1
|
Wang R, Wang F, Lu S, Gao B, Kan Y, Yuan T, Xu Y, Yuan C, Guo D, Fu W, Yu X, Si Y. Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact Mater 2023; 27:394-408. [PMID: 37122899 PMCID: PMC10131126 DOI: 10.1016/j.bioactmat.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
The efficacy of stem cell therapy is substantially compromised due to low cell survival rate and poor local retention post-delivery. These issues drastically limit the application of stem cells for ischemic limb therapy, which requires effective blood perfusion and skeletal muscle regeneration. Herein, based on microfluidic technology, an integrated stem cell and cytokine co-delivery system designed for functional ischemic limb salvage was constructed by first incorporating the myogenic cytokine, fibroblast growth factor 19 (FGF19), into microspheres composed of methacrylate gelatin (GelMA). Then adipose-derived stem cells (ADSCs) were highly absorbed into the porous structure of the microspheres, overcoming the insufficient loading efficiency and activities by conventional encapsulation strategy. The fabricated ADSCs/FGF19@μsphere system demonstrated a uniform size of about 180 μm and a highly porous structure with pore sizes between 20 and 40 μm. The resultant system allowed high doses of ADSCs to be precisely engrafted in the lesion and to survive, and achieved sustained FGF19 release in the ischemic region to facilitate myoblast recruitment and differentiation and myofibrils growth. Furthermore, the combination of ADSCs and FGF19 exhibited a positive synergistic effect which substantially improved the therapeutic benefit of angiogenesis and myogenesis, both in vitro and in vivo. In summary, a stem cell and cytokine co-delivery system with the properties of easy preparation and minimal invasiveness was designed to ensure highly efficient cell delivery, sustained cytokine release, and ultimately realizes effective treatment of ischemic limb regeneration.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Fangqian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Shan Lu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Bin Gao
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yuanqing Kan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| | - Xiaohua Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, Zhejiang, PR China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China
- Institute of Vascular Surgery, Fudan University, Shanghai, 200032, PR China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, PR China
| |
Collapse
|
2
|
Zhang Y, Lv P, Li Y, Zhang Y, Cheng C, Hao H, Yue H. Inflammatory Cytokine Interleukin-6 (IL-6) Promotes the Proangiogenic Ability of Adipose Stem Cells from Obese Subjects via the IL-6 Signaling Pathway. Curr Stem Cell Res Ther 2023; 18:93-104. [PMID: 36883256 DOI: 10.2174/1574888x17666220429103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of obesity, as well as obesity-induced chronic inflammatory diseases, is increasing worldwide. Chronic inflammation is related to the complex process of angiogenesis, and we found that adipose-derived stem cells from obese subjects (obADSCs) had proangiogenic features, including higher expression levels of interleukin-6 (IL-6), Notch ligands and receptors, and proangiogenic cytokines, than those from control subjects. We hypothesized that IL-6 and Notch signaling pathways are essential for regulating the proangiogenic characteristics of obADSCs. OBJECTIVE This study aimed to investigate whether the inflammatory cytokine interleukin 6 (IL-6) promotes the proangiogenic capacity of adipose stem cells in obese subjects via the IL-6 signaling pathway. METHODS We compared the phenotype analysis as well as cell doubling time, proliferation, migration, differentiation, and proangiogenic properties of ADSCs in vitro. Moreover, we used small interfering RNAs to inhibit the gene and protein expression of IL-6. RESULTS We found that ADSCs isolated from control individuals (chADSCs) and obADSCs had similar phenotypes and growth characteristics, and chADSCs had a stronger differentiation ability than obADSCs. However, obADSCs were more potent in promoting EA.hy926 cell migration and tube formation than chADSCs in vitro. We confirmed that IL-6 siRNA significantly reduced the transcriptional level of IL-6 in obADSCs, thereby reducing the expression of vascular endothelial growth factor (VEGF)- A, VEGF receptor 2, transforming growth factor β, and Notch ligands and receptors in obADSCs. CONCLUSION The finding suggests that inflammatory cytokine interleukin-6 (IL-6) promotes the proangiogenic ability of obADSCs via the IL-6 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Pengju Lv
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, 10031, USA
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
3
|
Paganelli A, Rossi E, Magnoni C. The dark side of adipose-derived mesenchymal stromal cells in cutaneous oncology: roles, expectations, and potential pitfalls. Stem Cells Dev 2022; 31:593-603. [PMID: 36066334 DOI: 10.1089/scd.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) have well-established regenerative and immunomodulatory properties. For such reasons, ADSCs are currently under investigation for their use in the setting of both regenerative medicine and autoimmune diseases. As per dermatological disorders, MSC-based strategies represent potential therapeutic tools not only for chronic ulcers and wound healing, but also for immune-mediated dermatoses. However, a growing body of research has been focusing on the role of MSCs in human cancers, due to the potential oncological risk of using MSC-based strategies linked to their anti-apoptotic, pro-angiogenic and immunosuppressive properties. In the dermatological setting, ADSCs have shown not only to promote melanoma growth and invasiveness, but also to induce drug-resistance. On the other hand, genetically modified ADSCs have been demonstrated to efficiently target therapies at tumor sites, due to their migratory properties and their peculiar tropism for cancer microenvironment. The present review briefly summarizes the findings published so far on the use of ADSCs in the dermato-oncological setting, with the majority of data being available for melanoma.
