1
|
Li X, Zhang F, Sun L, Cai X, Lou F, Sun Y, Gao M, Wang Z, Tang S, Fan L, Wu Y, Jin X, Deng S, Xu Z, Sun X, Li Q, Wang H. Single-Cell RNA Sequencing Identifies WARS1+ Mesenchymal Stem Cells with Enhanced Immunomodulatory Capacity and Improved Therapeutic Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:257-267. [PMID: 38856632 DOI: 10.4049/jimmunol.2300752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangxiao Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengjiao Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libo Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Gao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sibei Tang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinping Jin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chin SP, Marzuki M, Tai L, Mohamed Shahrehan NA, Ricky C, Fanty A, Salleh A, Low CT, Then KY, Hoe SLL, Cheong SK. Dynamic tracking of human umbilical cord mesenchymal stem cells (hUC-MSCs) following intravenous administration in mice model. Regen Ther 2024; 25:273-283. [PMID: 38314402 PMCID: PMC10834363 DOI: 10.1016/j.reth.2024.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction In the past decades, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have sparked interest in cellular therapy due to their immunomodulatory properties. Nevertheless, the fate of hUC-MSCs in the body remains poorly understood. This study aimed to investigate the biodistribution, homing and clearance of systemically administered hUC-MSCs in healthy BALB/c mice model. Methods hUC-MSCs were labelled with GFP-Luc2 protein, followed by characterisation with flow cytometry. Upon intravenous infusion of transduced hUC-MSCs into the healthy BALB/c mice, the cells were dynamically monitored through the bioluminescent imaging (BLI) approach. Results Transduction of hUC-MSCs with GFP-Luc2 not only preserved the characteristics of MSCs, but also allowed live monitoring of transduced cells in the mice model. Upon systemic administration, BLI showed that transduced hUC-MSCs first localised predominantly in the lungs of healthy BALB/c mice and mainly remained in the lungs for up to 3 days before eventually cleared from the body. At terminal sacrifice, plasma chemistry biomarkers remained unchanged except for C-peptide levels, which were significantly reduced in the hUC-MSCs group. Histopathological findings further revealed that hUC-MSCs infusion did not cause any adverse effects and toxicity to lung, liver and heart tissues. Conclusions Collectively, systemically administrated hUC-MSCs was safe and demonstrated dynamic homing capacity before eventually disappearing from the body.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Lihui Tai
- Cytopeutics Sdn Bhd, Cyberjaya, Selangor, Malaysia
| | | | - Christine Ricky
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Audrey Fanty
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chui Thean Low
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | | | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, NIH, Setia Alam, Selangor, Malaysia
| | - Soon Keng Cheong
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| |
Collapse
|
3
|
Arte PA, Tungare K, Bhori M, Jobby R, Aich J. Treatment of type 2 diabetes mellitus with stem cells and antidiabetic drugs: a dualistic and future-focused approach. Hum Cell 2024; 37:54-84. [PMID: 38038863 DOI: 10.1007/s13577-023-01007-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.
Collapse
Affiliation(s)
- Priyamvada Amol Arte
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India.
- Anatek Services PVT LTD, Sai Chamber, 10, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India.
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| |
Collapse
|
4
|
Jahani S, Zare N, Mirzaei Y, Arefnezhad R, Zarei H, Goleij P, Bagheri N. Mesenchymal stem cells and ovarian cancer: Is there promising news? J Cell Biochem 2023; 124:1437-1448. [PMID: 37682985 DOI: 10.1002/jcb.30471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Ovarian cancer (OC) is described as a heterogeneous complex condition with high mortality, weak prognosis, and late-stage presentation. OC has several subgroups based on different indices, like the origin and histopathology. The current treatments against OC include surgery followed by chemotherapy and radiotherapy; however, these methods have represented diverse side effects without enough effectiveness on OC. Recently, mesenchymal stem cell (MSC)-based therapy has acquired particular attention for treating diverse problems, such as cancer. These multipotent stem cells can be obtained from different sources, such as the umbilical cord, adipose tissues, bone marrow, and placenta, and their efficacy has been investigated against OC. Hence, in this narrative review, we aimed to review and discuss the present studies about the effects of various sources of MSCs on OC with a special focus on involved mechanisms.
Collapse
Affiliation(s)
| | - Nabi Zare
- Coenzyme R Research Institute, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran
- International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Rebelatto CLK, Boldrini-Leite LM, Daga DR, Marsaro DB, Vaz IM, Jamur VR, de Aguiar AM, Vieira TB, Furman BP, Aguiar CO, Brofman PRS. Quality Control Optimization for Minimizing Security Risks Associated with Mesenchymal Stromal Cell-Based Product Development. Int J Mol Sci 2023; 24:12955. [PMID: 37629136 PMCID: PMC10455270 DOI: 10.3390/ijms241612955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.
Collapse
Affiliation(s)
- Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Daniela Boscaro Marsaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alessandra Melo de Aguiar
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute—Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Thalita Bastida Vieira
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Bianca Polak Furman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Cecília Oliveira Aguiar
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
6
|
Wan W, Miao Y, Niu Y, Zhu K, Ma Y, Pan M, Ma B, Wei Q. Human umbilical cord mesenchymal stem cells conditioned medium exerts anti-tumor effects on KGN cells in a cell density-dependent manner through activation of the Hippo pathway. Stem Cell Res Ther 2023; 14:46. [PMID: 36941685 PMCID: PMC10029233 DOI: 10.1186/s13287-023-03273-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The conditioned medium from human umbilical cord mesenchymal stem cells (UCMSCs-CM) provides a new cell-free therapy for tumors due to its unique secretome. However, there are many contradictory reports about the effect of UCMSCs-CM on tumor cells. The loss of contact inhibition is a common characteristic of tumor cells. A relationship between the effect of UCMSCs-CM on tumor cells and contact inhibition in tumor cells is rarely concerned. Whether the effect of UCMSCs-CM on tumor cells is affected by cell density? Here, we explored the effect of UCMSCs-CM on granulosa tumor cell line (KGN) cells at low or high density. METHODS Growth curve and CCK8 assay were used to assess cell proliferation and viability. Scratch wound and matrigel invasion assay were implicated to detect cell motility of KGN cells. UCMSCs-CM effects on cell cycle, apoptosis and pathway-related proteins were investigated by flow cytometry, TUNEL assay, western blot and immunofluorescence analysis respectively. RESULTS In growth curve analysis, before KGN cells proliferated into confluence, UCMSCs-CM had no effect on cell proliferation. However, once the cells proliferate to contact each other, UCMSCs-CM significantly inhibited proliferation. Meanwhile, when KGN cells were implanted at high density, UCMSCs-CM could induce cell cycle arrest at G1 phase, inhibit cell migration, invasion and promote apoptosis. While it had no similar effect on KGN cells implanted at low density. In mechanism, the UCMSCs-CM treatment activated the Hippo pathway when KGN cells were implanted at high density. Consistently, the MST1/2 inhibitor, XMU-MP-1, inhibited the activation of the Hippo pathway induced by UCMSCs-CM treatment and accordingly declined the anti-tumor effect of UCMSCs-CM on KGN cells. CONCLUSIONS The effect of UCMSCs-CM on tumor cells is affected by cell density. UCMSCs-CM exerted anti-tumor effect on KGN cells by activating Hippo pathway to restore contact inhibition. Our results suggest that UCMSCs-CM is a promising therapeutic candidate for GCT treatment.
