gelatin (GelMA), supplemented with exosomes derived from human umbilical vein endothelial cells (HUVEC-Exos), to create an ADM composite hydrogel system (ADM-Fe3+@PA-Exos/GelMA) with antioxidant, antibacterial, and cell-promoting functions for diabetic wound treatment. Through in vitro experiments, we investigated the biosafety, antioxidant and antibacterial properties of ADM composite hydrogel. Furthermore, we examined the protective effects of ADM composite hydrogel on diabetic wound. The above experiments collectively demonstrate that our ADM-Fe3+@PA-Exos/GelMA hydrogel promotes diabetic wound healing by eliminating bacterial infection, reduced the reactive oxygen species (ROS) levels, protecting cells against oxidative stress damage, promotingcollagen deposition and angiogenesis, which provides a promising strategy to optimize ADM for diabetic wound treatment.
Collapse
Affiliation(s)
- Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, 430000, Hubei, China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingpeng Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
48
|
Dong L, Li X, Leng W, Guo Z, Cai T, Ji X, Xu C, Zhu Z, Lin J. Adipose stem cells in tissue regeneration and repair: From bench to bedside. Regen Ther 2023; 24:547-560. [PMID: 37854632 PMCID: PMC10579872 DOI: 10.1016/j.reth.2023.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
Collapse
Affiliation(s)
- Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| |
Collapse
|
49
|
Chang H, Chen J, Ding K, Cheng T, Tang S. Highly-expressed lncRNA FOXD2-AS1 in adipose mesenchymal stem cell derived exosomes affects HaCaT cells via regulating miR-185-5p/ROCK2 axis. Adipocyte 2023; 12:2173513. [PMID: 36775902 PMCID: PMC9928455 DOI: 10.1080/21623945.2023.2173513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The healing of skin wounds is a highly coordinated multi-step process that occurs after trauma including surgical incisions, thermal burns, and chronic ulcers. In this study, the authors investigated lncRNA FOXD2-AS1 function in adipose mesenchymal exosomes from ADMSCs that were successfully extracted. Highly expressed lncRNA FOXD2-AS1 in ADMSCs-exosomes accelerated HaCaT cell migration and proliferation. LncRNA FOXD2-AS1 negatively targeted miR-185-5p, and miR-185-5p negatively targeted ROCK2. Highly expressed lncRNA FOXD2-AS1 in ADMSCs-exosomes promoted HaCaT cell migration and proliferation via down-regulating miR-185-5p and further up-regulating ROCK2. In conclusion, LncRNA FOXD2-AS1 overexpression in ADMSCs derived exosomes might accelerate HaCaT cell migration and proliferation via modulating the miR-185-5p/ROCK2 axis.
Collapse
Affiliation(s)
- Huanchao Chang
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China
| | - Junliang Chen
- Vascular surgery department, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Kun Ding
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China
| | - Tianling Cheng
- Burn plastic surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Shengjian Tang
- Plastic Surgery of Plastic Surgery Hospital, Weifang Medical University, Weifang, China,CONTACT Shengjian Tang Plastic Surgery Institute, Weifang Medical University, 4948 Shengli East Street, Kuiwen District, Weifang, 261041, China
| |
Collapse
|
50
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|