Collapse
Affiliation(s)
- Alessia Paganelli
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy, 41124;
| | - Elena Rossi
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| | - Cristina Magnoni
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| |
Collapse
|
4
|
Extracellular Vesicles from Adipose Tissue Stem Cells in Diabetes and Associated Cardiovascular Disease; Pathobiological Impact and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21249598. [PMID: 33339409 PMCID: PMC7766415 DOI: 10.3390/ijms21249598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are pluripotent mesenchymal stem cells found in relatively high percentages in the adipose tissue and able to self-renew and differentiate into many different types of cells. “Extracellular vesicles (EVs), small membrane vesicular structures released during cell activation, senescence, or apoptosis, act as mediators for long distance communication between cells, transferring their specific bioactive molecules into host target cells”. There is a general consensus on how to define and isolate ADSCs, however, multiple separation and characterization protocols are being used in the present which complicate the results’ integration in a single theory on ADSCs’ and their derived factors’ way of action. Metabolic syndrome and type 2 diabetes mellitus (T2DM) are mainly caused by abnormal adipose tissue size, distribution and metabolism and so ADSCs and their secretory factors such as EVs are currently investigated as therapeutics in these diseases. Moreover, due to their relatively easy isolation and propagation in culture and their differentiation ability, ADSCs are being employed in preclinical studies of implantable devices or prosthetics. This review aims to provide a comprehensive summary of the current knowledge on EVs secreted from ADSCs both as diagnostic biomarkers and therapeutics in diabetes and associated cardiovascular disease, the molecular mechanisms involved, as well as on the use of ADSC differentiation potential in cardiovascular tissue repair and prostheses.
Collapse
|
5
|
Yang S, Jiang X, Xiao X, Niu C, Xu Y, Huang Z, Kang YJ, Feng L. Controlling the Poly(ε-caprolactone) Degradation to Maintain the Stemness and Function of Adipose-Derived Mesenchymal Stem Cells in Vascular Regeneration Application. Macromol Biosci 2020; 21:e2000226. [PMID: 33094556 DOI: 10.1002/mabi.202000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) scaffolds with adipose-derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL-1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.
