1
|
Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. Int J Mol Sci 2022; 23:ijms23147768. [PMID: 35887115 PMCID: PMC9316061 DOI: 10.3390/ijms23147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide, OP3-4, is known to stimulate bone morphogenetic protein (BMP)-2-induced bone formation, but peptides tend to aggregate and lose their bioactivity. Cholesterol-bearing pullulan (CHP) nanogel scaffold has been shown to prevent aggregation of peptides and to allow their sustained release and activity; however, the appropriate design of CHP nanogels to conduct local bone formation needs to be developed. In the present study, we investigated the osteoconductive capacity of a newly synthesized CHP nanogel, CHPA using OP3-4 and BMP-2. We also clarified the difference between perforated and nonperforated CHPA impregnated with the two signaling molecules. Thirty-six, five-week-old male BALB/c mice were used for the calvarial defect model. The mice were euthanized at 6 weeks postoperatively. A higher cortical bone mineral content and bone formation rate were observed in the perforated scaffold in comparison to the nonperforated scaffold, especially in the OP3-4/BMP-2 combination group. The degradation rate of scaffold material in the perforated OP3-4/BMP-2 combination group was lower than that in the nonperforated group. These data suggest that perforated CHPA nanogel could lead to local bone formation induced by OP3-4 and BMP–2 and clarified the appropriate degradation rate for inducing local bone formation when CHPA nanogels are designed to be perforated.
Collapse
|
2
|
Curcumin-Loaded Nanoparticles Impair the Pro-Tumor Activity of Acid-Stressed MSC in an In Vitro Model of Osteosarcoma. Int J Mol Sci 2021; 22:ijms22115760. [PMID: 34071200 PMCID: PMC8198446 DOI: 10.3390/ijms22115760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment, mesenchymal stromal cells (MSCs) are key modulators of cancer cell behavior in response to several stimuli. Intratumoral acidosis is a metabolic trait of fast-growing tumors that can induce a pro-tumorigenic phenotype in MSCs through the activation of the NF-κB-mediated inflammatory pathway, driving tumor clonogenicity, invasion, and chemoresistance. Recent studies have indicated that curcumin, a natural ingredient extracted from Curcuma longa, acts as an NF-κB inhibitor with anti-inflammatory properties. In this work, highly proliferating osteosarcoma cells were used to study the ability of curcumin to reduce the supportive effect of MSCs when stimulated by acidosis. Due to the poor solubility of curcumin in biological fluids, we used spherical polymeric nanoparticles as carriers (SPN-curc) to optimize its uptake by MSCs. We showed that SPN-curc inhibited the release of inflammatory cytokines (IL6 and IL8) by acidity-stimulated MSCs at a higher extent than by free curcumin. SPN-curc treatment was also successful in blocking tumor stemness, migration, and invasion that were driven by the secretome of acid-stressed MSCs. Overall, these data encourage the use of lipid–polymeric nanoparticles encapsulating NF-κB inhibitors such as curcumin to treat cancers whose progression is stimulated by an activated mesenchymal stroma.
Collapse
|
3
|
Najdaghi S, Razi S, Rezaei N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020; 135:155205. [PMID: 32721849 DOI: 10.1016/j.cyto.2020.155205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal Cancer (CRC), a common malignancy, is developing globally among people. Mutagenic insults activate peripheral nucleated cells to secrete chemokines in order to cause an inflammatory state. Despite the presence of multi-retrieving factors, elevated production of minor cytokines may speed-up the sever stages of the baseline inflammation targeting normal compensatory mechanism. IL-8 is a pro-inflammatory cytokine that is believed to be up-regulated in CRC to proceed primary condition into tumor behavior via induction of proliferation, angiogenesis and metastasis. Here, we assess the role of IL-8 in every step of CRC from signaling pathway and formation to invasion and discuss around new perspective therapy that targets IL-8 to manage CRC worldwide incidence and survival rate, more precisely.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
4
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
5
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
6
|
Ali SO, Fessas P, Kaggie JD, Zaccagna F, Houston G, Reid S, Graves MJ, Gallagher FA. Evaluation of the sensitivity of R 1ρ MRI to pH and macromolecular density. Magn Reson Imaging 2019; 58:156-161. [PMID: 30771445 PMCID: PMC6422633 DOI: 10.1016/j.mri.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
The tumor microenvironment is characteristically acidic and this extracellular acidosis is known to play a role in carcinogenesis and metastasis and can affect tumor chemosensitivity and radiosensitivity. Intracellular pH has been used as a possible biomarker of salvageable tissue in ischemic stroke. A non-invasive MRI-based approach for the determination and imaging of cerebral pH would be a powerful tool in cancer diagnosis and monitoring, as well as stroke treatment planning. Several pH-based MRI imaging approaches have been proposed but for these to be useful, disentangling the effects of pH from other parameters which may affect the measured MRI signal is crucial to ensure accuracy and specificity. R1 relaxation in the rotating frame (R1ρ) is an example of a method that has been proposed to probe pH in vivo using MRI. In this study, we have investigated the relationship between R1ρ, pH, and macromolecular density in vitro using phantoms and in human volunteers. Here we show that the rate of R1ρ relaxation (=1/T1ρ) varies with pH but only in the presence of macromolecules. At constant pH, phantom macromolecular density inversely correlated with R1ρ. R1ρ imaging of the normal human brain demonstrated regional heterogeneity with significant differences between structurally distinct regions, which are likely to be independent of pH. For example, R1ρ was higher in the basal ganglia compared to grey matter and higher in grey matter compared to white matter. We conclude that R1ρ cannot be reliably used to image tissue pH without deconvolution from the effects of local tissue macromolecular composition.
