述评 Open Access
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2015-10-18; 23(29): 4626-4635
在线出版日期: 2015-10-18. doi: 10.11569/wcjd.v23.i29.4626
结直肠癌基因DNA甲基化标志物筛查的价值
薛猛, 王良静
薛猛, 王良静, 浙江大学医学院附属第二医院消化内科 浙江大学胃肠病研究所 浙江省杭州市 310009
王良静, 主任医师, 研究员, 博士生导师, 主要从事胃肠道肿瘤的早期诊断和干预的基础与临床研究.
基金项目: 国家自然科学基金资助项目, Nos. 81472214, 8130207, 81272678; 浙江省科技创新团队基金资助项目, No. 2013TD13.
作者贡献分布: 王良静负责述评结构设计和文章修改; 薛猛负责文献检索和文章写作.
通讯作者: 王良静, 主任医师, 研究员, 博士生导师, 310009, 浙江省杭州市解放路88号, 浙江大学医学院附属第二医院消化内科, 浙江大学胃肠病研究所. wanglj76@hotmail.com
电话: 0571-86006788
收稿日期: 2015-04-28
修回日期: 2015-05-21
接受日期: 2015-06-01
在线出版日期: 2015-10-18

结直肠癌是全球最常见的恶性肿瘤之一, 通过人群早期筛查和诊断结直肠癌是疾病防治的关键. 近年来发现了一系列启动子高甲基化的相关基因, 在结直肠癌的发生发展中发挥着重要的作用. 多数在肿瘤组织中发生高甲基化基因的启动子片段在血液、粪便标本中同样被检测到. 这些高甲基化基因对结直肠癌诊断的敏感性和特异性均明显优于传统筛查指标如血癌胚抗原和粪便潜血等. 本文将重点介绍目前结直肠癌基因DNA甲基化标志物筛查的研究进展以及将来可能的研究方向.

关键词: 结直肠癌; DNA甲基化; 筛查

核心提示: 结直肠癌患者血液、粪便标本中包括细胞质分裂基因9(Septin9)、分泌型卷曲相关蛋白2(secreted frizzled related protein 2)在内多个基因甲基化的检出率明显高于健康对照者. 甚至早在TNM 1期或Duke A期结直肠癌患者中也能检测到高甲基化的DNA片段. 将不同基因的甲基化检测和突变、血红蛋白等指标结合起来综合分析可进一步提高检测的敏感性.


引文著录: 薛猛, 王良静. 结直肠癌基因DNA甲基化标志物筛查的价值. 世界华人消化杂志 2015; 23(29): 4626-4635
Value of DNA methylation markers in colorectal cancer screening
Meng Xue, Liang-Jing Wang
Meng Xue, Liang-Jing Wang, Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
Supported by: National Natural Science Foundation of China, Nos. 81472214, 8130207 and 81272678; Science and Technology Innovation Team of Zhejiang Province, No. 2013TD13.
Correspondence to: Liang-Jing Wang, Chief Physician, Researcher, Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, China. wanglj76@hotmail.com
Received: April 28, 2015
Revised: May 21, 2015
Accepted: June 1, 2015
Published online: October 18, 2015

Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Recognizing CRC at an early stage by population-based screening is crucial in the prevention and treatment of CRC. Numerous candidate genes, which play important roles in the development and progression of CRC, have been found to be hyper-methylated in the promoter regions in recent studies. The promoter fragments of those hyper-methylated genes in tumor tissues have also been detected in the blood and fecal specimens, with higher sensitivity and specificity than traditional markers in the screening of CRC, including carcino-embryonic antigen (CEA) and fecal occult blood test. Here, we will discuss what we have already known about the DNA methylation markers for CRC screening and the potential research direction in the future.