Collapse
Affiliation(s)
- Wenjing Wan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yuwei Niu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Yingwan Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Abolghasemi R, Ebrahimi-Barough S, Mohamadnia A, Ai J. Synergistic inhibitory effect of human umbilical cord matrix mesenchymal stem cells-conditioned medium and atorvastatin on MCF7 cancer cells viability and migration. Cell Tissue Bank 2022; 23:767-789. [PMID: 34988840 PMCID: PMC8730305 DOI: 10.1007/s10561-021-09984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
Recent studies have demonstrated inhibitory effects of mesenchymal stem cells on breast tumors. Likewise, the emerging interest in statins as anticancer agents is based on their pleiotropic effects. In the present study, we investigated whether atorvastatin and umbilical cord matrix derived mesenchymal stem cells-conditioned medium affect the MCF7 cancer cells viability and interactions. We measured the viability of MCF7 cancer cells by MTT assay, flow cytometry, and quantitative real-time PCR. Two-dimensional culture and hanging drop aggregation assay illustrated the morphological changes. We traced the MCF7 migration via scratch-wound healing test and trans-well assay. The results showed the inhibition of cancer cell viability in all treated groups compared to the control group. The effect of atorvastatin and conditioned medium combination was significantly more than each substance separately. The morphological changes indicated apoptosis in treated cells. The annexin V/PI flow cytometry especially in the combination-treated group displayed decreasing in DNA synthesis and cell cycle arrest in G1 and G2/M phases. As well, the mRNA expressions of caspases 3, 8, 9, and Bcl-2 genes were along with extrinsic and intrinsic apoptosis pathways. Conditioned medium disrupted the connections between cancer cells, so the spheroids in three-dimensional configuration lost their order and dispersed. The migration of treated cells across the wound area and trans-well diminished, particularly by the conditioned medium and atorvastatin combination. There fore, the synergistic anti-proliferative and anti-motility effect of atorvastatin along with human umbilical cord mesenchymal stem cells-derived conditioned medium on MCF7 breast cancer cells have been proved. The results might lead the development of novel adjuvant anticancer therapeutics based on targeting or modifying the extracellular matrix to increase chemotherapy results or to prevent metastatic colonization. Schematic representation of "Synergistic Inhibitory Effect of Human Umbilical Cord Matrix Mesenchymal Stem Cells-Conditioned Medium and Atorvastatin on MCF7 Cancer Cells Viablity and Migration" by: Dr. Reyhaneh Abolghasemi, Dr. Somayeh Ebrahimi-barough, Proffesor. Jafar Ai.
Collapse
Affiliation(s)
- Reyhaneh Abolghasemi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
9
|
Serras AS, Camões SP, Antunes B, Costa VM, Dionísio F, Yazar V, Vitorino R, Remião F, Castro M, Oliveira NG, Miranda JP. The Secretome of Human Neonatal Mesenchymal Stem Cells Modulates Doxorubicin-Induced Cytotoxicity: Impact in Non-Tumor Cells. Int J Mol Sci 2021; 22:ijms222313072. [PMID: 34884877 PMCID: PMC8657836 DOI: 10.3390/ijms222313072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used treatments for breast cancer, although limited by the well-documented cardiotoxicity and other off-target effects. Mesenchymal stem cell (MSC) secretome has shown immunomodulatory and regenerative properties, further potentiated under 3D conditions. This work aimed to uncover the effect of the MSC-derived secretome from 3D (CM3D) or 2D (CM2D) cultures, in human malignant breast cells (MDA-MB-231), non-tumor breast epithelial cells (MCF10A) and differentiated AC16 cardiomyocytes, co-treated with Dox. A comprehensive proteomic analysis of CM3D/CM2D was also performed to unravel the underlying mechanism. CM3D/CM2D co-incubation with Dox revealed no significant differences in MDA-MB-231 viability when compared to Dox alone, whereas MCF10A and AC16 viability was consistently improved in Dox+CM3D-treated cells. Moreover, neither CM2D nor CM3D affected Dox anti-migratory and anti-invasive effects in MDA-MB-231. Notably, Ge-LC-MS/MS proteomic analysis revealed that CM3D displayed protective features that might be linked to the regulation of cell proliferation (CAPN1, CST1, LAMC2, RANBP3), migration (CCN3, MMP8, PDCD5), invasion (TIMP1/2), oxidative stress (COX6B1, AIFM1, CD9, GSR) and inflammation (CCN3, ANXA5, CDH13, GDF15). Overall, CM3D decreased Dox-induced cytotoxicity in non-tumor cells, without compromising Dox chemotherapeutic profile in malignant cells, suggesting its potential use as a chemotherapy adjuvant to reduce off-target side effects.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Bernardo Antunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Vera M. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Flávio Dionísio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Volkan Yazar
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Rui Vitorino
- LAQV-REQUIMTE, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Cardiovascular R&D Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Oporto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.M.C.); (F.D.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.S.S.); (S.P.C.); (B.A.); (M.C.); (N.G.O.)