Collapse
Affiliation(s)
- Shaojie Yang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xia Jiang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xiong Xiao
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Chuan Niu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Yue Xu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Ziwei Huang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Y James Kang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Li Feng
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
6
|
Zhao H, Sun QL, Duan LJ, Yang YD, Gao YS, Zhao DY, Xiong Y, Wang HJ, Song JW, Yang KT, Wang XM, Yu X. Is cell transplantation a reliable therapeutic strategy for spinal cord injury in clinical practice? A systematic review and meta-analysis from 22 clinical controlled trials. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:1092-1112. [DOI: 10.1007/s00586-019-05882-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023]
|
7
|
Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian AR, Beigi MH, Masoudi Rad M, Esmaeely Neisiany R, Nasr-Esfahani MH. A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res A 2018; 106:2394-2401. [PMID: 29637736 DOI: 10.1002/jbm.a.36431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
In the present research, a ternary polycaprolactone (PCL)/gelatin/fibrinogen nanofibrous scaffold for tissue engineering application was developed. Through this combination, PCL improved the scaffold mechanical properties; meanwhile, gelatin and fibrinogen provided more hydrophilicity and cell proliferation. Three types of nanofibrous scaffolds containing different fibrinogen contents were prepared and characterized. Morphological study of the nanofibers showed that the prepared nanofibers were smooth, uniform without any formation of beads with a significant reduction in nanofiber diameter after incorporation of fibrinogen. The chemical characterization of the scaffolds confirmed that no chemical reaction occurred between the scaffold components. The tensile test results of the scaffolds showed that increasing in fibrinogen content led to a decrease in mechanical properties. Furthermore, adipose-derived stem cells were employed to evaluate cell-scaffold interaction. Cell culture results indicated that higher cell proliferation occurred for the higher amount of fibrinogen. Statistical analysis was also carried out to evaluate the significant difference for the obtained results of water droplet contact angle and cell culture. Therefore, the results confirmed that PCL/gel/fibrinogen scaffold has a good potential for tissue engineering applications including central nerve system tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2394-2401, 2018.
Collapse
Affiliation(s)
- Niloufar Saadatkish
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Morshed
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali-Reza Allafchian
- Nanotechnology and Advanced Materials, Institute Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Masoudi Rad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
8
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|
9
|
Su Y, Denbeigh JM, Camilleri ET, Riester SM, Parry JA, Wagner ER, Yaszemski MJ, Dietz AB, Cool SM, van Wijnen AJ, Kakar S. Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. GENE REPORTS 2017; 10:149-156. [PMID: 29868646 DOI: 10.1016/j.genrep.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The poor healing potential of intra-articular ligament injuries drives a need for the development of novel, viable 'neo-ligament' alternatives. Ex vivo approaches combining stem cell engineering, 3-dimensional biocompatible scaffold design and enhancement of biological and biomechanical functionality via the introduction of key growth factors and morphogens, represent a promising solution to ligament regeneration. Methods We investigated growth, differentiation and extracellular matrix (ECM) protein production of human adipose-derived mesenchymal stem/stromal cells (MSCs), cultured in 5% human platelet lysate (PL) and seeded on three-dimensional polycaprolactone (PCL) scaffolds, in response to the connective-tissue related ligands fibroblast growth factor 2 (basic) (FGF2) and growth and differentiation factor-5 (GDF5). Phenotypic alterations of MSCs under different biological conditions were examined using cell viability assays, real time qPCR analysis of total RNA, as well as immunofluorescence microscopy. Results Phenotypic conversion of MSCs into ECM producing fibroblastic cells proceeds spontaneously in the presence of human platelet lysate. Administration of FGF2 and/or GDF5 enhances production of mRNAs for several ECM proteins including Collagen types I and III, as well as Tenomodulin (e.g., COL1A1, TNMD), but not Tenascin-C (TNC). Differences in the in situ deposition of ECM proteins Collagen type III and Tenascin-C were validated by immunofluorescence microscopy. Summary Treatment of MSCs with FGF2 and GDF5 was not synergistic and occasionally antagonistic for ECM production. Our results suggest that GDF5 alone enhances the conversion of MSCs to fibroblastic cells possessing a phenotype consistent with that of connective-tissue fibroblasts.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Joshua A Parry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Eric R Wagner
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Navarro L, Mogosanu DE, de Jong T, Bakker AD, Schaubroeck D, Luna J, Rintoul I, Vanfleteren J, Dubruel P. Poly(polyol sebacate) Elastomers as Coatings for Metallic Coronary Stents. Macromol Biosci 2016; 16:1678-1692. [PMID: 27500500 DOI: 10.1002/mabi.201600105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Indexed: 11/06/2022]
Abstract
Biocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug-eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)-derived polymers are investigated as coatings for metallic stents. All pre-polymers reveal a low molecular weight between 3000 and 18 000 g mol-1 . The cured polymers range from flexible to more rigid, with E-modulus between 0.6 and 3.8 MPa. Their advantages include straightforward synthesis, biodegradability, easy processing through different scaffolding techniques, and easy transfer to industrial production. Furthermore, electrospraying and dip-coating procedures are used as proof-of-concept to create coatings on metallic stents. Biocompatibility tests using adipose stem cells lead to promising results for the use of these materials as coatings for metallic coronary stents.
