For: | Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells 2014; 6(3): 266-277 [PMID: 25126377 DOI: 10.4252/wjsc.v6.i3.266] |
---|---|
URL: | https://www.wjgnet.com/1948-0210/full/v6/i3/266.htm |
Number | Citing Articles |
1 |
Fengzhen Liu, Kun Chen, Lei Hou, Keyi Li, Dawei Wang, Bin Zhang, Xiumei Wang. Determining the critical size of a rabbit rib segmental bone defect model. Regenerative Biomaterials 2016; 3(5): 323 doi: 10.1093/rb/rbw028
|
2 |
Gabriele Ceccarelli, Rossella Presta, Laura Benedetti, Maria Gabriella Cusella De Angelis, Saturnino Marco Lupi, Ruggero Rodriguez y Baena. Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery. Stem Cells International 2017; 2017: 1 doi: 10.1155/2017/4585401
|
3 |
Paula Pereira de Souza Vaz, Rudolf Huebner, Hermes de Souza Costa. Matriz bidimensional de celulose obtida de folha vegetal visando reparo ósseo: caracterização morfológica e química. Matéria (Rio de Janeiro) 2020; 25(4) doi: 10.1590/s1517-707620200004.1179
|
4 |
Shinji Ishizuka, Quang Ngoc Dong, Huy Xuan Ngo, Yunpeng Bai, Jingjing Sha, Erina Toda, Tatsuo Okui, Takahiro Kanno. Bioactive Regeneration Potential of the Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-Lactide-Co-Glycolide Biomaterial in Maxillofacial Reconstructive Surgery: An In Vivo Preliminary Study. Materials 2021; 14(9): 2461 doi: 10.3390/ma14092461
|
5 |
Sasima Puwanun, Robin M. Delaine‐Smith, Helen E. Colley, Julian M. Yates, Sheila MacNeil, Gwendolen C. Reilly. A simple rocker‐induced mechanical stimulus upregulates mineralization by human osteoprogenitor cells in fibrous scaffolds. Journal of Tissue Engineering and Regenerative Medicine 2018; 12(2): 370 doi: 10.1002/term.2462
|
6 |
Hai Xin, Eva Tomaskovic-Crook, D S Abdullah Al Maruf, Kai Cheng, James Wykes, Timothy G. H. Manzie, Steven G. Wise, Jeremy M. Crook, Jonathan R. Clark. From Free Tissue Transfer to Hydrogels: A Brief Review of the Application of the Periosteum in Bone Regeneration. Gels 2023; 9(9): 768 doi: 10.3390/gels9090768
|
7 |
Nergis Nina Suleiman, Lars Johan Marcus Sandberg. Extensive Abdominal Wall Incisional Heterotopic Ossification Reconstructed with Component Separation and Strattice Inlay. Plastic and Reconstructive Surgery - Global Open 2016; 4(7): e816 doi: 10.1097/GOX.0000000000000814
|
8 |
Yiting Lou, Huiming Wang, Guanchen Ye, Yongzheng Li, Chao Liu, Mengfei Yu, Binbin Ying. Periosteal Tissue Engineering: Current Developments and Perspectives. Advanced Healthcare Materials 2021; 10(12) doi: 10.1002/adhm.202100215
|
9 |
Simon Melov, Clifford J. Rosen. Advances in Geroscience. 2016; : 257 doi: 10.1007/978-3-319-23246-1_9
|
10 |
Azeez Omoniyi Adeoye, Siti Nurma Hanim Hadie, Ismail Munajat, Nur Izni Mohd Zaharri, Muhamad Syahrul Fitri Zawawi, Sharifah Emilia Tuan Sharif, Abdul Razak Sulaiman. Periosteum: Functional Anatomy and Clinical Application. Malaysian Journal of Medicine and Health Sciences 2023; 19(3): 362 doi: 10.47836/mjmhs.19.3.46
|
11 |
Mona Shahlaei, Shaahin Mohammadzadeh Asl, Maryam Saeidifar. Neural Regenerative Nanomedicine. 2020; : 123 doi: 10.1016/B978-0-12-820223-4.00005-X
|
12 |
Andreia M. Gonçalves, Anabela Moreira, Achim Weber, Gareth R. Williams, Pedro F. Costa. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13(7): 983 doi: 10.3390/pharmaceutics13070983