Collapse
Affiliation(s)
- Syed O Ali
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Petros Fessas
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Joshua D Kaggie
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ.
| | - Fulvio Zaccagna
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ
| | | | - Scott Reid
- GE Healthcare, Amersham, United Kingdom, HP7 9JQ
| | - Martin J Graves
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ
| | - Ferdia A Gallagher
- Department of Radiology, Box 218, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom, CB2 0QQ.
| |
Collapse
|
7
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
|
9
|
PLGA: From a classic drug carrier to a novel therapeutic activity contributor. J Control Release 2018; 289:10-13. [PMID: 30244137 DOI: 10.1016/j.jconrel.2018.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is well known for its biocompatibility and minimal toxicity. It is one of the most promising biodegradable polymeric drug delivery systems able to get endorsement from regulatory bodies to enter market. For many decades, PLGA has been functioning as an excipient, which by definition is pharmaceutically inert at a given dose of formulation. Lactate (one of the hydrolysis products of PLGA) has a key role in biochemical pathways and could improve physiological activities in certain illnesses by exerting therapeutic effects such as angiogenesis and promotion of healing. These activities, however, depend on the released amounts and metabolic clearance of lactate and route of formulation delivery. In the current commentary, along with several key notes on the lactate interactions, we would like to inform the PLGA research community that lactate (resulting from local delivery of physiologically significant amount of PLGA) may positively or negatively affect therapeutic efficacy of certain drugs. Hence, the excipient role of PLGA may be investigated for its potential pharmacological contributions in some biomedical applications.
Collapse
|
10
|
Albiero ML, Stipp RN, Saito MT, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Viability and Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells Are Maintained After Incubation With Porphyromonas gingivalis Protein Extract. J Periodontol 2017. [DOI: 10.1902/jop.2017.170116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mayra Laino Albiero
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Márcio Zaffalon Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Enilson Antonio Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Karina Gonzales Silvério
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
11
|
Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, Donati DM, Baldini N. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. Int J Cancer 2017; 140:1331-1345. [PMID: 27888521 DOI: 10.1002/ijc.30540] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H+ -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H+ -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H+ -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Arig Ibrahim-Hashim
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Robert J Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Davide Maria Donati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Bischoff DS, Zhu JH, Makhijani NS, Yamaguchi DT. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling. World J Stem Cells 2015; 7:1262-1273. [PMID: 26730270 PMCID: PMC4691694 DOI: 10.4252/wjsc.v7.i11.1262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs).
METHODS: CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs.
RESULTS: CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed sFRP1-induced phosphorylation of extracellular signal-regulated kinase (ERK) (p44/42) maximally at 5 min after sFRP1 addition, earlier than that found in OGM alone. Addition of a phospholipase C (PLC) inhibitor also prevented sFRP-stimulated increases in CXCL8 mRNA. siRNA technology targeting the Fzd-2 and 5 and the non-canonical Fzd co-receptor RoR2 also significantly decreased sFRP1/2-stimulated CXCL8 mRNA levels.
CONCLUSION: CXC chemokine expression in hMSCs is controlled in part by sFRPs signaling through non-canonical Wnt involving Fzd2/5 and the ERK and PLC pathways.