Collapse
Affiliation(s)
- Lucila Navarro
- Centro Científico Tecnológico, Ruta Nacional 168, Paraje El Pozo 3000, Santa Fe, Argentina
| | - Diana-Elena Mogosanu
- Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281, Building S4, Ghent, 9000, Belgium.,Center for Microsystem Technology, Ghent University, Technologiepark - iGent floor 6e, Gent-Zwijnaarde, 9052, Belgium
| | - Thijs de Jong
- Academic Centre for Dentistry Amsterdam, Department of Oral Cell Biology, Gustav Mahlerlaan 3004 - Room 11N43, 1081, LA Amsterdam, The Netherlands
| | - Astrid D Bakker
- Academic Centre for Dentistry Amsterdam, Department of Oral Cell Biology, Gustav Mahlerlaan 3004 - Room 11N43, 1081, LA Amsterdam, The Netherlands
| | - David Schaubroeck
- Center for Microsystem Technology, Ghent University, Technologiepark - iGent floor 6e, Gent-Zwijnaarde, 9052, Belgium
| | - Julio Luna
- Centro Científico Tecnológico, Ruta Nacional 168, Paraje El Pozo 3000, Santa Fe, Argentina
| | - Ignacio Rintoul
- Centro Científico Tecnológico, Ruta Nacional 168, Paraje El Pozo 3000, Santa Fe, Argentina
| | - Jan Vanfleteren
- Center for Microsystem Technology, Ghent University, Technologiepark - iGent floor 6e, Gent-Zwijnaarde, 9052, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281, Building S4, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H. Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 2015; 23:2931-49. [PMID: 25167472 DOI: 10.1089/scd.2014.0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Hassan Rammal
- 1 UMR 7365, Biopôle, Faculté de Médecine, CNRS-Université de Lorraine , Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Jung S, Kleineidam B, Kleinheinz J. Regenerative potential of human adipose-derived stromal cells of various origins. J Craniomaxillofac Surg 2015; 43:2144-51. [PMID: 26541747 DOI: 10.1016/j.jcms.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
In regenerative concepts, the potential of adult stem cells holds great promise concerning an individualized therapeutic approach. These cells provide renewable progenitor cells to replace aged tissue, and play a significant role in tissue repair and regeneration. In this investigation, the characteristics of different types of adipose tissue are analysed systematically with special attention to their proliferation and differentiation potential concerning the angiogenic and osteogenic lineage. Tissue samples from subcutaneous, visceral, and omental fat were processed according to standard procedures. The cells were characterized and cultivated under suitable conditions for osteogenic and angiogenic cell culture. The development of the different cell cultures as well as their differentiation were analysed morphologically and immunohistochemically from cell passages P1 to P12. Harvesting and isolation of multipotent cells from all three tissue types could be performed reproducibly. The cultivation of these cells under osteogenic conditions led to a morphological and immunohistochemical differentiation; mineralization could be detected. The most stable results were observed for the cells of subcutaneous origin. An osteogenic differentiation from adipose-derived cells from all analysed fatty tissues can be achieved easily and reproducibly. In therapeutic concepts including angiogenic regeneration, adipose-derived cells from subcutaneous tissue provide the optimal cellular base.
Collapse
Affiliation(s)
- Susanne Jung
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany.
| | - Benedikt Kleineidam
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| |
Collapse
|
13
|
In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:323571. [PMID: 26558266 PMCID: PMC4617699 DOI: 10.1155/2015/323571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies.