Key Words: Colorectal cancer; DNA methylation; Screening


0 引言

结直肠癌是消化系最常见的恶性肿瘤之一, 50岁以下年轻人群出现结直肠癌的比例也有明显的增加[1]. 我国结直肠癌的发病率低于西方国家, 但在一些结直肠癌高发区域, 其发病率已接近胃癌和肝癌[2]. 然而多数患者在诊断时已进展到晚期, 部分患者丧失了手术根治的机会. 因此, 寻找和建立结直肠癌筛查和早期诊断的有效手段是研究热点.

粪便潜血、血清肿瘤标志物[如癌胚抗原(carcino embryonie antigen, CEA)]是目前结直肠癌非侵入性筛查的主要手段. 然而, 其诊断效率和准确性仍不甚令人满意[3]. 结直肠镜侵入性检查的准确性相对较高, 却因其检查前肠道准备和检查过程的不适感而难以在人群中大规模开展[4]. 基因DNA高甲基化是结直肠癌发生发展中的一个早期事件, 既往在结直肠癌肿瘤组织的研究已筛选到大量异常启动子区高甲基化的基因[5]. 然而, 由于肿瘤组织取材的不便而不适合用于人群中筛查. 近十年来, 随着DNA甲基化检测技术的不断改进, 血液、粪便、尿液等标本中均可检测到不同基因DNA高频率甲基化, 使其应用于结直肠癌筛查成为可能[6]. 本文将对近年来结直肠癌DNA甲基化标志物的筛查方法和临床价值做一综述.

1 结直肠癌单基因甲基化检测

错配修复基因1(mutl homolog l, MLH1)是结直肠癌中最早报道的异常血液基因DNA甲基化指标. 2001年的一项研究[7]对18例结直肠癌患者血清中提取的DNA进行甲基化特异性PCR检测, 有3例检测到高甲基化的MLH1. 此后, 在结直肠癌患者的血液样本中, 检测到不同基因启动子的异常甲基化[7-35](表1), 如细胞周期蛋白依赖激酶抑制剂2A(cyclin-dependent kinase inhibitor 2A, CDKN2A)[10]、无芒相关同源盒基因4(aristaless-like homeobox 4, ALX4)[13]、Runt相关转录因子3(Runt-related transcription factor 3, RUNX3)[11]等, 其甲基化的频率均明显高于健康对照者. Epi proColon是最早商业化并进入临床试验, 以细胞质分裂基因9(Septin9)基因为基础开发的甲基化检测试剂盒. Tóth等[22]采用Epi proColon对结直肠癌和健康对照患者的血浆进行甲基化检测, 92例患者血浆中甲基化Septin9的阳性率高达95.7%(88/92), 而无肿瘤的对照者的阳性率仅为15.2%(14/92). 在随后两项类似的研究[24,25]中, 虽然结直肠癌患者血浆Septin9甲基化的比例低于这项研究, 但仍明显高于健康对照者.

