For: | Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11(5): 236-253 [PMID: 31171953 DOI: 10.4252/wjsc.v11.i5.236] |
---|---|
URL: | https://www.wjgnet.com/1948-0210/full/v11/i5/236.htm |
Number | Citing Articles |
1 |
Faizan Ahmad, Punya Sachdeva. Critical appraisal on mitochondrial dysfunction in Alzheimer’s disease. AGING MEDICINE 2022; 5(4): 272 doi: 10.1002/agm2.12217
|
2 |
Sydney Bartman, Giuseppe Coppotelli, Jaime M. Ross. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Current Issues in Molecular Biology 2024; 46(3): 1987 doi: 10.3390/cimb46030130
|
3 |
Azime Berna Özçelik, Mevlüt Akdağ, Muhammed Ergün, Mehtap UYSAL. Alzheimer Hastalığının Tedavisinde Kullanılan İlaçlar ve Yeni Yaklaşımlar. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2019; 12(2): 1149 doi: 10.18185/erzifbed.591088
|
4 |
Vivek Kumar Sharma, Thakur Gurjeet Singh. Navigating Alzheimer’s Disease via Chronic Stress: The Role of Glucocorticoids. Current Drug Targets 2020; 21(5): 433 doi: 10.2174/1389450120666191017114735
|
5 |
Amelia L. Taylor, Don E. Davis, Simona G. Codreanu, Fiona E. Harrison, Stacy D. Sherrod, John A. McLean. Targeted and Untargeted Mass Spectrometry Reveals the Impact of High-Fat Diet on Peripheral Amino Acid Regulation in a Mouse Model of Alzheimer’s Disease. Journal of Proteome Research 2021; 20(9): 4405 doi: 10.1021/acs.jproteome.1c00344
|
6 |
Yiran Xu, Shuxia Wang, Ping Zhu. Advances in the Application of Induced Pluripotent Stem Cells in Alzheimer’s Disease and Parkinson's Disease. Current Stem Cell Research & Therapy 2023; 18(2): 154 doi: 10.2174/1574888X17666220426114050
|
7 |
Kevin Zambrano, Diego Barba, Karina Castillo, Paola Robayo, Dariana Argueta-Zamora, Serena Sanon, Eduardo Arizaga, Andres Caicedo, Antonio W.D. Gavilanes. The war against Alzheimer, the mitochondrion strikes back!. Mitochondrion 2022; 64: 125 doi: 10.1016/j.mito.2022.03.003
|
8 |
Qiao Liu, Hong Wang, Jiayu Ge, Lisen Li, Jie Luo, Kuo He, Haoxiao Yan, Xin Zhang, Rabia Tahir, Wei Luo, Shiyi Chen, Zhang Cheng, Liulan Zhao, Song Yang. Chronic hypoxia and Cu2+ exposure induce gill remodeling of largemouth bass through endoplasmic reticulum stress, mitochondrial damage and apoptosis. Aquatic Toxicology 2023; 255: 106373 doi: 10.1016/j.aquatox.2022.106373
|
9 |
Manjusha Vaidya, Sandeep Sreerama, Mariana Gaviria, Kiminobu Sugaya, Ashis Basu. Exposure to a Pathological Condition May Be Required for the Cells to Secrete Exosomes Containing mtDNA Aberration. Journal of Nucleic Acids 2022; 2022: 1 doi: 10.1155/2022/7960198
|
10 |
Priscila Chiavellini, Martina Canatelli-Mallat, Marianne Lehmann, RodolfoG Goya, GustavoR Morel. Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders. Neural Regeneration Research 2022; 17(3): 469 doi: 10.4103/1673-5374.320966
|
11 |
Tando Maduna, Ben Loos. Health Communication and Disease in Africa. 2021; : 63 doi: 10.1007/978-981-16-2546-6_4
|
12 |
César Cáceres, Bernardita Heusser, Alexandra Garnham, Ewa Moczko. The Major Hypotheses of Alzheimer’s Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12(23): 2669 doi: 10.3390/cells12232669
|
13 |
Qiaowen Zhao, Liyi Ma, Siwei Chen, Lushan Huang, Guangwei She, Yongan Sun, Wensheng Shi, Lixuan Mu. Tracking mitochondrial Cu(I) fluctuations through a ratiometric fluorescent probe in AD model cells: Towards understanding how AβOs induce mitochondrial Cu(I) dyshomeostasis. Talanta 2024; 271: 125716 doi: 10.1016/j.talanta.2024.125716
|