For: | West JD, Dorà NJ, Collinson JM. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J Stem Cells 2015; 7(2): 281-299 [PMID: 25815115 DOI: 10.4252/wjsc.v7.i2.281] |
---|---|
URL: | https://www.wjgnet.com/1948-0210/full/v7/i2/281.htm |
Number | Citing Articles |
1 |
Fei Li, Jim Hu. Seeing is believing: Stem cells to treat blindness. Genes & Diseases 2016; 3(2): 103 doi: 10.1016/j.gendis.2016.03.003
|
2 |
Erwin P. Lobo, Naomi C. Delic, Alex Richardson, Vanisri Raviraj, Gary M. Halliday, Nick Di Girolamo, Mary R. Myerscough, J. Guy Lyons. Self-organized centripetal movement of corneal epithelium in the absence of external cues. Nature Communications 2016; 7(1) doi: 10.1038/ncomms12388
|
3 |
Anna Altshuler, Aya Amitai-Lange, Waseem Nasser, Shalini Dimri, Swarnabh Bhattacharya, Beatrice Tiosano, Ramez Barbara, Daniel Aberdam, Shigeto Shimmura, Ruby Shalom-Feuerstein. Eyes open on stem cells. Stem Cell Reports 2023; 18(12): 2313 doi: 10.1016/j.stemcr.2023.10.023
|
4 |
Merrelynn Hong, Shu Zhen Chong, Yun Yao Goh, Louis Tong. Two-Photon and Multiphoton Microscopy in Anterior Segment Diseases of the Eye. International Journal of Molecular Sciences 2024; 25(3): 1670 doi: 10.3390/ijms25031670
|
5 |
Miguel Gonzalez-Andrades, Pablo Argüeso, Ilene Gipson. Corneal Regeneration. Essentials in Ophthalmology 2019; : 3 doi: 10.1007/978-3-030-01304-2_1
|
6 |
Romina Lasagni Vitar, Francesca Triani, Marco Barbariga, Philippe Fonteyne, Paolo Rama, Giulio Ferrari. Substance P/neurokinin-1 receptor pathway blockade ameliorates limbal stem cell deficiency by modulating mTOR pathway and preventing cell senescence. Stem Cell Reports 2022; 17(4): 849 doi: 10.1016/j.stemcr.2022.02.012
|
7 |
Muanploy Niparugs, Manachai Nonpassopon, Farrah Shareef, Abdelrahman M. Elhusseiny, Ali R. Djalilian. Albert and Jakobiec's Principles and Practice of Ophthalmology. 2022; : 431 doi: 10.1007/978-3-030-42634-7_216
|
8 |
Lina Sprogyte, Mijeong Park, Lamia Nureen, Nicodemus Tedla, Alexander Richardson, Nick Di Girolamo. Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency. The Ocular Surface 2024; 34: 329 doi: 10.1016/j.jtos.2024.08.015
|
9 |
Nick Di Girolamo. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Progress in Retinal and Eye Research 2015; 48: 203 doi: 10.1016/j.preteyeres.2015.04.002
|
10 |
Golshan Latifi, Victor H. Hu. In Vivo Confocal Microscopy in Eye Disease. 2022; : 91 doi: 10.1007/978-1-4471-7517-9_5
|
11 |
Linda Sharp, Thomas Pratt, Gillian E. MacKay, Margaret A. Keighren, Jean H. Flockhart, Emma J. Chandler, David J. Price, John O. Mason, John D. West. Comparison of two related lines of tauGFP transgenic mice designed for lineage tracing. BMC Developmental Biology 2017; 17(1) doi: 10.1186/s12861-017-0149-x
|
12 |
Jan Wijnholds. “Basal Cell Migration” in Regeneration of the Corneal Wound-Bed. Stem Cell Reports 2019; 12(1): 3 doi: 10.1016/j.stemcr.2018.12.009
|
13 |
Lior Strinkovsky, Evgeny Havkin, Ruby Shalom-Feuerstein, Yonatan Savir. Spatial correlations constrain cellular lifespan and pattern formation in corneal epithelium homeostasis. eLife 2021; 10 doi: 10.7554/eLife.56404
|
14 |
John D. West. Commentary: Lineage Tracing Supports Maintenance of the Corneal Epithelium by Limbal Epithelial Stem Cells. Stem Cells 2015; 33(1): 310 doi: 10.1002/stem.1892
|
15 |
Bartosz Sikora, Aleksandra Skubis, Lech Sedlak, Małgorzata Kimsa-Furdzik, Marek Kostrzewski, Urszula Mazurek, Roman Aleksiewicz. Limbal epithelial stem cells in regeneration of corneal epithelium
– clinical and molecular aspects. Annales Academiae Medicae Silesiensis 2018; 72: 108 doi: 10.18794/aams/76254
|
16 |