- Correspondence:
| |
Collapse
|
10
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
12
|
Liang YH, Wu JM, Teng JW, Hung E, Wang HS. Embelin downregulated cFLIP in breast cancer cell lines facilitate anti-tumor effect of IL-1β-stimulated human umbilical cord mesenchymal stem cells. Sci Rep 2021; 11:14720. [PMID: 34282169 PMCID: PMC8289868 DOI: 10.1038/s41598-021-94006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death for women. In breast cancer treatment, targeted therapy would be more effective and less harmful than radiotherapy or systemic chemotherapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in cancer cells but not in normal cells. Mesenchymal stem cells have shown great therapeutic potential in cancer therapy owing to their ability of homing to tumor sites and secreting many kinds of anti-tumor proteins including TRAIL. In this study, we found that IL-1β-stimulated human umbilical cord-derived mesenchymal stem cells (hUCMSCs) enhance the expression of membrane-bound and soluble TRAIL. Cellular FADD-like IL-1β-converting enzyme inhibitory protein (cFLIP) is an important regulator in TRAIL-mediated apoptosis and relates to TRAIL resistance in cancer cells. Previous studies have shown that embelin, which is extracted from Embelia ribes, can increase the TRAIL sensitivity of cancer cells by reducing cFLIP expression. Here we have demonstrated that cFLIPL is correlated with TRAIL-resistance and that embelin effectively downregulates cFLIPL in breast cancer cells. Moreover, co-culture of IL-1β-stimulated hUCMSCs with embelin-treated breast cancer cells could effectively induce apoptosis in breast cancer cells. The combined effects of embelin and IL-1β-stimulated hUCMSCs may provide a new therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Ya-Han Liang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Jiann-Ming Wu
- General Surgery Division, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Jui-Wen Teng
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Eric Hung
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Hwai-Shi Wang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
13
|
Shokati A, Naser Moghadasi A, Nikbakht M, Sahraian MA, Mousavi SA, Ai J. A focus on allogeneic mesenchymal stromal cells as a versatile therapeutic tool for treating multiple sclerosis. Stem Cell Res Ther 2021; 12:400. [PMID: 34256857 PMCID: PMC8278627 DOI: 10.1186/s13287-021-02477-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) chronic illness with autoimmune, inflammatory, and neurodegenerative effects characterized by neurological disorder and axonal loss signs due to myelin sheath autoimmune T cell attacks. Existing drugs, including disease-modifying drugs (DMD), help decrease the intensity and frequency of MS attacks, inflammatory conditions, and CNS protection from axonal damage. As they cannot improve axonal repair and show side effects, new therapeutic options are required. In this regard, due to their neuroprotection properties, immunomodulatory effects, and the ability to differentiate into neurons, the transplantation of mesenchymal stromal cells (MSCs) can be used for MS therapy. The use of adipose-derived MSCs (AdMSCs) or autologous bone marrow MSCs (BMSCs) has demonstrated unexpected effects including the invasive and painful isolation method, inadequate amounts of bone marrow (BM) stem cells, the anti-inflammatory impact reduction of AdMSCs that are isolated from fat patients, and the cell number and differentiation potential decrease with an increase in the age of BMSCs donor. Researchers have been trying to search for alternate tissue sources for MSCs, especially fetal annexes, which could offer a novel therapeutic choice for MS therapy due to the limitation of low cell yield and invasive collection methods of autologous MSCs. The transplantation of MSCs for MS treatment is discussed in this review. Finally, it is suggested that allogeneic sources of MSCs are an appealing alternative to autologous MSCs and could hence be a potential novel solution to MS therapy.
Collapse
Affiliation(s)
- Ameneh Shokati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
15
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
17
|
Bolli R, Solankhi M, Tang XL, Kahlon A. Cell Therapy in Patients with Heart Failure: A Comprehensive Review and Emerging Concepts. Cardiovasc Res 2021; 118:951-976. [PMID: 33871588 PMCID: PMC8930075 DOI: 10.1093/cvr/cvab135] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the results of clinical trials of cell therapy in patients with heart failure (HF). In contrast to acute myocardial infarction (where results have been consistently negative for more than a decade), in the setting of HF the results of Phase I–II trials are encouraging, both in ischaemic and non-ischaemic cardiomyopathy. Several well-designed Phase II studies have met their primary endpoint and demonstrated an efficacy signal, which is remarkable considering that only one dose of cells was used. That an efficacy signal was seen 6–12 months after a single treatment provides a rationale for larger, rigorous trials. Importantly, no safety concerns have emerged. Amongst the various cell types tested, mesenchymal stromal cells derived from bone marrow (BM), umbilical cord, or adipose tissue show the greatest promise. In contrast, embryonic stem cells are not likely to become a clinical therapy. Unfractionated BM cells and cardiosphere-derived cells have been abandoned. The cell products used for HF will most likely be allogeneic. New approaches, such as repeated cell treatment and intravenous delivery, may revolutionize the field. As is the case for most new therapies, the development of cell therapies for HF has been slow, plagued by multifarious problems, and punctuated by many setbacks; at present, the utility of cell therapy in HF remains to be determined. What the field needs is rigorous, well-designed Phase III trials. The most important things to move forward are to keep an open mind, avoid preconceived notions, and let ourselves be guided by the evidence.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Mitesh Solankhi
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Xiang-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Arunpreet Kahlon
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| |
Collapse
|
18
|
Lin HD, Fong CY, Biswas A, Bongso A. Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 2020; 11:527. [PMID: 33298170 PMCID: PMC7724853 DOI: 10.1186/s13287-020-02048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The transplantation of human umbilical cord blood (UCB) CD34+ cells has been successfully used to treat hematological disorders but one major limitation has been the low cell numbers available. Mesenchymal stem cells (MSCs) lying within the bone marrow in vivo behave like a scaffold on which CD34+ cells interact and proliferate. We therefore evaluated the use of allogeneic MSCs from the human UC Wharton’s jelly (hWJSCs) as stromal support for the ex vivo expansion of CD34+ cells. Methods We performed an in-depth evaluation of the primitiveness, migration, adhesion, maturation, mitochondrial behavior, and pathway mechanisms of this platform using conventional assays followed by the evaluation of engraftment potential of the expanded CD34+ cells in an in vivo murine model. Results We demonstrate that hWJSCs and its conditioned medium (hWJSC-CM) support the production of significantly high fold changes of CD34+, CD34+CD133+, CD34+CD90+, CD34+ALDH+, CD34+CD45+, and CD34+CD49f+ cells after 7 days of interaction when compared to controls. In the presence of hWJSCs or hWJSC-CM, the CD34+ cells produced significantly more primitive CFU-GEMM colonies, HoxB4, and HoxA9 gene expression and lower percentages of CD34+CXCR4+ cells. There were also significantly higher N-cadherin+ cell numbers and increased cell migration in transwell migration assays. The CD34+ cells expanded with hWJSCs had significantly lower mitochondrial mass, mitochondrial membrane potential, and oxidative stress. Green Mitotracker-tagged mitochondria from CD34+ cells were observed lying within red CellTracker-tagged hWJSCs under confocal microscopy indicating mitochondrial transfer via tunneling nanotubes. CD34+ cells expanded with hWJSCs and hWJSC-CM showed significantly reduced oxidative phosphorylation (ATP6VIH and NDUFA10) and increased glycolytic (HIF-1a and HK-1) pathway-related gene expression. CD34+ cells expanded with hWJSCs for 7 days showed significant greater CD45+ cell chimerism in the bone marrow of primary and secondary irradiated mice when transplanted intravenously. Conclusions In this report, we confirmed that allogeneic hWJSCs provide an attractive platform for the ex vivo expansion of high fold numbers of UCB CD34+ cells while keeping them primitive. Allogeneic hWJSCs are readily available in abundance from discarded UCs, can be easily frozen in cord blood banks, thawed, and then used as a platform for UCB-HSC expansion if numbers are inadequate.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
19
|
Qiu Y, Sun J, Qiu J, Chen G, Wang X, Mu Y, Li K, Wang W. Antitumor Activity of Cabazitaxel and MSC-TRAIL Derived Extracellular Vesicles in Drug-Resistant Oral Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:10809-10820. [PMID: 33149686 PMCID: PMC7605918 DOI: 10.2147/cmar.s277324] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can induce apoptosis in a variety of cancer cells. However, drug resistance of tumor and short half-life seriously affects its clinical targeted therapy. Cabazitaxel (CTX) is a taxane drug, which can induce apoptosis or autophagy by inhibiting the phosphorylation of PI3K/Akt/mTOR and sensitive to some drug-resistant tumors. Therefore, we explored the possibility of developing a mesenchymal stem cell-derived exosomes (MSC-EXO) vector for oral squamous cell carcinoma (OSCC) to deliver CTX/TRAIL combinations. METHODS After ultracentrifugation and dialysis, CTX/TRAIL loaded exosomes transfected MSC (MSCT)-derived exosome (EXO) (MSCT-EXO/CTX) were isolated and purified. The expression of CD63, CD9 and TRAIL was detected by BCA to confirm the origin of EXO. High-performance liquid chromatography (HPLC) was used to determine the drug loading of VPF and draw the in vitro release profile. MTT assay, flow cytometry and Western blot were used to detect the antitumor effect of MSCT-EXO/CTX in vitro. Subsequently, the antitumor effect of MSCT-EXO/CTX in vivo was verified by mouse model. RESULTS The diameter of the membrane particles was about 60-150 nm. We have proved that the incorporation and release of CTX in MSCT-EXO can inhibit the activation of PI3K, Akt and mTOR, which is a possible synergistic mechanism of CTX. MSCT-EXO and CTX can induce the apoptosis of SCC25 tumor cells in a dose-dependent manner and exert a good synergistic effect in the proportion range of 10:1-5:1. The inherent activity of MSCT-EXO and the direct effect of MSCT-EXO/CTX on OSCC confirm that MSCT-EXO/CTX makes MSCT-EXO and CTX have an efficient synergistic effect and a highly effective pharmacological inhibition on cancer cells, as verified by the subsequent mouse model. MSCT-EXO/CTX showed the lowest relative tumor volume and the highest tumor inhibition rate (P<0.05) in vivo. CONCLUSION An MSCT-EXO-based CTX delivery system might be an effective anticancer method.