Collapse
|
14
|
Vallières K, Laterreur V, Tondreau MY, Ruel J, Germain L, Fradette J, Auger FA. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomater 2015; 24:209-19. [PMID: 26086693 DOI: 10.1016/j.actbio.2015.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/16/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
There is a clinical need for small-diameter vascular substitutes, notably for coronary and peripheral artery bypass procedures since these surgeries are limited by the availability of grafting material. This study reports the characterization of a novel autologous tissue-engineered vascular substitute (TEVS) produced in 10weeks exclusively from human adipose-derived stromal cells (ASC) self-assembly, and its comparison to an established model made from dermal fibroblasts (DF). Briefly, ASC and DF were cultured with ascorbate to form cell sheets subsequently rolled around a mandrel. These TEVS were further cultured as a maturation period before undergoing mechanical testing, histological analyses and endothelialization. No significant differences were measured in burst pressure, suture strength, failure load, elastic modulus and failure strain according to the cell type used to produce the TEVS. Indeed, ASC- and DF-TEVS both displayed burst pressures well above maximal physiological blood pressure. However, ASC-TEVS were 1.40-fold more compliant than DF-TEVS. The structural matrix, comprising collagens type I and III, fibronectin and elastin, was very similar in all TEVS although histological analysis showed a wavier and less dense collagen matrix in ASC-TEVS. This difference in collagen organization could explain their higher compliance. Finally, human umbilical vein endothelial cells (HUVEC) successfully formed a confluent endothelium on ASC and DF cell sheets, as well as inside ASC-TEVS. Our results demonstrated that ASC are an alternative cell source for the production of TEVS displaying good mechanical properties and appropriate endothelialization.
Collapse
Affiliation(s)
- Karine Vallières
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Véronique Laterreur
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Mechanical Engineering, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
| | - Maxime Y Tondreau
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Jean Ruel
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Mechanical Engineering, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec Research Centre - Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
15
|
Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh. Stem Cells Int 2015; 2015:350718. [PMID: 26106426 PMCID: PMC4464689 DOI: 10.1155/2015/350718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.
Collapse
|
16
|
Tresoldi C, Pellegata AF, Mantero S. Cells and stimuli in small-caliber blood vessel tissue engineering. Regen Med 2015; 10:505-27. [DOI: 10.2217/rme.15.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The absence of successful solutions in treatments of small-caliber vessel diseases led to the Vascular Tissue Engineering approach to develop functional nonimmunogenic tissue engineered blood vessels. In this context, the choice of cells to be seeded and the microenvironment conditioning are pivotal. Biochemical and biomechanical stimuli seem to activate physiological regulatory pathways that induce the production of molecules and proteins stimulating stem cell differentiation toward vascular lineage and reproducing natural cross-talks among vascular cells to improve the maturation of tissue engineered blood vessels. Thus, this review focuses on (1) available cell sources, and (2) biochemical and biomechanical stimuli, with the final aim to obtain the long-term stability of the endothelium and mechanical properties suitable for withstanding physiological load.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Alessandro Filippo Pellegata
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Sara Mantero
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
17
|
Hruschka V, Saeed A, Slezak P, Cheikh Al Ghanami R, Feichtinger GA, Alexander C, Redl H, Shakesheff K, Wolbank S. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation. Tissue Eng Part A 2014; 21:310-9. [PMID: 25167885 DOI: 10.1089/ten.tea.2013.0710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) strategies aim at imitating the natural process of regeneration by using bioresorbable scaffolds that support cellular attachment, migration, proliferation, and differentiation. Based on the idea of combining a fully degradable polymer [poly(ɛ-caprolactone)] with a thermoresponsive polymer (polyethylene glycol methacrylate), a scaffold was developed, which liquefies below 20°C and solidifies at 37°C. In this study, this scaffold was evaluated for its ability to support C2C12 cells and human adipose-derived stem cells (ASCs) to generate an expandable three-dimensional (3D) construct for soft or bone TE. As a first step, biomaterial seeding was optimized and cellular attachment, survival, distribution, and persistence within the 3D material were characterized. C2C12 cells were differentiated toward the osteogenic as well as myogenic lineage, while ASCs were cultured in control, adipogenic, or osteogenic differentiation media. Differentiation was examined using quantitative real-time PCR for the expression of osteogenic, myogenic, and adipogenic markers and by enzyme activity and immunoassays. Both cell types attached and were found evenly distributed within the material. C2C12 cells and ASCs demonstrated the potential to differentiate in all tested lineages under 2D conditions. Under 3D osteogenic conditions for C2C12 cells, only osteocalcin expression (fold induction: 16.3±0.2) and alkaline phosphatase (ALP) activity (p<0.001) were increased compared with the control C2C12 cells. Three-dimensional osteogenic differentiation of ASC was limited and donor dependent. Only one donor showed an increase in the osteogenic markers osteocalcin (p=0.027) and osteopontin (p=0.038). In contrast, differentiation toward the myogenic or adipogenic lineage showed expression of specific markers in 3D, at least at the level of the 2D culture. In 3D culture, strong induction of myogenin (p<0.001) as well as myoD (p<0.001) was found in C2C12 cells. The adipogenic differentiation of one donor showed greater expression of peroxisome proliferative-activated receptor gamma (PPARγ) (p=0.004), fatty acid binding protein 4 (FABP4) (p=0.008), and adiponectin (p=0.045) in 3D compared with 2D culture. Leptin levels in the supernatant of the ASC cultures were elevated in the 3D cultures in both donors at day 14 and 21. In conclusion, the thermoresponsive scaffold was found suitable for 3D in vitro differentiation toward soft tissue.