|
13 |
Josefa Alarcón-Apablaza, Ruth Prieto, Mariana Rojas, Ramón Fuentes. Potential of Oral Cavity Stem Cells for Bone Regeneration: A Scoping Review. Cells 2023; 12(10): 1392 doi: 10.3390/cells12101392
|
14 |
Xi Wang, Brya G Matthews, Jungeun Yu, Sanja Novak, Danka Grcevic, Archana Sanjay, Ivo Kalajzic. PDGF Modulates BMP2‐Induced Osteogenesis in Periosteal Progenitor Cells. JBMR Plus 2019; 3(5) doi: 10.1002/jbm4.10127
|
15 |
Daxue Zhu, Wupin Zhou, Zhen Wang, Yidian Wang, Mingqiang Liu, Guangzhi Zhang, Xudong Guo, Xuewen Kang. Periostin: An Emerging Molecule With a Potential Role in Spinal Degenerative Diseases. Frontiers in Medicine 2021; 8 doi: 10.3389/fmed.2021.694800
|
16 |
Yen-Ching Yang, Qian-Hui Hong, Kin Fong Lei, Alvin Chao-Yu Chen. The Novel Membrane-Type Micro-system to Assess the Bonus Effect of Physiological and Physical Stimuli on Bone Regeneration. BioChip Journal 2021; 15(3): 243 doi: 10.1007/s13206-021-00023-2
|
17 |
Anais Julien, Simon Perrin, Ester Martínez-Sarrà, Anuya Kanagalingam, Caroline Carvalho, Marine Luka, Mickaël Ménager, Céline Colnot. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. Journal of Bone and Mineral Research 2020; 37(8): 1545 doi: 10.1002/jbmr.4616
|
18 |
M. Mattioli-Belmonte, C. De Maria, C. Vitale-Brovarone, F. Baino, M. Dicarlo, G. Vozzi. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine 2017; 11(7): 1986 doi: 10.1002/term.2095
|
19 |
You-Kyoung Kim, Hidemi Nakata, Maiko Yamamoto, Munemitsu Miyasaka, Shohei Kasugai, Shinji Kuroda. Osteogenic Potential of Mouse Periosteum-Derived Cells Sorted for CD90 In Vitro and In Vivo. Stem Cells Translational Medicine 2016; 5(2): 227 doi: 10.5966/sctm.2015-0013
|
20 |
María Eugenia Cabaña-Muñoz, María Jesús Pelaz Fernández, José María Parmigiani-Cabaña, José María Parmigiani-Izquierdo, José Joaquín Merino. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15(8): 2109 doi: 10.3390/pharmaceutics15082109
|
21 |
Gabriele Ceccarelli, Rossella Presta, Saturnino Lupi, Nefele Giarratana, Nora Bloise, Laura Benedetti, Maria Cusella De Angelis, Ruggero Rodriguez y Baena. Evaluation of Poly(Lactic-co-glycolic) Acid Alone or in Combination with Hydroxyapatite on Human-Periosteal Cells Bone Differentiation and in Sinus Lift Treatment. Molecules 2017; 22(12): 2109 doi: 10.3390/molecules22122109
|
22 |
Letizia Trovato, Antonio Graziano, Riccardo D’Aquino. Regenerative Medicine Procedures for Aesthetic Physicians. 2019; : 215 doi: 10.1007/978-3-030-15458-5_17
|
23 |
Haifeng Zhang, Xiyuan Mao, Danyang Zhao, Wenbo Jiang, Zijing Du, Qingfeng Li, Chaohua Jiang, Dong Han. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: An in vivo bioreactor model. Scientific Reports 2017; 7(1) doi: 10.1038/s41598-017-14923-7
|
24 |
Noel Ye Naung, Warwick J Duncan, Rohana K. De Silva, Dawn E. Coates. HGF/MET in osteogenic differentiation of primary human palatal periosteum-derived mesenchymal stem cells. Journal of Oral Science 2021; 63(4): 341 doi: 10.2334/josnusd.21-0164
|
25 |