Collapse
Affiliation(s)
- Yongle Qiu
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
| | - Jieming Sun
- Department of Stomatology, Xianghe County People ‘S Hospital, Langfang, Hebei065400, People’s Republic of China
| | - Junping Qiu
- Department of Stomatology, Xianghe County People ‘S Hospital, Langfang, Hebei065400, People’s Republic of China
| | - Guoling Chen
- Department of Stomatology, Xianghe County People ‘S Hospital, Langfang, Hebei065400, People’s Republic of China
| | - Xiao Wang
- Department of Stomatology, Xianghe County People ‘S Hospital, Langfang, Hebei065400, People’s Republic of China
| | - Yaxu Mu
- Department of Stomatology, Xianghe County People ‘S Hospital, Langfang, Hebei065400, People’s Republic of China
| | - Kunshan Li
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
| | - Wenjing Wang
- Department of Stomatology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
| |
Collapse
|
20
|
E LL, Cheng T, Li CJ, Zhang R, Zhang S, Liu HC, Zheng WJ. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). Stem Cells Dev 2020; 29:1215-1228. [PMID: 32674666 DOI: 10.1089/scd.2020.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising alternative source of mesenchymal stem cells (MSCs) that are enormously attractive for clinical use. This study was designed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) and/or osteogenic media (OMD) on bone regeneration of hUC-MSCs seeded on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA) in a rabbit model. The characteristics of stem cells were analyzed by plastic adherence, cell phenotype, and multilineage differentiation potential. Cell proliferation was examined using cell counting kit-8 assay. Osteogenic differentiation was evaluated by quantitative Ca2+ concentration, PO43- concentration, alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralized matrix formation. Bone regeneration was investigated in jaw bone defect repair in rabbit by microcomputed tomography, fluorescent labeling, and hematoxylin and eosin staining. Except for initial stress response, OMD and OMD + rhBMP-7 inhibited the proliferation of hUC-MSCs seeded on nHAC/PLA; rhBMP-7 inhibited cell proliferation in the nonlogarithmic phase and attenuated the inhibitory effect of OMD on cell proliferation. The inhibitory effects of OMD, rhBMP-7, and OMD + rhBMP-7 on cell proliferation were ranked as OMD > OMD + rhBMP-7 > rhBMP-7. OMD, rhBMP-7, and OMD + rhBMP-7 promoted Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation of hUC-MSCs seeded on nHAC/PLA. The promoting effects of OMD, rhBMP-7, and OMD+rhBMP-7 on Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation were ranked as rhBMP-7 > OMD > OMD + rhBMP-7, OMD > OMD + rhBMP-7 > rhBMP-7, OMD > rhBMP-7 > OMD + rhBMP-7, rhBMP-7 > OMD + rhBMP-7 > OMD, and OMD > rhBMP-7 > OMD + rhBMP-7, respectively. In rabbit jaw bone defect repair, OMD, rhBMP-7, and OMD + rhBMP-7 enhanced bone regeneration of hUC-MSCs seeded on nHAC/PLA, but the largest bone mineral apposition rate and bone formation were presented in cultures with rhBMP-7. These findings suggested that the combined use of rhBMP-7 and OMD may have no ideal synergistic effect on bone regeneration of hUC-MSCs seeded on nHAC/PLA in rabbit jaw bone defect.
Collapse
Affiliation(s)
- Ling-Ling E
- Department of Chemistry, Jinan University, Guangzhou, China.,Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tao Cheng
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Lu Z, Zhu L, Liu Z, Wu J, Xu Y, Zhang CJ. IV/IT hUC-MSCs Infusion in RRMS and NMO: A 10-Year Follow-Up Study. Front Neurol 2020; 11:967. [PMID: 33013641 PMCID: PMC7506071 DOI: 10.3389/fneur.2020.00967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Stem cell transplantation is emerging as a potential therapeutic strategy in several autoimmune diseases. However, the safety and feasibility of long-term combined intravenous (IV) and intrathecal (IT) administration of hUC-MSCs in relapse remitting multiple sclerosis (RRMS) and neuromyelitis optica (NMO) is largely unknown. Objectives: In this study, we followed up the long-term safety and feasibility of combined IV and IT human umbilical cord mesenchymal stem cells (hUC-MSCs) transplantation in patients with RRMS and NMO. Methods: Five NMO patients and 5 RRMS patients were treated intravenously (4 times) and intrathecally (3 times) over a 21-day period with low-dose allogeneic umbilical cord blood–derived MSCs. All of the patients were monitored regularly by an investigator in a blinded manner to access the Expanded Disability Status Scale, MRI characteristics, and adverse events every 3 months within 12 months and once every year thereafter for 10 years after transplantation. Results: During the long-term follow-up, our data suggested that combined IV and IT administration of hUC-MSCs transplantation is safe and feasible. None of the intolerant adverse events, such as tumor formation and peripheral organ/tissue disorders, were observed throughout the 10-year follow-up. Conclusions: These data suggest that combined intravenous and intrathecal low-dose hUC-MSCs transplantation is safe and feasible in RRMS and NMO patients in the long term. The conclusion requires confirmation by future clinical trials in a larger cohort.