Collapse
Affiliation(s)
- Veronika Hruschka
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , AUVA Research Centre, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barbarisi M, Marino G, Armenia E, Vincenzo Q, Rosso F, Porcelli M, Barbarisi A. Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue. J Biomed Mater Res A 2014; 103:1755-60. [PMID: 25202882 DOI: 10.1002/jbm.a.35318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
Adipose tissue is an easily accessible source of stem cells for use in tissue regenerative medicine. In the literature, different methods have been used to stimulate acquisition of neuronal characteristics by adipose-derived stem cells (ADSC). Herein we study the growth and neuronal differentiation potential of ADSC seeded onto a porous polycaprolactone (PCL) scaffold. The objective of this study is to demonstrate that PCL can be used as a scaffold to support reconstruction of new nervous tissue using adipose stem cells. We have previously shown that undifferentiated ADSC adhere and grow on PCL. Herein we show that, after culture on PCL in neuronal differentiation medium, ADSC expressed molecular markers characteristic of neuronal cells (β-tubulin-III, Neuron-Specific Enolase (NSE), Nestin) and secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF). This study suggests that PCL can be used as a scaffold to generate nervous tissue in vitro. PLC has excellent mechanical properties and a slow degradation rate. Moreover, on the basis of our results, we propose that PCL could be used for to make in vitro, scaffold coated with neuronal cells derived from Adipose stem cells (ADSC). Neuronal cells-coated PCL could find several applications to replace damaged area of the body; for example, a possible use could be the generation of nerves.
Collapse
Affiliation(s)
- Manlio Barbarisi
- Laboratory of Applied Biotechnology, Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Arya D, Chang S, DiMuzio P, Carpenter J, Tulenko TN. Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells. J Biomed Sci 2014; 21:55. [PMID: 24898615 PMCID: PMC4064270 DOI: 10.1186/1423-0127-21-55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/15/2014] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability. RESULTS ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K. CONCLUSIONS S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks.
Collapse
Affiliation(s)
| | | | | | | | - Thomas N Tulenko
- Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, 3 Cooper Plaza, Camden, NJ 08103, USA.
| |
Collapse
|
20
|
Tamaki T, Soeda S, Hashimoto H, Saito K, Sakai A, Nakajima N, Masuda M, Fukunishi N, Uchiyama Y, Terachi T, Mochida J. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets. Regen Med 2014; 8:437-51. [PMID: 23826698 DOI: 10.2217/rme.13.30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To cover the large tissue deficits associated with significant loss of function following surgery, a 3D gel-patch-like nerve-vascular reconstitution system was developed using the skeletal muscle-derived multipotent stem cell (Sk-MSC) sheet pellet. MATERIALS & METHODS The Sk-MSC sheet pellet was prepared from GFP transgenic mice by the collagenase extraction and 7 days expansion cell culture, and transplanted into a severe muscle damage model with large disruptions to muscle fibers, blood vessels and peripheral nerves. RESULTS At 4 weeks after transplantation, engrafted cells contributed to nerve-vascular regeneration associated with cellular differentiation into Schwann cells, perineurial/endoneurial cells, vascular endothelial cells and pericytes. However, skeletal myogenic differentiation was scarcely observed. Paracrine effects regarding donor cells/tissues could also be expected, because of the active expression of neurogenic and vasculogenic factor mRNAs in the sheet pellet. CONCLUSION These results indicate that the vigorous skeletal myogenic potential of Sk-MSCs was clearly reduced in the sheet pellet preparation and this method may be a useful adjuvant for nerve-vascular regeneration in various tissue engineering applications.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology & Cell Biology Unit, Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, 143-Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wei C, Liu X, Tao J, Wu R, Zhang P, Bian Y, Li Y, Fang F, Zhang Y. Effects of vitamin C on characteristics retaining of in vitro-cultured mouse adipose-derived stem cells. In Vitro Cell Dev Biol Anim 2013; 50:75-86. [PMID: 23949782 DOI: 10.1007/s11626-013-9673-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022]
|
22
|