Jasmin S. Nurković, Radiša Vojinović, Zana Dolićanin. Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells International 2020; 2020: 1 doi: 10.1155/2020/8813447
|
17 |
Santhosh KACHAM, Bhaskar BIRRU, Sreenivasa Rao PARCHA, Ramaraju BAADHE. Limbal stem cell deficiency: special focus on tracking limbal stem cells. TURKISH JOURNAL OF BIOLOGY 2016; 40: 1059 doi: 10.3906/biy-1507-144
|
18 |
Yijian Li, Lingling Ge, Xia Chen, Yumei Mao, Xianliang Gu, Bangqi Ren, Yuxiao Zeng, Min Chen, Siyu Chen, Jinhua Liu, Yuli Yang, Haiwei Xu. The common YAP activation mediates corneal epithelial regeneration and repair with different-sized wounds. npj Regenerative Medicine 2021; 6(1) doi: 10.1038/s41536-021-00126-2
|
19 |
Paweł Kaczmarek, Weronika Rupik. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). Journal of Morphology 2021; 282(3): 378 doi: 10.1002/jmor.21311
|
20 |
Zhang Zhe Thia, Yik To Ho, Kendrick Co Shih, Louis Tong. New developments in the management of persistent corneal epithelial defects. Survey of Ophthalmology 2023; 68(6): 1093 doi: 10.1016/j.survophthal.2023.06.001
|
21 |
Takahiro Nakamura, Tsutomu Inatomi, Chie Sotozono, Noriko Koizumi, Shigeru Kinoshita. Ocular surface reconstruction using stem cell and tissue engineering. Progress in Retinal and Eye Research 2016; 51: 187 doi: 10.1016/j.preteyeres.2015.07.003
|
22 |
Sudhir Verma, Xiao Lin, Vivien J. Coulson-Thomas. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13(9): 748 doi: 10.3390/cells13090748
|
23 |
Promita Bhattacharjee, Mark Ahearne. Influence of Spiral Topographies on Human Limbal-Derived Epithelial Cells. SSRN Electronic Journal 2022; doi: 10.2139/ssrn.4140156
|
24 |
Tiago Ramos, Deborah Scott, Sajjad Ahmad. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva. Stem Cells International 2015; 2015: 1 doi: 10.1155/2015/601731
|
25 |
Marina López-Paniagua, Teresa Nieto-Miguel, Ana de la Mata, Marc Dziasko, Sara Galindo, Esther Rey, José M. Herreras, Rosa M. Corrales, Julie T. Daniels, Margarita Calonge. Comparison of functional limbal epithelial stem cell isolation methods. Experimental Eye Research 2016; 146: 83 doi: 10.1016/j.exer.2015.12.002
|
26 |
Haumith Khan-Farooqi, James Chodosh. Autologous Limbal Stem Cell Transplantation: The Progression of Diagnosis and Treatment. Seminars in Ophthalmology 2016; 31(1-2): 91 doi: 10.3109/08820538.2015.1114862
|
27 |
Laura Tomasello, Rosa Musso, Giovanni Cillino, Maria Pitrone, Giuseppe Pizzolanti, Antonina Coppola, Walter Arancio, Gianluca Di Cara, Ida Pucci-Minafra, Salvatore Cillino, Carla Giordano. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Research & Therapy 2016; 7(1) doi: 10.1186/s13287-016-0342-z
|
28 |
Qihua Le, Yujing Yang, Sophie X Deng, Jianjiang Xu. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency. Clinical & Experimental Ophthalmology 2017; 45(3): 224 doi: 10.1111/ceo.12832
|
29 |
Sun-Woung Moon, Hyeon-Jeong Lee, Won-Jae Lee, Sun-A Ock, Sung-Lim Lee. Trans-differentiation Induction of Human-mesenchymal Stem Cells Derived from Different Tissue Origin and Evaluation of their Potential for Differentiation into Corneal Epithelial-like Cells. Journal of Animal Reproduction and Biotechnology 2018; 33(2): 85 doi: 10.12750/JET.2018.33.2.85
|
30 |
Promita Bhattacharjee, Mark Ahearne. Influence of spiral topographies on human limbal-derived immortalized corneal epithelial cells. Experimental Eye Research 2022; 225: 109252 doi: 10.1016/j.exer.2022.109252
|
31 |
Lulu Hou, Wenbin Fu, Ying Liu, Qun Wang, Liqiang Wang, Yifei Huang. Agrin Promotes Limbal Stem Cell Proliferation and Corneal Wound Healing Through Hippo-Yap Signaling Pathway. Investigative Opthalmology & Visual Science 2020; 61(5): 7 doi: 10.1167/iovs.61.5.7
|
32 |