表1 结直肠癌筛查中血液为基础的甲基化指标.
基因作者, 年份标本类型检测方法健康对照
结直肠癌
AUC面积P
总例数甲基化n(%)总例数甲基化n(%)
单基因
MLH1 Grady, 2001 血清 MSP N/A N/A 18 3(16.7) N/A N/A
Leung, 2005 血清 MethyLight N/A N/A(2.4) N/A N/A(42.9) 0.71 0.001
Wallner, 2006 血清 MethyLight 20 0(0.0) 103 13(12.6) N/A 0.090
CDKN2A Zou, 2002 血清 MSP 10 0(0.0) 20 14(70.0) N/A 0.001
Tan, 2007 血浆 MSP 10 0(0.0) 17 12(70.6) N/A 0.001
CDH4 Miotto, 2004 全血 MSP 17 0(0.0) 46 32(69.6) N/A 0.001
HLTF Leung, 2005 血清 MethyLight N/A N/A(7.3) N/A N/A(32.7) 0.63 0.015
Wallner, 2006 血清 MethyLight 20 0(0.0) 103 31(30.1) N/A 0.005
APC Leung, 2005 血清 MethyLight N/A N/A(0.0) N/A N/A(6.1) 0.53 0.210
ALX4 Ebert, 2006 血清 qMSP 30 9(30.0) 20 25(83.3) 0.84 0.001
Tänzer, 2010 血浆 MethyLight 22 13(59.1) 5 4(80.0) N/A 0.289
He, 2010 血浆 MethyLight 170 11(6.5) 182 87(47.8) N/A 0.001
HPP1 Wallner, 2006 血清 MethyLight 20 0(0.0) 103 24(23.3) N/A 0.016
RUNX3 Tan, 2007 血浆 MSP 10 0(0.0) 17 11(64.7) N/A 0.001
RASSF1a Tan, 2007 血浆 MSP 10 0(0.0) 17 4(23.5) N/A 0.097
Cassinotti, 2012 血浆 Methyl-microarray 30 17(56.7) 30 26(86.7) N/A 0.010
CDH1 Tan, 2007 血浆 MSP 10 0(0.0) 17 3(17.6) N/A 0.159
Septin9 Lofton-Day, 2008 血浆 qMSP 179 25(14.0) 133 92(69.2) 0.8 0.001
Grützmann, 2008 血浆 qMSP 285 25(8.8) 378 193(51.1) N/A 0.001
deVos, 2009 血浆 qMSP 327 45(13.8) 187 138(73.8) N/A 0.001
Tänzer, 2010 血浆 MethyLight 34 4(11.8) 33 27(81.8) N/A 0.001
He, 2010 血浆 MethyLight 170 6(3.5) 182 136(74.7) N/A 0.001
Warren, 2011 血浆 qMSP 94 11(11.7) 50 45(90.0) N/A 0.001
Ahlquist, 2012 血浆 qMSP 48 13(27.1) 30 18(60.0) N/A 0.004
Tóth, 2012 血浆 Epi proColon 92 14(15.2) 92 88(95.7) N/A 0.001
Su, 2014 全血 MSP 62 4(6.5) 172 152(88.4) N/A 0.001
Church, 2014 血浆 Epi proColon 1457 126(8.6) 53 27(50.9) N/A 0.001
Potter, 2014 血浆 Epi proColon 444 97(21.8) 44 30(68.2) N/A 0.001
TMEFF2 Lofton-Day, 2008 血浆 qMSP 179 55(30.7) 133 86(64.7) 0.72 0.001
He, 2010 血浆 MethyLight 170 8(4.7) 182 129(70.9) N/A 0.001
Vimentin Li, 2009 血浆 Methyl-BEAMing 110 8(5.3) 81 48(40.9) 0.81 0.001
Wif-1 Lee, 2009 血浆 MSP 276 26(9.4) 243 89(36.6) 0.64 0.001
AKAP12 Liu, 2010 血清 MS-HRM 50 4(8.0) 100 48(48.0) N/A 0.001
SFRP2 Tang, 2011 血浆 MSP 30 0(0.0) 169 113(66.9) N/A 0.001
NeuroG1 Herbst, 2011 血清 MethyLight 45 9(20.0) 97 61(62.9) 0.73 0.001
TFPI2 Hibi, 2011 血清 qMSP 20 0(0.0) 215 39(18.1) N/A 0.037
DLC1 Wu, 2011 血清 MSP 45 4(8.9) 85 36(42.4) N/A 0.001
CYCD2 Cassinotti, 2012 血浆 Methyl-microarray 30 14(46.7) 30 28(93.3) N/A 0.001
HIC1 Cassinotti, 2012 血浆 Methyl-microarray 30 2(6.7) 30 19(63.3) N/A 0.001
PAX5 Cassinotti, 2012 血浆 Methyl-microarray 30 19(63.3) 30 29(96.7) N/A 0.001
RB1 Cassinotti, 2012 血浆 Methyl-microarray 30 14(46.7) 30 27(90.0) N/A 0.001
SRBC Cassinotti, 2012 血浆 Methyl-microarray 30 2(6.7) 30 10(33.3) N/A 0.01
SDC2 Oh, 2013 血清 qMSP 125 6(4.8) 131 114(87.0) N/A 0.001
Rassf2 Lyu, 2014 血清 MSP 59 0(0.0) 59 16(27.1) N/A 0.001
SFRP1 Lyu, 2014 血清 MSP 59 0(0.0) 59 18(30.5) N/A 0.001
CHAM Pedersen, 2014 血浆 qMSP 74 5(6.8) 73 40(54.8) N/A 0.001