Morphological Cues for Regulation of Cell Adhesion and Motility with Tailored Electrospun Scaffolds of PCL and PCL/PVP Blends. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, Capuozzo V, Barbarisi M, Rosso F, Giordano G, Iovino F, Barbarisi A. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res 2013; 185:36-44. [PMID: 23773718 DOI: 10.1016/j.jss.2013.05.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND An ulcer is a trophic lesion with loss of tissue that often has a multifactorial genesis. It typically diverges from the physiologic processes of regeneration because it rarely tends to heal spontaneously. In this study, we used purified adipose-derived stem and regenerative cells (ADRCs) extracted from autologous fat, for the care of chronic ulcers of the lower limbs of arteriopathic patients. The primary objective of this study was complete re-epithelization of chronic ulcers; the secondary objective was a decrease in diameter and depth. METHODS From January 2010 to January 2012, 20 patients with peripheral arterial disease, with an ankle-brachial index between 0.30-0.40, in the age range 60-70 y (14 men and six women), with chronic ulcers of the lower limb, were involved in the study. Only 10 arteriopathic patients (seven men and three women) with chronic ulcers of the lower limb were surgically treated. Using the Celution system, we isolated a solution of ADRCs in about 150 min. The isolated cells were injected through a 10-mL syringe into the edges of the ulcer, taking care to spread it in all directions. Using a small amount of Celution extract, we performed cell characterization by flow cytometry analysis and cell viability assay. RESULTS We monitored patients treated with ADRC or untreated at 4, 10, 20, 60, and 90 d. In all cases treated with ADRC, we found a reduction in both diameter and depth of the ulcer, which led to a decrease in pain associated with the ulcer process. In six of 10 cases there was complete healing of the ulcer. Characterization of the cells by FACS clearly showed that the ADRC cells contained adipose-derived stem cells. Viability assays demonstrated that partial or total closure of the ulcer was attributable exclusively to ADRC cells present in the Celution extract, and not to growth factors extracted during the process of purification of the Celution and injected together with the cells. CONCLUSIONS For the first time, the Celution method has been applied for the care of chronic ulcers in the lower extremity of patients with peripheral arterial disease. Our results demonstrate that the technique is feasible for autologous cell application and is not associated with adverse events. Moreover, the transplantation of autologous stem cells extracted with Celution may represent a valuable method for the treatment of chronic ulcers in lower limbs of arteriopathic patients.
Collapse
Affiliation(s)
- Gerardo Marino
- Laboratory of Applied Biotechnology, Department of Anesthesiology, Surgery, and Emergency Sciences, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 2013; 36:1161-70. [PMID: 22974058 DOI: 10.1042/cbi20120288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.
Collapse
|
25
|
Van Pham P, Dang LTT, Truong NH, Phan NK. Can Activated Platelet Rich Plasma Combined with Adipose-Derived Stem Cells Be Used to Treat Skin Wrinkles? Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In recent years, Platelet Rich Plasma (PRP) and Adipose-Derived Stem Cells (ADSCs) have been used separately for many clinical applications, especially skin rejuvenation. A combined injection of PRP and ADSCs could therefore be used to treat skin wrinkles. However, there are controversies and reports with conflicting results regarding the efficacy of this treatment. The authors aimed to determine the anti-wrinkle and skin rejuvenation mechanism of combined PRP and ADSCs treatment. The effects of PRP and ADSCs isolated from the same consenting donors were evaluated using in vitro and in vivo models. The in vitro effects of PRP and ADSCs on dermal fibroblast proliferation, collagen production, and inhibition of Matrix Metalloproteinase-1 (MMP-1) production were investigated using a co-culture model. Fibroblasts and ADSCs were cultured within the same dish, but in two separate cavities (using an insert plate), in the presence of the same PRP-supplemented medium. In vivo, the authors evaluated the effects of combined PRP and ADSCs on skin histochemistry, including changes in the dermal layer and collagen production in photo-aged skin (mice). They also determined the survival and differentiation of grafted ADSCs. The results show that combined PRP and ADSCs strongly stimulate in vitro fibroblast proliferation, collagen production, and inhibition of MMP-1 synthesis. Intra-dermal co-injection of PRP and ADSCs was observed to stimulate increased dermal layer thickness and collagen production compared with the untreated group. These results indicate that a combined PRP and ADSC injection can reduce wrinkles more effectively than either PRP or ADSC alone, and provide insight into the clinical use of PRP combined with ADSCs for dermal applications, particularly skin rejuvenation.