Collapse
|
13
|
Parainfluenza virus type 1 induces epithelial IL-8 production via p38-MAPK signalling. J Immunol Res 2014; 2014:515984. [PMID: 25013817 PMCID: PMC4072021 DOI: 10.1155/2014/515984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/11/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022] Open
Abstract
Human parainfluenza virus type 1 (HPIV-1) is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs) was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.
Collapse
|
14
|
Immunomodulatory effects of mesenchymal stromal cells in solid organ transplantation. Curr Opin Organ Transplant 2014; 15:731-7. [PMID: 20881495 DOI: 10.1097/mot.0b013e328340172c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Multipotent mesenchymal stromal cells (MSCs) possess powerful immunomodulatory activity highlighting the potential for their clinical translation in solid organ transplantation. In this review, we summarize recent advances in understanding MSC immunomodulatory effect in vitro and in experimental transplant models and discuss topics of crucial importance for the future clinical use of MSCs as immunotherapy in solid organ transplantation. RECENT FINDINGS MSCs strongly inhibited T-cell activity in vitro and exerted similar inhibitory effects on other cells of the immune system. MSC-mediated immune suppression has been attributed mainly to the secretion of soluble factors; however, cell-contact mechanisms cannot be excluded. Available studies in animal transplant models raised variable results, but overall indicate that MSCs could be useful to modulate recipient immune cells. The timing of cell application and the origin of MSCs (autologous or allogeneic) seem to be the most crucial factors impacting the in-vivo efficacy of MSCs. SUMMARY A better understanding of the mechanisms underlying the immunomodulatory effects of MSCs in vitro and in vivo is needed to define the optimal condition for the use of MSCs as immunotherapy in solid organ transplantation.
Collapse
|
15
|
Acidic priming enhances metastatic potential of cancer cells. Pflugers Arch 2014; 466:2127-38. [PMID: 24531759 DOI: 10.1007/s00424-014-1458-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 12/11/2022]
Abstract
Metabolic acidosis is a common feature of tumor microenvironment and may affect the phenotype of tumor cells, including invasive capacity and formation of metastases. We tested whether previous exposure to an acidic environment alters metastatic potential of two rat carcinoma cell lines in the animal model. In addition, we determined the effect of an acidic environment on motility and invasive capacity of AT-1 prostate carcinoma cells in culture. Exposure of tumor cells to an acidic environment (pH 6.6, 5 % CO2, 6 h) prior to tail vein injection in rats enhanced formation of lung metastases significantly. In culture, acidosis increased cellular motility of AT-1 cells. When the tumor cells were transferred back to pH 7.4, enhanced motility persisted for at least 3 h but vanished after longer periods (24 h), therefore presenting a "short-term memory effect." Although acidosis augmented phosphorylation of ERK1/2 and p38, and inhibition of ERK1/2 phosphorylation or of p38 kinase activity reduced basal motility at pH 7.4, acidosis-induced increase in motility was not dependent on ERK1/2 or p38 kinase. Src family kinases were not involved either. By contrast, scavenging reactive oxygen species (ROS), known to be increased in AT-1 cells under acidic conditions, blunted acidosis-induced motility increase. Our data indicate that tumor cells may acquire enhanced motility in an acidic micromilieu, at least in part due to enhanced ROS formation. Because enhanced motility persists for at least 3 h after leaving the acidic environment, this may promote metastasis formation, as observed in our in vivo model.
Collapse
|
16
|
Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13:89. [PMID: 24004445 PMCID: PMC3849184 DOI: 10.1186/1475-2867-13-89] [Citation(s) in RCA: 924] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 12/18/2022] Open
Abstract
Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 963-8611, Koriyama, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
LIANG C, LI H, TAO Y, SHEN C, LI F, SHI Z, HAN B, CHEN Q. New hypothesis of chronic back pain: low pH promotes nerve ingrowth into damaged intervertebral disks. Acta Anaesthesiol Scand 2013; 57:271-7. [PMID: 22404297 DOI: 10.1111/j.1399-6576.2012.02670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pathogenesis of low back pain is still elusive. Here, we proposed a new hypothesis that low pH is a possible cause of the development and progression of low back pain. We propose that low pH promotes the production of the inflammatory mediators and the depletion of proteoglycan in the damaged intervertebral disk. The inflammation response, evoked by the dorsal root ganglia, changes the delicate nutrient balance in the nucleus, resulting in a vicious cycle and leading to choronic back pain. Our hypothesis may explain many of the available clinical and experimental data on low back pain, thus it may help elucidate the pathogenesis of low back pain and improve clinical management.