Collapse
Affiliation(s)
- Zhengjuan Lu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lin Zhu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Zhuo Liu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Jiayong Wu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Cun-Jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Institute of Brain Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
22
|
Song JS, Hong KT, Kong CG, Kim NM, Jung JY, Park HS, Kim YJ, Chang KB, Kim SJ. High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration. World J Stem Cells 2020; 12:514-526. [PMID: 32742568 PMCID: PMC7360989 DOI: 10.4252/wjsc.v12.i6.514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High tibial osteotomy (HTO) is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity. However, HTO alone cannot adequately repair the arthritic joint, necessitating cartilage regeneration therapy. Cartilage regeneration procedures with concomitant HTO are used to improve the clinical outcome in patients with varus deformity.
AIM To evaluate cartilage regeneration after implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with concomitant HTO.
METHODS Data for patients who underwent implantation of hUCB-MSCs with concomitant HTO were evaluated. The patients included in this study were over 40 years old, had a varus deformity of more than 5°, and a full-thickness International Cartilage Repair Society (ICRS) grade IV articular cartilage lesion of more than 4 cm2 in the medial compartment of the knee. All patients underwent second-look arthroscopy during hardware removal. Cartilage regeneration was evaluated macroscopically using the ICRS grading system in second-look arthroscopy. We also assessed the effects of patient characteristics, such as trochlear lesions, age, and lesion size, using patient medical records.
RESULTS A total of 125 patients were included in the study, with an average age of 58.3 ± 6.8 years (range: 43-74 years old); 95 (76%) were female and 30 (24%) were male. The average hip-knee-ankle (HKA) angle for measuring varus deformity was 7.6° ± 2.4° (range: 5.0-14.2°). In second-look arthroscopy, the status of medial femoral condyle (MFC) cartilage was as follows: 73 (58.4%) patients with ICRS grade I, 37 (29.6%) with ICRS grade II, and 15 (12%) with ICRS grade III. No patients were staged with ICRS grade IV. Additionally, the scores [except International Knee Documentation Committee (IKDC) at 1 year] of the ICRS grade I group improved more significantly than those of the ICRS grade II and III groups.
CONCLUSION Implantation of hUCB-MSCs with concomitant HTO is an effective treatment for patients with medial compartment osteoarthritis and varus deformity. Regeneration of cartilage improves the clinical outcomes for the patients.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Chae-Gwan Kong
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Jae-Yub Jung
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Han-Soo Park
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Young Ju Kim
- Department of Nursing Education & Administration, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Ki Bong Chang
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| |
Collapse
|
23
|
Dong Y, Sun X, Zhang Z, Liu Y, Zhang L, Zhang X, Huang Y, Zhao Y, Qi C, Midgley AC, Wang S, Yang Q. Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects. APPLIED MATERIALS TODAY 2020; 19:100548. [DOI: 10.1016/j.apmt.2019.100548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
24
|
Bonsack B, Corey S, Shear A, Heyck M, Cozene B, Sadanandan N, Zhang H, Gonzales-Portillo B, Sheyner M, Borlongan CV. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci Ther 2020; 26:603-615. [PMID: 32356605 PMCID: PMC7248547 DOI: 10.1111/cns.13378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long‐term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow–derived mesenchymal stem/stromal cell (BM‐MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM‐MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM‐MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell‐based combination treatments.
Collapse
Affiliation(s)
- Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | | | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
25
|
Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells Int 2020; 2020:4670948. [PMID: 32377203 PMCID: PMC7189315 DOI: 10.1155/2020/4670948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of the human umbilical cord (hWJSCs), and the conditioned medium (hWJSC-CM) prepared from them, were shown to be tumoricidal on many cancers. However, these tumoricidal effects were observed in hWJSCs grown under normoxic conditions of 21% oxygen in the laboratory. Since oxygen concentrations in the stem cell niche or physiological microenvironment are hypoxic and help to maintain stemness properties, the objective of this work was to evaluate whether there were differences in the tumoricidal properties of hWJSC-CM grown in 21% O2 (normoxic) or 5% O2 (hypoxic) environments. The results showed that hWJSCs grown under normoxic or hypoxic conditions showed no distinct morphological differences in culture and remained positive in trilineage differentiation into adipocytes, osteocytes, and chondrocytes. Hypoxic hWJSCs expressed the mesenchymal stem cell surface markers CD105, CD90, CD73, CD146, and CD108 similar to normoxic hWJSCs but were negative for the hematopoietic markers CD14, CD19, CD34, CD45, CD117, and HLA-DR. Hypoxic hWJSC-CM produced a significantly greater reduction in cell viability and a significantly greater increase in apoptosis, oxidative stress, and lipid peroxidation in human lymphoma cells compared to normoxic hWJSC-CM. Hypoxic hWJSC-CM also produced significantly greater expression of immunogenic cell death (ICD) hallmarks such as surface-bound calreticulin, HSP70, HSP90, and high mobility group binding 1 proteins and significantly decreased expression of the defense molecules CD47 and PD-L1. This study showed that the tumoricidal effect of hypoxic hWJSC-CM was superior to normoxic hWJSC-CM and should be the preferred choice of preparing hWJSC-CM for the induction of ICD on lymphoma cells.
Collapse
|
26
|
Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV. Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. BRAIN HEMORRHAGES 2020; 1:24-33. [PMID: 34056567 PMCID: PMC8158660 DOI: 10.1016/j.hest.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.
Collapse
Affiliation(s)
- Sydney Corey
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Alex Shear
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M. Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int 2019; 19:329. [PMID: 31827403 PMCID: PMC6894473 DOI: 10.1186/s12935-019-1038-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.
Collapse
Affiliation(s)
- Jafar Ai
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ketabchi
- 2Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nematollah Gheibi
- 3Department of Physiology and Medical Physics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- 4Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,5Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Moquin-Beaudry G, Colas C, Li Y, Bazin R, Guimond JV, Haddad E, Beauséjour C. The Tumor-Immune Response Is Not Compromised by Mesenchymal Stromal Cells in Humanized Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2735-2745. [PMID: 31578272 DOI: 10.4049/jimmunol.1900807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Therapeutic uses of mesenchymal stromal cells (MSCs) have emerged over the past decade. Yet, their effect on tumor growth remains highly debated, particularly in an immune competent environment. In this study, we wanted to investigate the impact of human umbilical cord-derived MSCs (hUC-MSCs) on tumor growth in humanized mice generated by the human adoptive transfer of PBMCs or the cotransplantation of hematopoietic stem cells and human thymic tissue (human BLT [Hu-BLT]). Our results showed that the growth and immune rejection of engineered human fibroblastic tumors was not altered by the injection of hUC-MSCs in immune-deficient or humanized mice, respectively. This was observed whether tumor cells were injected s.c. or i.v. and independently of the injection route of the hUC-MSCs. Moreover, only in Hu-BLT mice did hUC-MSCs have some effects on the tumor-immune infiltrate, yet without altering tumor growth. These results demonstrate that hUC-MSCs do not promote fibroblastic tumor growth and neither do they prevent tumor infiltration and rejection by immune cells in humanized mice.