Komathi Selvarajah, Jun Jie Tan, Bakiah Shaharuddin. Corneal Epithelial Development and the Role of Induced Pluripotent Stem
Cells for Regeneration. Current Stem Cell Research & Therapy 2024; 19(3): 292 doi: 10.2174/1574888X18666230313094121
|
33 |
Ricardo M. Gouveia, Guillaume Lepert, Suneel Gupta, Rajiv R. Mohan, Carl Paterson, Che J. Connon. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nature Communications 2019; 10(1) doi: 10.1038/s41467-019-09331-6
|
34 |
Koray Gumus. Topical Coenzyme Q10 Eye Drops as an Adjuvant Treatment in Challenging Refractory Corneal Ulcers: A Case Series and Literature Review. Eye & Contact Lens: Science & Clinical Practice 2017; 43(2): 73 doi: 10.1097/ICL.0000000000000229
|
35 |
Olivia Farrelly, Yoko Suzuki-Horiuchi, Megan Brewster, Paola Kuri, Sixia Huang, Gabriella Rice, Hyunjin Bae, Jianming Xu, Tzvete Dentchev, Vivian Lee, Panteleimon Rompolas. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell 2021; 28(7): 1233 doi: 10.1016/j.stem.2021.02.022
|
36 |
Sarah N. Pimple, Michelle G. Pedler, Biehuoy Shieh, Anjali Mandava, Emily McCourt, J. Mark Petrash. Human Breast Milk Enhances Cellular Proliferation in Cornea Wound Healing. Current Eye Research 2024; 49(11): 1138 doi: 10.1080/02713683.2024.2374836
|
37 |
Sophia Masterton, Mark Ahearne. Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells. Royal Society Open Science 2019; 6(12): 191796 doi: 10.1098/rsos.191796
|
38 |
Claudio Bucolo, Grazia Maugeri, Salvatore Giunta, Velia D’Agata, Filippo Drago, Giovanni Luca Romano. Corneal wound healing and nerve regeneration by novel ophthalmic formulations based on cross-linked sodium hyaluronate, taurine, vitamin B6, and vitamin B12. Frontiers in Pharmacology 2023; 14 doi: 10.3389/fphar.2023.1109291
|
39 |
Alexander V. Ljubimov, Mehrnoosh Saghizadeh. Progress in corneal wound healing. Progress in Retinal and Eye Research 2015; 49: 17 doi: 10.1016/j.preteyeres.2015.07.002
|
40 |
Mijeong Park, Alexander Richardson, Elvis Pandzic, Erwin P. Lobo, J. Guy Lyons, Nick Di Girolamo. Peripheral (not central) corneal epithelia contribute to the closure of an annular debridement injury. Proceedings of the National Academy of Sciences 2019; 116(52): 26633 doi: 10.1073/pnas.1912260116
|
41 |
John D. West, Richard L. Mort, Robert E. Hill, Steven D. Morley, J. Martin Collinson. Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice. Stem Cell Research 2018; 30: 1 doi: 10.1016/j.scr.2018.05.003
|
42 |
Nasif Mahmood, Taylor Cook Suh, Kiran M. Ali, Eelya Sefat, Ummay Mowshome Jahan, Yihan Huang, Brian C. Gilger, Jessica M. Gluck. Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Reviews and Reports 2022; 18(8): 2817 doi: 10.1007/s12015-022-10435-8
|
43 |
Lihua Hu, Qi Pu, Yaoli Zhang, Qian Ma, Guigang Li, Xinyu Li. Expansion and maintenance of primary corneal epithelial stem/progenitor cells by inhibition of TGFβ receptor I-mediated signaling. Experimental Eye Research 2019; 182: 44 doi: 10.1016/j.exer.2019.03.014
|
44 |
Natalie J. Dorà, Robert E. Hill, J. Martin Collinson, John D. West. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence. Stem Cell Research 2015; 15(3): 665 doi: 10.1016/j.scr.2015.10.016
|
45 |
Alexander Richardson, Denis Wakefield, Nick Di Girolamo. Fate Mapping Mammalian Corneal Epithelia. The Ocular Surface 2016; 14(2): 82 doi: 10.1016/j.jtos.2015.11.007
|
46 |
O. I. Alexandrova, Y. I. Khorolskaya, D. Y. Maychuk, M. I. Blinova, O. I. Alexandrova, Y. I. Khorolskaya, D. Y. Maychuk, M. I. Blinova. Study of common cytotoxicity of aminoglycoside and fluoroquinolone antibiotics in cell cultures. Vestnik oftal'mologii 2015; 131(5): 43 doi: 10.17116/oftalma2015131543-53
|