Valentina Fatale, Stefano Pagnoni, Albino Emidio Pagnoni, Pier Carmine Passarelli, Andrea Netti, Carlo Lajolo, Luigi Santacroce, Antonio D’Addona. Histomorphometric Comparison of New Bone Formed After Maxillary Sinus Lift With Lateral and Crestal Approaches Using Periostal Mesenchymal Stem Cells and Beta-Tricalcium Phosphate: A Controlled Clinical Trial. Journal of Craniofacial Surgery 2022; 33(5): 1607 doi: 10.1097/SCS.0000000000008319
|
26 |
A. Ram Lee, Dong Kyu Moon, Adrian Siregar, Sun Young Moon, Ryoung-Hoon Jeon, Young-Bum Son, Bo Gyu Kim, Young-Sool Hah, Sun-Chul Hwang, June-Ho Byun, Dong Kyun Woo. Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes. Archives of Pharmacal Research 2019; 42(12): 1052 doi: 10.1007/s12272-019-01198-x
|
27 |
Ruggero Rodriguez y Baena, Riccardo D'Aquino, Antonio Graziano, Letizia Trovato, Antonio C. Aloise, Gabriele Ceccarelli, Gabriella Cusella, André A. Pelegrine, Saturnino M. Lupi. Autologous Periosteum-Derived Micrografts and PLGA/HA Enhance the Bone Formation in Sinus Lift Augmentation. Frontiers in Cell and Developmental Biology 2017; 5 doi: 10.3389/fcell.2017.00087
|
28 |
Hamid Reza Rezaie, Mohammad Hossein Esnaashary, Masoud Karfarma, Andreas Öchsner. Bone Cement. SpringerBriefs in Applied Sciences and Technology 2020; : 43 doi: 10.1007/978-3-030-39716-6_3
|
29 |
Toshiyuki Watanabe, Kiyofumi Takabatake, Hidetsugu Tsujigiwa, Satoko Watanabe, Ryoko Nakagiri, Keisuke Nakano, Hitoshi Nagatsuka, Yoshihiro Kimata. Effect of Honeycomb β-TCP Geometrical Structure on Bone Tissue Regeneration in Skull Defect. Materials 2020; 13(21): 4761 doi: 10.3390/ma13214761
|
30 |
Basel Mahardawi, Kevin A. Tompkins, Nikos Mattheos, Sirida Arunjaroensuk, Atiphan Pimkhaokham. Periosteum-derived Micrografts for bone regeneration. Connective Tissue Research 2023; 64(4): 400 doi: 10.1080/03008207.2023.2206489
|
31 |
Saeid Kargozar, Masoud Mozafari, Sepideh Hamzehlou, Peiman Brouki Milan, Hae-Won Kim, Francesco Baino. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences 2019; 9(1): 174 doi: 10.3390/app9010174
|
32 |
Christopher Fama, Gabriel J. Kaye, Roberto Flores, Christopher D. Lopez, Jonathan M. Bekisz, Andrea Torroni, Nick Tovar, Paulo G. Coelho, Lukasz Witek. Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration. Journal of Craniofacial Surgery 2021; 32(3): 1177 doi: 10.1097/SCS.0000000000007146
|
33 |
Monia Orciani, Milena Fini, Roberto Di Primio, Monica Mattioli-Belmonte. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Frontiers in Bioengineering and Biotechnology 2017; 5 doi: 10.3389/fbioe.2017.00017
|
34 |
Emily R. Moore, Ya Xing Zhu, Han Seul Ryu, Christopher R. Jacobs. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Research & Therapy 2018; 9(1) doi: 10.1186/s13287-018-0930-1
|
35 |
Jingtao Dai, Daniela Rottau, Franziska Kohler, Siegmar Reinert, Dorothea Alexander. Effects of Jaw Periosteal Cells on Dendritic Cell Maturation. Journal of Clinical Medicine 2018; 7(10): 312 doi: 10.3390/jcm7100312
|
36 |
Muhammad Saad Shaikh, Muhammad Sohail Zafar, Flavio Pisani, Mohid Abrar Lone, Yasser Riaz Malik. Critical features of periodontal flaps with regard to blood clot stability: A review. Journal of Oral Biosciences 2021; 63(2): 111 doi: 10.1016/j.job.2021.02.007
|
37 |
Ru-Lin Huang, Kai Liu, Qingfeng Li.
Bone Regeneration Following the
in Vivo
Bioreactor Principle: Is
in Vitro
Manipulation of Exogenous Elements Still Needed?