Collapse
Affiliation(s)
- Gaël Moquin-Beaudry
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec H3T 1C5, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Chloé Colas
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
| | - Yuanyi Li
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
| | - Renée Bazin
- Direction de l'Innovation, Affaires Médicales et Innovation, Héma-Québec, Quebec G1V 5C3, Canada
| | - Jean V Guimond
- Centre Intégré Universitaire de Santé et de Services Sociaux, Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Elie Haddad
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec H3T 1C5, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada; and.,Département de Microbiologie, Immunologie et Infectiologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec H3T 1C5, Canada; .,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
29
|
Colicchia M, Jones DA, Beirne AM, Hussain M, Weeraman D, Rathod K, Veerapen J, Lowdell M, Mathur A. Umbilical cord-derived mesenchymal stromal cells in cardiovascular disease: review of preclinical and clinical data. Cytotherapy 2019; 21:1007-1018. [PMID: 31540804 DOI: 10.1016/j.jcyt.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The human umbilical cord has recently emerged as an attractive potential source of mesenchymal stromal cells (MSCs) to be adopted for use in regenerative medicine. Umbilical cord MSCs (UC-MSCs) not only share the same features of all MSCs such as multi-lineage differentiation, paracrine functions and immunomodulatory properties, they also have additional advantages, such as no need for bone marrow aspiration and higher self-renewal capacities. They can be isolated from various compartments of the umbilical cord (UC) and can be used for autologous or allogeneic purposes. In the past decade, they have been adopted in cardiovascular disease and have shown promising results mainly due to their pro-angiogenic and anti-inflammatory properties. This review offers an overview of the biological properties of UC-MSCs describing available pre-clinical and clinical data with respect to their potential therapeutic use in cardiovascular regeneration, with current challenges and future directions discussed.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Anne-Marie Beirne
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mohsin Hussain
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Deshan Weeraman
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj Rathod
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jessry Veerapen
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mark Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
30
|
Barrett AN, Fong CY, Subramanian A, Liu W, Feng Y, Choolani M, Biswas A, Rajapakse JC, Bongso A. Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal Stem Cells Using Single-Cell RNA-Sequencing. Stem Cells Dev 2019; 28:196-211. [PMID: 30484393 DOI: 10.1089/scd.2018.0132] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) isolated from the human umbilical cord are a unique population of mesenchymal stem cells (MSCs) with significant clinical utility. Their broad differentiation potential, high rate of proliferation, ready availability from discarded cords, and prolonged maintenance of stemness properties in culture make them an attractive alternative source of MSCs with therapeutic value compared with human bone marrow MSCs (hBMMSCs). We aimed to characterize the differences in gene expression profiles between these two stem cell types using single-cell RNA sequencing (scRNA-Seq) to determine which pathways are involved in conferring hWJSCs with their unique properties. We identified 436 significantly differentially expressed genes between the two cell types, playing roles in processes, including immunomodulation, angiogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis. Expression of immune molecules is particularly high in hWJSCs compared with hBMMSCs. These differences in gene expression may help to explain many of the advantages that hWJSCs have over hBMMSCs for clinical application. Although cell surface protein marker expression indicates that isolated hWJSCs and hBMMSCs are both homogenous populations, using scRNA-Seq we can clearly identify extreme variability in expression levels between individual cells within a certain cell type. If the cells are examined as bulk populations, it is not possible to appreciate that a single cell may be making a major unique contribution to the apparent overall expression level. We demonstrated how the fine tuning of expression within hWJSCs and hBMMSCs may be achieved by expression of molecules with opposing function between two cells. We hypothesize that a greater understanding of these differences in gene expression between the two cell types may aid in the development of new therapies using hWJSCs.
Collapse
Affiliation(s)
- Angela N Barrett
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Chui-Yee Fong
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arjunan Subramanian
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Wenting Liu
- 2 Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Yirui Feng
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Jagath C Rajapakse
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ariff Bongso
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Peng C, Zou X, Xia W, Gao H, Li Z, Liu N, Xu Z, Gao C, He Z, Niu W, Fang R, Biswas S, Agrez M, Zhi X, Niu J. Integrin αvβ6 plays a bi-directional regulation role between colon cancer cells and cancer-associated fibroblasts. Biosci Rep 2018; 38:BSR20180243. [PMID: 30355650 PMCID: PMC6435516 DOI: 10.1042/bsr20180243] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironment (TME) is the cellular environment in which tumor exists, and it contributes to tumor formation and progression. The TME is composed of tumor cells, stromal cells, cytokines, and chemotactic factors of which fibroblasts are the main cellular components. In our present study, we found that colorectal cancer (CRC) cells expressing integrin αvβ6 clearly could induce morphological changes in inactive fibroblasts and increased the expression of activated fibroblast markers such as α-smooth muscle actin (α-SMA) and fibroblast-activating protein (FAP). Those activated fibroblasts in the TME are called cancer-associated fibroblasts (CAFs). In order to investigate the mechanism by which CRC cells expressing integrin αvβ6 activated CAFs, a series of assays have been carried out in the follow-up. We found that CRC cells could secrete inactive transforming growth factor β (TGF-β); however, integrin αvβ6 activated TGF-β, which subsequently activated fibroblasts. This process was disrupted by knockdown of integrin αvβ6. In contrast, activated fibroblasts could promote CRC cell invasion. In particular, the strengthening effect on expression of integrin αvβ6 in colon cancer cells was obvious. Additionally, we found that CAFs could secrete stromal cell-derived factor-1 (SDF-1) and promote CRC cell metastasis in distant organs via the SDF-1/C-X-C chemokine receptor type 4 (CXCR4) axis. Taken together, we assumed that CRC cells and CAFs activated one another and worked together to promote cancer progression, with integrin αvβ6 playing a role in the bi-directional regulation of these cells. Hence, integrin αvβ6 may serve as a therapeutic target for the future CRC treatment.
Collapse
Affiliation(s)
- Cheng Peng
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Xueqing Zou
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Wanying Xia
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Huijie Gao
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zequn Li
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Naiqing Liu
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Linyi Central Hospital, Linyi, Shandong, China
| | - Zongquan Xu
- Department of General Surgery, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi, China
| | - Chao Gao
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zhaobin He
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Weibo Niu
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ruliang Fang
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Siddhartha Biswas
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Michael Agrez
- Newcastle Bowel Cancer Research Collaborative, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Xuting Zhi
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Niu
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Secretomes from Mesenchymal Stem Cells against Acute Kidney Injury: Possible Heterogeneity. Stem Cells Int 2018; 2018:8693137. [PMID: 30651737 PMCID: PMC6311717 DOI: 10.1155/2018/8693137] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
A kidney has the ability to regenerate itself after a variety of renal injuries. Mesenchymal stem cells (MSCs) have been shown to ameliorate tissue damages during renal injuries and diseases. The regenerations induced by MSCs are primarily mediated by the paracrine release of soluble factors and extracellular vesicles, including exosomes and microvesicles. Extracellular vesicles contain proteins, microRNAs, and mRNAs that are transferred into recipient cells to induce several repair signaling pathways. Over the past few decades, many studies identified trophic factors from MSCs, which attenuate renal injury in a variety of animal acute kidney injury models, including renal ischemia-reperfusion injury and drug-induced renal injury, using microarray and proteomic analysis. Nevertheless, these studies have revealed the heterogeneity of trophic factors from MSCs that depend on the cell origins and different stimuli including hypoxia, inflammatory stimuli, and aging. In this review article, we summarize the secretomes and regenerative mechanisms induced by MSCs and highlight the possible heterogeneity of trophic factors from different types of MSC and different circumstances for renal regeneration.