全身各部位器官的恶性肿瘤均会引起血液中甲基化指标的异常. 因此, 血液中一些甲基化的指标并不能特异性地反映来源于结直肠癌. 此外, 在结直肠癌的早期阶段, 释放到血液循环中的异常甲基化片段含量过低而难以检测出来. 而在早期或晚期的结直肠癌中, 均有一定量的异常甲基化片段从癌肿病灶脱落到粪便中[21]. 因此, 粪便DNA甲基化的指标可能在结直肠癌的早期诊断中更有意义. Müller等[36]在2004年发表的研究结果最早对结直肠癌患者的粪便DNA甲基化指标进行了报道. 此研究采用了一种高通量的甲基化定量MethyLight检测方法, 对粪便中提取的DNA进行10个基因的甲基化检测, 发现结直肠癌患者中分泌型卷曲相关蛋白2(secreted frizzled related protein 2, SFRP2)、孕激素受体(progesterone receptor, PGR)和SFRP5基因的出现甲基化的比例明显高于正常对照人群. 此后, 其他研究在结直肠癌患者的粪便中鉴定了更多DNA甲基化的指标(表2)[26,29,37-66].

表2 结直肠癌筛查中粪便为基础的甲基化指标.
基因作者, 年份检测方法健康对照
结直肠癌
AUC面积P
总例数甲基化n(%)总例数甲基化n(%)
单基因
SFRP2 Müller, 2004 MethyLight 13 3(23.1) 23 19(82.6) N/A 0.001
Huang, 2007 MSP 24 1(4.2) 52 49(94.2) N/A 0.001
Wang, 2008 MSP 30 2(6.7) 69 60(87.0) N/A 0.001
Nagasaka, 2009 COBRA 113 9(8.0) 84 53(63.1) N/A 0.001
Chang, 2010 MSP 31 0(0.0) 30 18(60.0) N/A 0.001
Tang, 2011 MSP 30 2(6.7)  169 142(84.0) N/A 0.001
Zhang, 2014 MSP 30 1(3.3) 48 29(60.4) N/A 0.001
Lu, 2014 MSP 40 4(10.0) 56 32(57.1) N/A 0.001
PGR Müller, 2004 MethyLight 26 8(30.8) 23 18(78.3) N/A 0.001
SFRP5 Müller, 2004 MethyLight 26 9(34.6) 23 18(78.3) N/A 0.002
HIC1 Lenhard, 2005 MSP 31 0(0.0) 26 11(42.3) N/A 0.001
Vimentin Chen, 2005 MSP 107 8(7.5) 94 43(45.7) N/A 0.001
Itzkowitz, 2007 MSP 122 16(13.1) 40 29(72.5) N/A 0.001
Itzkowitz, 2008 MSP 363 62(17.1) 82 63(76.8) N/A 0.001
Baek, 2009 MSP 37 0(0.0) 60 23(38.3) N/A 0.001
Li, 2009 Methyl-BEAMing 38 2(5.3) 22 9(40.9) N/A 0.001
Zhang, 2011 MSP 30 0(0.0) 60 32(53.3) N/A 0.001
Amiot, 2014 qMSP 157 0(0.0) 90 29(32.2) N/A 0.001
Kisiel, 2013 QuARTS N/A N/A(11.0) N/A N/A(89.0) 0.97 N/A
HLTF Itzkowitz, 2007 MSP 122 9(7.4) 40 15(37.5) N/A 0.001
HPP1 Huang, 2007 MSP 24 0(0.0) 52 37(71.2) N/A 0.001
MGMT Huang, 2007 MSP 24 0(0.0) 52 25(48.1) N/A 0.001
Baek, 2009 MSP 37 5(13.5) 60 31(51.7) N/A 0.001
Azuara, 2010 MSP & Melting curve 15 0(0.0) 28 9(32.1) N/A 0.014
Kang, 2011 MSP 26 1(3.8) 69 38(55.1) N/A 0.001
CDKN2A Abbaszadegan, 2007 MSP 20 0(0.0) 25 5(20.0) N/A 0.034
Chang, 2010 MSP 31 1(3.2) 30 12(40.0) N/A 0.001