. Regenerative Medicine 2016; 11(5): 475 doi: 10.2217/rme-2016-0021
|
38 |
Claudia Lo Sicco, Roberta Tasso. Harnessing Endogenous Cellular Mechanisms for Bone Repair. Frontiers in Bioengineering and Biotechnology 2017; 5 doi: 10.3389/fbioe.2017.00052
|
39 |
Ying Jin, Xiaoyan Sun, Fang Pei, Zhihe Zhao, Jeremy Mao. Wnt16 signaling promotes osteoblast differentiation of periosteal derived cells in vitro and in vivo. PeerJ 2020; 8: e10374 doi: 10.7717/peerj.10374
|
40 |
Oriane Duchamp de Lageneste, Anaïs Julien, Rana Abou-Khalil, Giulia Frangi, Caroline Carvalho, Nicolas Cagnard, Corinne Cordier, Simon J. Conway, Céline Colnot. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nature Communications 2018; 9(1) doi: 10.1038/s41467-018-03124-z
|
41 |
Marina Danalache, Sophie-Maria Kliesch, Marita Munz, Andreas Naros, Siegmar Reinert, Dorothea Alexander. Quality Analysis of Minerals Formed by Jaw Periosteal Cells under Different Culture Conditions. International Journal of Molecular Sciences 2019; 20(17): 4193 doi: 10.3390/ijms20174193
|
42 |
Marbod Weber, Felix Umrath, Heidrun Steinle, Lukas-Frank Schmitt, Lin Tzu Yu, Christian Schlensak, Hans-Peter Wendel, Siegmar Reinert, Dorothea Alexander, Meltem Avci-Adali. Influence of Human Jaw Periosteal Cells Seeded β-Tricalcium Phosphate Scaffolds on Blood Coagulation. International Journal of Molecular Sciences 2021; 22(18): 9942 doi: 10.3390/ijms22189942
|
43 |
Monica Mattioli-Belmonte, Gabriella Teti, Viviana Salvatore, Stefano Focaroli, Monia Orciani, Manuela Dicarlo, Milena Fini, Giovanna Orsini, Roberto Di Primio, Mirella Falconi. Stem cell origin differently affects bone tissue engineering strategies. Frontiers in Physiology 2015; 6 doi: 10.3389/fphys.2015.00266
|
44 |
Rachel J. Kulchar, Bridget R. Denzer, Bharvi M. Chavre, Mina Takegami, Jennifer Patterson. A Review of the Use of Microparticles for Cartilage Tissue Engineering. International Journal of Molecular Sciences 2021; 22(19): 10292 doi: 10.3390/ijms221910292
|
45 |
Derin Atasever, Özgün Selim Germiyan, Yiğit Uyanıkgil. Kök Hücreler, Dental Pulpa Kök Hücreleri ve Klinik Uygulamaları. Arşiv Kaynak Tarama Dergisi 2024; 33(3): 145 doi: 10.17827/aktd.1511375
|
46 |
Fuli Peng, Xuelei Zhang, Yilei Wang, Rui Zhao, Zhiwei Cao, Siyu Chen, Yunxuan Ruan, Jingjing Wu, Tianxi Song, Zhiye Qiu, Xiao Yang, Yi Zeng, Xiangdong Zhu, Jian Pan, Xingdong Zhang. Guided bone regeneration in long-bone defect with a bilayer mineralized collagen membrane. Collagen and Leather 2023; 5(1) doi: 10.1186/s42825-023-00144-4
|
47 |
Kaori YOKOTA, Hidemi NAKATA, Motoi MIURA, Shohei KASUGAI, Shinji KURODA. Effect of Osteoblast/Periosteal Cell-derived Exosomes on Periosteal Cells during Osteogenic Differentiation. THE JOURNAL OF THE STOMATOLOGICAL SOCIETY,JAPAN 2021; 88(2-3): 102 doi: 10.5357/koubyou.88.2-3_102
|
48 |
Concetta Ferretti, Guendalina Lucarini, Chiara Andreoni, Eleonora Salvolini, Novella Bianchi, Giovanni Vozzi, Antonio Gigante, Monica Mattioli-Belmonte. Human Periosteal Derived Stem Cell Potential: The Impact of age. Stem Cell Reviews and Reports 2015; 11(3): 487 doi: 10.1007/s12015-014-9559-3
|
49 |
Kylie Anne Alexander, Liza‐Jane Raggatt, Susan Millard, Lena Batoon, Andy Chiu‐Ku Wu, Ming‐Kang Chang, David Arthur Hume, Allison Robyn Pettit. Resting and injury‐induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunology & Cell Biology 2017; 95(1): 7 doi: 10.1038/icb.2016.74