Collapse
|
33
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
34
|
Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19082385. [PMID: 30104541 PMCID: PMC6121292 DOI: 10.3390/ijms19082385] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects up to 10% of women of reproductive age and accounts for up to 50% of female infertility cases. It has been highly associated with poorer outcomes of assisted reproductive technology (ART), including decreased oocyte retrieval, lower implantation, and pregnancy rates. A better understanding of the pathogenesis of endometriosis-associated infertility is crucial for improving infertility treatment outcomes. Current theories regarding how endometriosis reduces fertility include anatomical distortion, ovulatory dysfunction, and niche inflammation-associated peritoneal or implantation defects. This review will survey the latest evidence on the role of inflammatory niche in the peritoneal cavity, ovaries, and uterus of endometriosis patients. Nonhormone treatment strategies that target these inflammation processes are also included. Furthermore, mesenchymal stem cell-based therapies are highlighted for potential endometriosis treatment because of their immunomodulatory effects and tropism toward inflamed lesion foci. Potential applications of stem cell therapy in treatment of endometriosis-associated infertility in particular for safety and efficacy are discussed.
Collapse
|
35
|
Yuan Y, Zhou C, Chen X, Tao C, Cheng H, Lu X. Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: A possible role for apoptosis and Wnt signaling. Oncol Lett 2018; 15:8536-8544. [PMID: 29805590 PMCID: PMC5950566 DOI: 10.3892/ol.2018.8368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent potential therapeutic tools for solid tumors. However, there are numerous inconsistent results regarding the effects of hUCMSCs on tumors, and the mechanisms underlying this remain poorly understood. The present study further examined this controversial issue by analyzing the molecular mechanisms of the inhibitory effects of hUCMSCs on the proliferation and migration of the human lung cancer A549 cell line and the human hepatocellular carcinoma (HCC) BEL7402 cell line in vitro. Flow cytometric analysis demonstrated that hUCMSCs arrested tumor cells in specific phases of the cell cycle and induced the apoptosis of tumor cells by using the hUCMSC-conditioned medium (hUCMSC-CM). The hUCMSC-CM also attenuated the migratory abilities of the two tumor cell types. Furthermore, the expression of B-cell lymphoma 2 (Bcl-2), the pro-form of caspase-7 (pro-caspase-7), β-catenin and c-Myc was downregulated, while that of ephrin receptor (EphA5), a biomarker of cancer cell dormancy, was slightly increased in these two tumor cell lines treated with hUCMSC-CM. Specifically, when co-cultured via direct cell-to-cell contact, hUCMSCs were able to spontaneously fuse with any of the two types of solid tumor cells. These observations suggested that hUCMSCs may be a promising candidate for the biological therapy of lung cancer and HCC. Future studies should focus on detailed evidence for cell fusion, as well as other mechanisms proposed in the present study, by introducing additional experimental approaches and models.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Chang Zhou
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xuan Chen
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Changli Tao
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiqing Cheng
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Xin Lu
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| |
Collapse
|
36
|
Medeiros Tavares Marques JC, Cornélio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep 2017; 7:17837. [PMID: 29259202 PMCID: PMC5736717 DOI: 10.1038/s41598-017-16224-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Although human mesenchymal stem cells (hMSCs) are a powerful tool for cell therapy, prolonged culture times result in replicative senescence or acquisition of tumorigenic features. To identify a molecular signature for senescence, we compared the transcriptome of senescent and young hMSCs with normal karyotype (hMSCs/n) and with a constitutional inversion of chromosome 3 (hMSC/inv). Senescent and young cells from both lineages showed differentially expressed genes (DEGs), with higher levels in senescent hMSCs/inv. Among the 30 DEGs in senescent hMSC/inv, 11 are new candidates for biomarkers of cellular senescence. The functional categories most represented in senescent hMSCs were related to cellular development, cell growth/proliferation, cell death, cell signaling/interaction, and cell movement. Mapping of DEGs onto biological networks revealed matrix metalloproteinase-1, thrombospondin 1, and epidermal growth factor acting as topological bottlenecks. In the comparison between senescent hMSCs/n and senescent hMSCs/inv, other functional annotations such as segregation of chromosomes, mitotic spindle formation, and mitosis and proliferation of tumor lines were most represented. We found that many genes categorized into functional annotations related to tumors in both comparisons, with relation to tumors being highest in senescent hMSCs/inv. The data presented here improves our understanding of the molecular mechanisms underlying the onset of cellular senescence as well as tumorigenesis.
Collapse
Affiliation(s)
- Joana Cristina Medeiros Tavares Marques
- Faculdade de Ciências da Saúde do Trairi (FACISA), Universidade Federal do Rio Grande do Norte (UFRN), Rua Traíri, S/N, Centro, Santa Cruz, Rio Grande do Norte (RN), 59200-000, Brazil
| | - Déborah Afonso Cornélio
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil
| | - Vivian Nogueira Silbiger
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - André Ducati Luchessi
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, CCS/UFRN, Av General Cordeiro de Farias S/N, Petropolis, Natal, 59010-115, RN, Brazil
| | - Sandro de Souza
- Instituto do Cérebro, Instituto de Metrópole Digital, UFRN, Av. Nascimento de Castro, 2155, UFRN, 59056-450, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, UFRN, Campus Universitário, Avenida Senador Salgado Filho, 3000, Lagoa nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
37
|
Shi Q, Gao J, Jiang Y, Sun B, Lu W, Su M, Xu Y, Yang X, Zhang Y. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther 2017; 8:246. [PMID: 29096715 PMCID: PMC5667478 DOI: 10.1186/s13287-017-0700-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a novel and promising strategy for tissue engineering because of their ability to differentiate into many cell types. We characterized the differentiation of WJ-MSCs into endometrial epithelial cell (EEC)-like and endometrial stromal cell (ESC)-like cells and assessed the effect of 17β-estradiol and 8-Br-cAMP on the differentiation system. METHODS WJ-MSCs were treated in two ways to differentiate into EEC-like and ESC-like cells respectively: cocultured with ESCs in control/differentiation medium (17β-estradiol, growth factors); and cultured in control/differentiation medium (8-Br-cAMP alone or 8-Br-cAMP plus 17β-estrogen and growth factors). Three signaling pathway inhibitors (SB203580, PD98059, H89) were used to investigate the mechanism of WJ-MSC differentiation into ESC-like cells. Immunofluorescence, western blot and flow cytometry analyses were used to analyze expression of epithelial markers and stromal cell markers. Enzyme-linked immunosorbent assays were used to test the production of secretory proteins associated with the differentiation of ESC-like cells. RESULTS 17β-estradiol at 1 μM downregulated vimentin and CD13 and upregulated cytokeratin and CD9 proteins, promoting the differentiation of WJ-MSCs into EEC-like cells in the coculture system. 8-Br-cAMP at 0.5 mM upregulated vimentin and CD13 and downregulated CK and CD9, promoting the differentiation of WJ-MSCs into ESC-like cells. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) were upregulated and the protein kinase A (PKA) signaling pathway was activated, whereas extracellular signal-regulated (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were not affected. CONCLUSIONS 17β-estradiol at 1 μM is a good inducer for facilitating the differentiation of WJ-MSCs into EEC-like cells. 8-Br-cAMP plus estrogen and growth factors can induce the differentiation of WJ-MSCs into ESC-like cells. During the differentiation of WJ-MSCs into ESC-like cells, PRL and IGFBP1 were upregulated by the treatment and the PKA signaling pathway was activated, whereas ERK1/2 and p38 MAPK were not affected. These findings suggest a promising approach to the treatment of endometrial damage and other endometrial diseases and suggest new applications for WJ-MSCs in clinical practice.