Azuara, 2010 MSP & Melting curve 13 0(0.0) 30 9(30.0) N/A 0.026
Kang, 2011 MSP 26 0(0.0) 69 36(52.2) N/A 0.001
SFRP1 Zhang, 2007 MSP 15 2(13.3) 29 18(62.1) N/A 0.002
Kim, 2009 qMSP 15 0(0.0) 20 11(55.0) N/A 0.001
Salehi, 2012 MSP 25 2(8.0) 25 13(52.0) N/A 0.006
EN1 Mayor, 2009 Melting curve 30 1(3.3) 30 8(26.7) N/A 0.011
TFPI2 Glöckner, 2009 qMSP 87 11(12.6) 84 67(79.8) N/A 0.001
Zhang, 2011 MSP 30 4(13.3) 60 45(75.0) N/A 0.001
GATA4 Li, 2009 Methyl-BEAMing 110 8(5.3) 81 48(40.9) 0.81 0.001
NDRG4 Melotte, 2009 qMSP 75 3(4.0) 75 42(56.0) N/A 0.001
Lu, 2014 MSP 40 1(2.5) 56 16(28.6) N/A 0.001
Kisiel, 2013 QuARTS N/A N/A(11.0) N/A N/A(100.0) 0.85 N/A
ITGA4 Ausch, 2009 qMSP 28 6(21.4) 75 69(92.0) N/A 0.001
Chang, 2010 MSP 31 0(0.0) 30 11(36.7) N/A 0.001
B4GALT1 Kim, 2009 qMSP 10 2(20.0) 16 9(56.3) N/A 0.069
OSMR Kim, 2009 qMSP 96 4(4.2) 89 35(39.3) N/A 0.001
Zhang, 2011 MSP 30 0(0.0) 60 41(68.3) N/A 0.001
Bosch, 2012 qMSP 101 7(6.9) 65 25(38.5) N/A 0.001
MLH1 Baek, 2009 MSP 37 0(0.0) 60 18(30.0) N/A 0.001
RASSF2 Nagasaka, 2009 COBRA 113 6(5.3) 84 38(45.2) N/A 0.001
ESR1 Kato, 2009 nMSP N/A N/A 49 32(65.3) N/A N/A
RARB2 Azuara, 2010 MSP & Melting curve 13 0(0.0) 34 11(32.4) N/A 0.019
APC Azuara, 2010 MSP & Melting curve 15 0(0.0) 28 9(32.1) N/A 0.014
MAL Kang, 2011 MSP 26 1(3.8) 69 54(78.3) N/A 0.001
PHACTR3 Bosch, 2012 qMSP 101 4(4.0) 65 40(61.5) 0.78- 0.87 0.001
SPG20 Zhang, 2013 MSP 30 0(0.0) 96 77(80.2) N/A 0.001
SLIT2 Azuara, 2013 Melting Curve 44 0(0.0) 16 4(25.0) N/A 0.001
Septin9 Carmona, 2013 Pyrosequence N/A N/A 35 7(20.0) N/A N/A
FBN1 Guo, 2013 MSP 30 2(6.7) 75 54(72.0) N/A 0.001
p33ING1b He, 2014 nMSP 20 1(5.0) 61 45(73.8) N/A 0.001
Wif1 Zhang, 2014 MSP 30 0(0.0) 48 27(56.3) N/A 0.001
Amiot, 2014 qMSP 157 1(0.6) 90 17(18.9) N/A 0.001
ALX4 Amiot, 2014 qMSP 157 2(1.3) 90 9(10.0) N/A 0.001
GATA5 Lu, 2014 MSP 40 7(17.5) 56 47(83.9) N/A 0.001
VIM Lu, 2014 MSP 40 6(15.0) 56 23(41.1) N/A 0.006
BMP3 Kisiel, 2013 QuARTS N/A N/A(11.0) N/A N/A(100.0) 0.97 N/A
EYA4 Kisiel, 2013 QuARTS N/A N/A(11.0) N/A N/A(100.0) 0.95 N/A