|
50 |
Felix Umrath, Heidrun Steinle, Marbod Weber, Hans-Peter Wendel, Siegmar Reinert, Dorothea Alexander, Meltem Avci-Adali. Generation of iPSCs from Jaw Periosteal Cells Using Self-Replicating RNA. International Journal of Molecular Sciences 2019; 20(7): 1648 doi: 10.3390/ijms20071648
|
51 |
Jun-Beom Park, InSoo Kim, Won Lee, Heesung Kim. Evaluation of the regenerative capacity of stem cells combined with bone graft material and collagen matrix using a rabbit calvarial defect model. Journal of Periodontal & Implant Science 2023; 53(6): 467 doi: 10.5051/jpis.2204880244
|
52 |
Dan Zhang, Peng Gao, Qin Li, Jinda Li, Xiaojuan Li, Xiaoning Liu, Yunqing Kang, Liling Ren. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Research & Therapy 2017; 8(1) doi: 10.1186/s13287-017-0592-4
|
53 |
Emily R. Moore, Yuchen Yang, Christopher R. Jacobs. Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis. Journal of Cell Science 2018; 131(16) doi: 10.1242/jcs.217828
|
54 |
Yanmei Xu, Jin Zhuo, Qisong Wang, Xiongcheng Xu, Mengjiao He, Lu Zhang, Yijuan Liu, Xiaohong Wu, Kai Luo, Yuling Chen. Site-specific periosteal cells with distinct osteogenic and angiogenic characteristics. Clinical Oral Investigations 2023; 27(12): 7437 doi: 10.1007/s00784-023-05333-3
|
55 |
Chinedu C. Ude, Girdhar G. Sharma, Jie Shen, Regis J. O’Keefe. Skeletal Development and Repair. Methods in Molecular Biology 2021; 2230: 397 doi: 10.1007/978-1-0716-1028-2_24
|
56 |
Zhongyi Zhao, Changjiang Fan, Feng Chen, Yutai Sun, Yujun Xia, Aiyu Ji, Dong‐An Wang. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. Macromolecular Bioscience 2020; 20(2) doi: 10.1002/mabi.201900278
|
57 |
Seyed Ali Mosaddad, Boshra Rasoolzade, Reza Abdollahi Namanloo, Negar Azarpira, Hengameh Dortaj. Stem cells and common biomaterials in dentistry: a review study. Journal of Materials Science: Materials in Medicine 2022; 33(7) doi: 10.1007/s10856-022-06676-1
|
58 |
Yun-Wen Tong, Alvin Chao-Yu Chen, Kin Fong Lei. Analysis of Cellular Crosstalk and Molecular Signal between Periosteum-Derived Precursor Cells and Peripheral Cells During Bone Healing Process Using a Paper-Based Osteogenesis-On-A-Chip Platform. ACS Applied Materials & Interfaces 2023; 15(42): 49051 doi: 10.1021/acsami.3c12925
|
59 |
Nian Zhang, Liru Hu, Zhiwei Cao, Xian Liu, Jian Pan. Periosteal Skeletal Stem Cells and Their Response to Bone Injury. Frontiers in Cell and Developmental Biology 2022; 10 doi: 10.3389/fcell.2022.812094
|
60 |
Stefano Mummolo, Leonardo Mancini, Vincenzo Quinzi, Riccardo D’Aquino, Giuseppe Marzo, Enrico Marchetti. Rigenera® Autologous Micrografts in Oral Regeneration: Clinical, Histological, and Radiographical Evaluations. Applied Sciences 2020; 10(15): 5084 doi: 10.3390/app10155084
|
61 |
Giorgia Borciani, Giorgia Montalbano, Nicola Baldini, Giorgia Cerqueni, Chiara Vitale-Brovarone, Gabriela Ciapetti. Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia 2020; 108: 22 doi: 10.1016/j.actbio.2020.03.043
|
62 |
Mehdi Najar, Laurence Lagneaux. Foreskin as a Source of Immunotherapeutic Mesenchymal Stromal Cells. Immunotherapy 2017; 9(2): 207 doi: 10.2217/imt-2016-0093
|
63 |