Collapse
Affiliation(s)
- Qin Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - JingWei Gao
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital, Soochow, People's Republic of China
| | - Yao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| | - Baolan Sun
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Wei Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China. .,Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University School of Medicine, 19 Xishi Road, Nantong, Jiangsu, 226006, People's Republic of China.
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China. .,Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University School of Medicine, 19 Xishi Road, Nantong, Jiangsu, 226006, People's Republic of China.
| |
Collapse
|
38
|
Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Rev Rep 2017; 13:801-816. [DOI: 10.1007/s12015-017-9767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
40
|
Zhang C, Yang SJ, Wen Q, Zhong JF, Chen XL, Stucky A, Press MF, Zhang X. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies. J Cancer 2017; 8:85-96. [PMID: 28123601 PMCID: PMC5264043 DOI: 10.7150/jca.16792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/18/2016] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shi-Jie Yang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xue-Lian Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
41
|
Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int 2016; 2016:4798639. [PMID: 27721835 PMCID: PMC5046016 DOI: 10.1155/2016/4798639] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose.
Collapse
|
42
|
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int 2016; 2016:6901286. [PMID: 27651799 PMCID: PMC5019943 DOI: 10.1155/2016/6901286] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, No. 4, Oparin Street, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, No. 1, Ostrovitianov Street, Moscow 117997, Russia
| |
Collapse
|
43
|
Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, Tenen A. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review. BMC Musculoskelet Disord 2016; 17:230. [PMID: 27229856 PMCID: PMC4880954 DOI: 10.1186/s12891-016-1085-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.
Collapse
Affiliation(s)
- Julien Freitag
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia.
| | - Dan Bates
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia
| | | | - Kiran Shah
- Magellan Stem Cells, Melbourne, Australia
| | | | - Leesa Huguenin
- Melbourne Stem Cell Centre, Level 2, 116-118 Thames St, Box Hill North, VIC, 3128, Australia
| | - Abi Tenen
- Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3764372. [PMID: 26989682 PMCID: PMC4771893 DOI: 10.1155/2016/3764372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 01/12/2023]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs) signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK) and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK) signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP) activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.
Collapse
|
45
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation. J Cell Biochem 2016; 117:2045-55. [PMID: 27392313 DOI: 10.1002/jcb.25501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 12/26/2022]
Abstract
Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 119228, Singapore
| |
Collapse
|
46
|
Rhee KJ, Lee JI, Eom YW. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int J Mol Sci 2015; 16:30015-33. [PMID: 26694366 PMCID: PMC4691158 DOI: 10.3390/ijms161226215] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Korea.
| | - Jong In Lee
- Department of Hematology-Oncology, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju 26426, Korea.
| |
Collapse
|
47
|
Meng YB, Li X, Li ZY, Zhao J, Yuan XB, Ren Y, Cui ZD, Liu YD, Yang XJ. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. J Orthop Res 2015; 33:957-64. [PMID: 25728838 DOI: 10.1002/jor.22884] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 02/04/2023]
Abstract
Osteogenesis of mesenchymal stem cells (MSCs) is essential for bone repair. Recently, microRNAs have been proven to play an important role in the regulation of MSC differentiation, including osteogenesis. Here, the function of microRNA-21 (miR-21) in the osteogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) was investigated. Briefly, the miR-21 mimics (m-miR-21) and the antisense miR-21 (as-miR-21) were transfected to hUMSCs, and the capacity of miR-21 for the osteogenic differentiation of hUMSCs was evaluated by the expression of osteogenic markers encoding alkaline phosphatase (ALP), runt-related gene-2 (RUNX-2) and osteocalcin (OCN), as well as by Alizarin red S staining. The results indicated that the overexpression of miR-21 elevated the expression level of the osteogenesis-related genes of hUMSCs. During this process, the PI3K-AKT signaling pathway activity had an increasing tendency responding to miR-21 up-regulation. This enhancement promoted the phosphorylation of GSK-3β, leading to the stabilization and high concentration accumulation of β-catenin in cytoplasm to activate the transcription of RUNX-2, and finally increased the osteogenesis of hUMSCs. This work demonstrated that miR-21 and its target PI3K-AKT-GSK3β pathway played an important role in the osteogenic differentiation of hUMSCs by stabilizing β-catenin.
Collapse
Affiliation(s)
- Yu-Bin Meng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Xue Li
- Department of Clinical Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, 300203, P.R. China
| | - Zhao-Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Xu-Bo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Yu Ren
- Research Center of Basic Medical Sciences & Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Zhen-Duo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| | - Yun-De Liu
- Department of Clinical Microbiology, School of Laboratory Medicine, Tianjin Medical University, Tianjin, 300203, P.R. China
| | - Xian-Jin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.R. China
| |
Collapse
|
48
|
Arutyunyan IV, Makarov AV, Elchaninov AV, Fatkhudinov TK. Umbilical cord-derived multipotent mesenchymal stromal cells: biological properties and clinical applications. GENES & CELLS 2015; 10:30-38. [DOI: 10.23868/gc120474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The article presents the current literature evidence and own data on the origin and properties of human umbilical cord-derived multipotent mesenchymal stromal cells including proliferative potential, plasticity, stability of caryotype and phenotype, and immunomodulatory activity A review of clinical trials using this cell type is performed Prospects for the use of multipotent stromal cells, derived from umbilical cord, in cell transplantation associate with the need for specialized biobanking and transplant standardization criteria
Collapse
Affiliation(s)
- I. V Arutyunyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
| | - A. V Makarov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - A. V Elchaninov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| | - T. Kh Fatkhudinov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation
- Scientific Research Institute of Human Morphology
- N.I. Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation
| |
Collapse
|
49
|
Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy 2015; 17:509-25. [DOI: 10.1016/j.jcyt.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
|
50
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|