Collapse
Affiliation(s)
- C. LIANG
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - H. LI
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Y. TAO
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - C. SHEN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - F. LI
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Z. SHI
- Institute of Orthopedic Research; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - B. HAN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Q. CHEN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| |
Collapse
|
18
|
Zhou Y, Guan X, Wang H, Zhu Z, Li C, Wu S, Yu H. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways. Biotechnol Bioeng 2013; 110:1794-804. [PMID: 23296944 DOI: 10.1002/bit.24827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
Osteogenesis and angiogenesis are tightly coupled processes during bone development and formation. It is thus well known that the enhancement of vascularization is of great importance in bone tissue engineering. As a potential approach for repairing bone defects, bone tissue constructs should therefore replicate the essential components in vivo microenvironments to promote cell osteogenic differentiation while at same time induce angiogenic response. In light of standpoint above, a combination of human bone-derived scaffolds and BMSCs that subjected to hypoxia was used to mimic in vivo conditions. Also the underlying cellular/molecular regulation was fully investigated. The results showed that hypoxia (5-10% O2 ) greatly enhanced the proliferation of BMSCs seeded in scaffolds, although the hypoxia (5% O2 )-induced proliferative effect on BMSC cellular scaffolds was not apparent to those cultured in plates. However, such a kind of model was able to significantly induce the osteogenic/angiogenic responses of BMSCs as reflected by osteogenesis or angiogenesis-related highly expressed genes or proteins, such as alkaline phosphatase, osteocalcin, hypoxia-inducible factor-1α and vascular endothelial growth factor. Moreover, ERK1/2 and/or p38 pathways were demonstrated to play essential roles in hypoxia-induced osteogenic/angiogenic responses. Our results indicated that the combination of bone-derived scaffolds, a material that has a three dimensional network structure, and hypoxia, an environment that replicates in vivo BMSCs hypoxic living conditions, may be a potential approach for creating functional tissue-engineered bone.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA, Capelli C, Rambaldi A, Cassis P, Rizzo P, Cortinovis M, Marasà M, Golay J, Noris M, Remuzzi G. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol 2010; 6:412-22. [PMID: 20930086 DOI: 10.2215/cjn.04950610] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stromal cells (MSCs) abrogate alloimmune response in vitro, suggesting a novel cell-based approach in transplantation. Moving this concept toward clinical application in organ transplantation should be critically assessed. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS A safety and clinical feasibility study (ClinicalTrials.gov, NCT00752479) of autologous MSC infusion was conducted in two recipients of kidneys from living-related donors. Patients were given T cell-depleting induction therapy and maintenance immunosuppression with cyclosporine and mycophenolate mofetil. On day 7 posttransplant, MSCs were administered intravenously. Clinical and immunomonitoring of MSC-treated patients was performed up to day 360 postsurgery. RESULTS Serum creatinine levels increased 7 to 14 days after cell infusion in both MSC-treated patients. A graft biopsy in patient 2 excluded acute graft rejection, but showed a focal inflammatory infiltrate, mostly granulocytes. In patient 1 protocol biopsy at 1-year posttransplant showed a normal graft. Both MSC-treated patients are in good health with stable graft function. A progressive increase of the percentage of CD4+CD25highFoxP3+CD127- Treg and a marked inhibition of memory CD45RO+RA-CD8+ T cell expansion were observed posttransplant. Patient T cells showed a profound reduction of CD8+ T cell activity. CONCLUSIONS Findings from this study in the two patients show that MSC infusion in kidney transplant recipients is feasible, allows enlargement of Treg in the peripheral blood, and controls memory CD8+ T cell function. Future clinical trials with MSCs to look with the greatest care for unwanted side effects is advised.