Hendrik Naujokat, Maximilian Lipp, Yahya Açil, Henning Wieker, Falk Birkenfeld, Andre Sengebusch, Florian Böhrnsen, Jörg Wiltfang. Bone Tissue Engineering in the Greater Omentum is Enhanced by a Periosteal Transplant in a Miniature Pig Model. Regenerative Medicine 2019; 14(2): 127 doi: 10.2217/rme-2018-0031
|
64 |
Silvia Caddeo, Monica Mattioli-Belmonte, Claudio Cassino, Niccoletta Barbani, Manuela Dicarlo, Piergiorgio Gentile, Francesco Baino, Susanna Sartori, Chiara Vitale-Brovarone, Gianluca Ciardelli. Newly-designed collagen/polyurethane bioartificial blend as coating on bioactive glass-ceramics for bone tissue engineering applications. Materials Science and Engineering: C 2019; 96: 218 doi: 10.1016/j.msec.2018.11.012
|
65 |
Felix Umrath, Marbod Weber, Siegmar Reinert, Hans-Peter Wendel, Meltem Avci-Adali, Dorothea Alexander. iPSC-Derived MSCs Versus Originating Jaw Periosteal Cells: Comparison of Resulting Phenotype and Stem Cell Potential. International Journal of Molecular Sciences 2020; 21(2): 587 doi: 10.3390/ijms21020587
|
66 |
Alvin Chen, Yun-Wen Tong, Chih-Hao Chiu, Kin Fong Lei. Osteogenic Effect of Rabbit Periosteum-Derived Precursor Cells Co-Induced by Electric Stimulation and Adipose-Derived Stem Cells in a 3D Co-Culture System. IEEE Open Journal of Nanotechnology 2021; 2: 153 doi: 10.1109/OJNANO.2021.3131653
|
67 |
Koichiro Hayashi, Nao Kato, Masaki Kato, Kunio Ishikawa. Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds. Materials & Design 2021; 204: 109686 doi: 10.1016/j.matdes.2021.109686
|
68 |
Geun Hwa Park, Hee Sun Shin, Eun Sil Choi, Bok Seon Yoon, Mun Hee Choi, Seong-Joon Lee, Kyung-Eon Lee, Jin Soo Lee, Ji Man Hong. Cranial burr hole with erythropoietin administration induces reverse arteriogenesis from the enriched extracranium. Neurobiology of Disease 2019; 132: 104538 doi: 10.1016/j.nbd.2019.104538
|
69 |
N Ardjomandi, A Henrich, J Huth, C Klein, E Schweizer, L Scheideler, F Rupp, S Reinert, D Alexander. Coating of ß-tricalcium phosphate scaffolds—a comparison between graphene oxide and poly-lactic-co-glycolic acid. Biomedical Materials 2015; 10(4): 045018 doi: 10.1088/1748-6041/10/4/045018
|
70 |
Gabriella Teti, Stefano Focaroli, Viviana Salvatore, Eleonora Mazzotti, Laura Ingra’, Antonio Mazzotti, Mirella Falconi. The Hypoxia-Mimetic Agent Cobalt Chloride Differently Affects Human Mesenchymal Stem Cells in Their Chondrogenic Potential. Stem Cells International 2018; 2018: 1 doi: 10.1155/2018/3237253
|
71 |
Karthikeyan Rajagopal, Sowmya Ramesh, Vrisha Madhuri. Early Addition of Parathyroid Hormone–Related Peptide Regulates the Hypertrophic Differentiation of Mesenchymal Stem Cells. CARTILAGE 2021; 13(2_suppl): 143S doi: 10.1177/1947603519894727
|
72 |
Yanlin Su, Bing Ye, Lian Zeng, Zekang Xiong, Tingfang Sun, Kaifang Chen, Qiuyue Ding, Weijie Su, Xirui Jing, Qing Gao, Guixiong Huang, Yizhou Wan, Xu Yang, Xiaodong Guo. Small Intestinal Submucosa Biomimetic Periosteum Promotes Bone Regeneration. Membranes 2022; 12(7): 719 doi: 10.3390/membranes12070719
|
73 |
Oriane Duchamp de Lageneste, Céline Colnot. Periostin. Advances in Experimental Medicine and Biology 2019; 1132: 49 doi: 10.1007/978-981-13-6657-4_6
|
74 |
E.K. Ruvalcaba-Paredes, L.A. Hidalgo-Bastida, A.L. Sesman-Bernal, D. Garciadiego-Cazares, M.R. Pérez-Dosal, V. Martínez-López, B. Vargas-Sandoval, R. Pichardo-Bahena, C. Ibarra, C. Velasquillo. Osteogenic potential of murine periosteum for critical-size cranial defects. British Journal of Oral and Maxillofacial Surgery 2016; 54(7): 772 doi: 10.1016/j.bjoms.2016.05.001