Collapse
|
26
|
Scherberich A, Di Maggio ND, McNagny KM. A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World J Stem Cells 2013; 5:1-8. [PMID: 23362435 PMCID: PMC3557347 DOI: 10.4252/wjsc.v5.i1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/19/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro, that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro. Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning expression and function of these proteins in SVF cells and their in vitro expanded progeny.
Collapse
Affiliation(s)
- Arnaud Scherberich
- Arnaud Scherberich, Nunzia Di Maggio, Department of Biomedicine, University and University Hospital of Basel, CH-4031 Basel, Switzerland
| | | | | |
Collapse
|
27
|
Chung E, Ricles LM, Stowers RS, Nam SY, Emelianov SY, Suggs LJ. Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration. NANO TODAY 2012; 7:514-531. [PMID: 28989343 PMCID: PMC5630157 DOI: 10.1016/j.nantod.2012.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanomedicine has great potential in biomedical applications, and specifically in regenerative medicine and vascular tissue engineering. Designing nanometer-sized therapeutic and diagnostic devices for tissue engineering applications is critical because cells experience and respond to stimuli on this spatial scale. For example, nanoscaffolds, including nanoscalestructured or nanoscale surface-modified vascular scaffolds, can influence cell alignment, adhesion, and differentiation to promote better endothelization. Furthermore, nanoscale contrast agents can be extended to the field of biomedical imaging to monitor and track stem cells to better understand the process of neovascularization. In addition, nanoscale systems capable of delivering biomolecules (e.g. peptides and angiogenic genes/proteins) can influence cell behavior, function, and phenotype to promote blood vessel regeneration. This review will focus on nanomedicine and nanoscale strategies applied to vascular tissue engineering. In particular, some of the latest research and potential applications pertaining to nanoscaffolds, biomedical imaging and cell tracking using nanoscale contrast agents, and nanodelivery systems of bioactive molecules applied to blood vessel regeneration will be discussed. In addition, the overlap between these three areas and their synergistic effects will be examined as related to vascular tissue engineering.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Ryan S. Stowers
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| |
Collapse
|
28
|
Nery AA, Nascimento IC, Glaser T, Bassaneze V, Krieger JE, Ulrich H. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry A 2012; 83:48-61. [PMID: 23027703 DOI: 10.1002/cyto.a.22205] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Modern medicine will unequivocally include regenerative medicine as a major breakthrough in the re-establishment of damaged or lost tissues due to degenerative diseases or injury. In this scenario, millions of patients worldwide can have their quality of life improved by stem cell implantation coupled with endogenous secretion or administration of survival and differentiation promoting factors. Large efforts, relying mostly on flow cytometry and imaging techniques, have been put into cell isolation, immunophenotyping, and studies of differentiation properties of stem cells of diverse origins. Mesenchymal stem cells (MSCs) are particularly relevant for therapy due to their simplicity of isolation. A minimal phenotypic pattern for the identification of MSCs cells requires them to be immunopositive for CD73, CD90, and CD105 expression, while being negative for CD34, CD45, and HLA-DR and other surface markers. MSCs identified by their cell surface marker expression pattern can be readily purified from patient's bone marrow and adipose tissues. Following expansion and/or predifferentiation into a desired tissue type, stem cells can be reimplanted for tissue repair in the same patient, virtually eliminating rejection problems. Transplantation of MSCs is subject of almost 200 clinical trials to cure and treat a very broad range of conditions, including bone, heart, and neurodegenerative diseases. Immediate or medium term improvements of clinical symptoms have been reported as results of many clinical studies.
Collapse
Affiliation(s)
- Arthur A Nery
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|