Collapse
Affiliation(s)
- Norberto Perico
- Transplant Research Center Chiara Cucchi de Alessandri e Gilberto Crespi, Department of Immunology and Transplantation, Ospedali Riuniti di Bergamo, Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Parco Scientifico Tecnologico Kilometro Rosso, via Stezzano 87, 24126 Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen CC, Chen LC, Liang Y, Tsang NM, Chang YS. Epstein-Barr virus latent membrane protein 1 induces the chemotherapeutic target, thymidine phosphorylase, via NF-kappaB and p38 MAPK pathways. Cell Signal 2010; 22:1132-42. [PMID: 20214978 DOI: 10.1016/j.cellsig.2010.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/01/2010] [Indexed: 11/19/2022]
Abstract
High thymidine phosphorylase (TP) expression is significantly correlated with poor prognosis in patients with nasopharyngeal carcinoma (NPC). NPC is an Epstein-Barr Virus (EBV)-associated cancer in which the EBV-encoded oncogene product, latent membrane protein 1 (LMP1), is expressed in approximately 60% of tumor tissues. However, no previous study has examined whether LMP1 is involved in up-regulating TP expression in NPC tissues. We herein show that LMP1 expression is correlated with TP expression in tumor cells, as examined by quantitative RT-PCR and immunohistochemical staining. We further show that the CTAR1 and CTAR2 domains of LMP1 mediate TP induction, as demonstrated by quantitative RT-PCR and Western blot analyses using LMP1 deletion and site-specific mutants. Mechanistically, LMP1-mediated TP induction is abolished by inhibitors of NF-kappaB and p38 MAPK, dominant-negative IkappaB and p38, and siRNA-mediated knockdown of p38 MAPK. Clinically, there were significant correlations among the expression levels of TP, activated p65, and phospho-p38 MAPK in NPC biopsy samples. Functionally, LMP1-mediated induction of TP expression enhanced the sensitivity of NPC cells to the chemotherapeutic prodrug, 5'-DFUR. Our results provide new insights into the roles of LMP1-mediated NF-kappaB and p38 MAPK signaling pathways in TP induction, potentially suggesting new therapeutic strategies for the treatment of NPC.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan.
| | | | | | | | | |
Collapse
|
21
|
Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 2009; 14:771-94. [PMID: 20015196 PMCID: PMC3823111 DOI: 10.1111/j.1582-4934.2009.00994.x] [Citation(s) in RCA: 485] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintenance of cellular pH homeostasis is fundamental to life. A number of key intracellular pH (pHi) regulating systems including the Na+/H+ exchangers, the proton pump, the monocarboxylate transporters, the HCO3− transporters and exchangers and the membrane-associated and cytosolic carbonic anhydrases cooperate in maintaining a pHi that is permissive for cell survival. A common feature of tumours is acidosis caused by hypoxia (low oxygen tension). In addition to oncogene activation and transformation, hypoxia is responsible for inducing acidosis through a shift in cellular metabolism that generates a high acid load in the tumour microenvironment. However, hypoxia and oncogene activation also allow cells to adapt to the potentially toxic effects of an excess in acidosis. Hypoxia does so by inducing the activity of a transcription factor the hypoxia-inducible factor (HIF), and particularly HIF-1, that in turn enhances the expression of a number of pHi-regulating systems that cope with acidosis. In this review, we will focus on the characterization and function of some of the hypoxia-inducible pH-regulating systems and their induction by hypoxic stress. It is essential to understand the fundamentals of pH regulation to meet the challenge consisting in targeting tumour metabolism and acidosis as an anti-tumour approach. We will summarize strategies that take advantage of intracellular and extracellular pH regulation to target the primary tumour and metastatic growth, and to turn around resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Johanna Chiche
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR, Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|
22
|
Wuertz K, Godburn K, Iatridis JC. MSC response to pH levels found in degenerating intervertebral discs. Biochem Biophys Res Commun 2009; 379:824-9. [PMID: 19133233 PMCID: PMC2652844 DOI: 10.1016/j.bbrc.2008.12.145] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/12/2008] [Indexed: 01/08/2023]
Abstract
Painful degenerative disc disease is a major health problem and for successful tissue regeneration, MSCs must endure and thrive in a harsh disc microenvironment that includes matrix acidity as a critical factor. MSCs were isolated from bone marrow of Sprague-Dawley rats from two different age groups (<1 month, n=6 and 4-5 months, n=6) and cultured under four different pH conditions representative of the healthy, mildly or severely degenerated intervertebral disc (pH 7.4, 7.1, 6.8, and 6.5) for 5 days. Acidity caused an inhibition of aggrecan, collagen-1, and TIMP-3 expression, as well as a decrease in proliferation and viability and was associated with a change in cell morphology. Ageing had generally minor effects but young MSCs maintained greater mRNA expression levels. As acidic pH levels are typical of increasingly degenerated discs, our findings demonstrate the importance of early interventions and predifferentiation when planning to use MSCs for reparative treatments.
Collapse
Affiliation(s)
- Karin Wuertz
- School of Engineering, University of Vermont, Burlington, Vermont, USA.
| | | | | |
Collapse
|