|
75 |
Anna-Klara Amler, Patrick H. Dinkelborg, Domenic Schlauch, Jacob Spinnen, Stefan Stich, Roland Lauster, Michael Sittinger, Susanne Nahles, Max Heiland, Lutz Kloke, Carsten Rendenbach, Benedicta Beck-Broichsitter, Tilo Dehne. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. International Journal of Molecular Sciences 2021; 22(2): 796 doi: 10.3390/ijms22020796
|
76 |
Claire-Marie Nuttegg, L. Araida Hidalgo-Bastida. Handbook of Tissue Engineering Scaffolds: Volume One. 2019; : 347 doi: 10.1016/B978-0-08-102563-5.00016-2
|
77 |
Giorgio Mattei, Concetta Ferretti, Annalisa Tirella, Arti Ahluwalia, Monica Mattioli-Belmonte. Decoupling the role of stiffness from other hydroxyapatite signalling cues in periosteal derived stem cell differentiation. Scientific Reports 2015; 5(1) doi: 10.1038/srep10778
|
78 |
Mari Akiyama. FBXW2 localizes with osteocalcin in bovine periosteum on culture dishes as visualized by double immunostaining. Heliyon 2018; 4(9): e00782 doi: 10.1016/j.heliyon.2018.e00782
|
79 |
Takahiro Tsuzuno, Naoki Takahashi, Masaki Nagata, Yuta Ueda, Shunya Motosugi, Aoi Yamada, Mai Mizuguchi, Tran Thi Thuy Diep, Yukari Aoki-Nonaka, Koh Nakata, Koichi Tabeta. Characterization of the cellular heterogeneity and bone regenerative potential of cultured human periosteal cells. Regenerative Therapy 2023; 24: 642 doi: 10.1016/j.reth.2023.11.006
|
80 |
S. T. Havryltsiv, Y. V. Vovk. Клініко-рентгенологічна оцінка перебігу репаративного остеогенезу в післякістозних дефектах щелеп, виповнених різними остеопластичними матеріалами. Clinical Dentistry 2020; (4): 25 doi: 10.11603/2311-9624.2019.4.10879
|
81 |
Kian F. Eichholz, Angelica Federici, Mathieu Riffault, Ian Woods, Olwyn R. Mahon, Lorraine O’Driscoll, David A. Hoey. Extracellular Vesicle Functionalized Melt Electrowritten Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research 2021; 1(10) doi: 10.1002/anbr.202100037
|
82 |
Madhan Jeyaraman, Sathish Muthu, Prakash Gangadaran, Rajni Ranjan, Naveen Jeyaraman, Gollahalli Shivashankar Prajwal, Prabhu Chandra Mishra, Ramya Lakshmi Rajendran, Byeong-Cheol Ahn. Osteogenic and Chondrogenic Potential of Periosteum-Derived Mesenchymal Stromal Cells: Do They Hold the Key to the Future?. Pharmaceuticals 2021; 14(11): 1133 doi: 10.3390/ph14111133
|
83 |
R. C. Ransom, D. J. Hunter, S. Hyman, G. Singh, S. C. Ransom, E. Z. Shen, K. C. Perez, M. Gillette, J. Li, B. Liu, J. B. Brunski, J. A. Helms. Axin2-expressing cells execute regeneration after skeletal injury. Scientific Reports 2016; 6(1) doi: 10.1038/srep36524
|
84 |
Hendrik Naujokat, Klaas Loger, Juliane Schulz, Yahya Açil, Jörg Wiltfang. Bone Tissue Engineering in the Greater Omentum with Computer-Aided Design/Computer-Aided Manufacturing Scaffolds is Enhanced by a Periosteum Transplant. Regenerative Medicine 2020; 15(11): 2297 doi: 10.2217/rme-2020-0115
|
85 |
Gabriele Ceccarelli, Antonio Graziano, Laura Benedetti, Marcello Imbriani, Federica Romano, Francesco Ferrarotti, Mario Aimetti, Gabriella M. Cusella De Angelis. Osteogenic Potential of Human Oral‐Periosteal Cells (PCs) Isolated From Different Oral Origin: An In Vitro Study. Journal of Cellular Physiology 2016; 231(3): 607 doi: 10.1002/jcp.25104
|