和在血液中的研究不同, 粪便中很少有Septin9甲基化检测的研究, 唯一的一项报道中, 结直肠癌患者粪便中出现Septin9甲基化的比例仅为20%[66]. ColoSure是以粪便标本提取DNA样本, 通过定量检测粪便中波形蛋白(Vimentin)基因高甲基化而开发的第一个商业化结直肠癌筛选试剂盒. Li等[26]采用ColoSure进行的研究, 发现结直肠癌患者粪便中Vimentin出现甲基化的比例为40.9%(9/22), 明显高于健康对照者.

除了血液和粪便的标本, 一些研究检测了其他非组织样本中DNA的异常甲基化. Song等[67]对从尿液中提取的DNA进行甲基化检测, 发现20例结直肠癌患者中有75%均呈现出Vimentin基因启动子的高甲基化, 而在健康对照者中, 这一比例仅为10%(2/20). 另一项研究[68]检测了肠道灌洗液中15个基因的异常甲基化片段, 发现其中miR-124-3、LOC386758和SFRP1基因甲基化诊断结直肠癌的敏感性分别为71.8%、79.5%和74.4%. 直肠毛刷是可以直接取到黏膜标本的微创检测方法, Reddy等[69]从结直肠癌患者的黏膜毛刷中提取DNA, 以此为模板成功检测到了结肠腺瘤样息肉(adenomatosis polyposis coli, APC)和进行性色素沉着基因1(hyperpigmentation progressive 1, HPP1)基因的甲基化条带. 但上述标本来源的基因DNA甲基化检测, 对结直肠癌的敏感性和特异性有待大样本的前瞻性研究证实.

2 结直肠癌联合多基因甲基化指标

不同结直肠癌患者存在不同的异常基因甲基化谱, 以单一基因的甲基化检测结果来筛查结直肠癌可能存在敏感性和特异性不足的问题. 一些研究开始尝试联合检测不同基因的甲基化水平来综合筛查结直肠癌, 取得了良好的效果.

Leung等[8]同时检测了结直肠癌患者血清中MLH1、解旋酶样转录因子(helicase-like transcription factor, HLTF)和APC的甲基化水平, 发现单独标志物诊断结直肠癌的敏感性均不足50%, 而三者联合检测敏感性提高到57%. Cassinotti等[16]采用甲基化小芯片检测结直肠癌患者血浆中一系列基因的甲基化, 发现联合D型细胞周期蛋白2(cyclin type D2, CYCD2)、癌中高甲基化基因1(hypermethylated in cancer 1, HIC1)、配对盒子基因5(paired box 5, PAX5)、Ras相关结构域家族基因1[Ras association(RalGDS/AF-6) domain family member 1, Rassf1a]、视网膜神经胶质瘤基因1(retinoblastoma, RB1)和CD2(CD2 molecule, SRBC)基因诊断结直肠癌的敏感性高达83.3%.

对于粪便标本, 不仅可以将不同基因的甲基化检测结果进行组合, 还可以和K-ras突变、血红蛋白等的检测结果进行综合分析. Ahlquist等[70]综合分析粪便中的Vimentin甲基化和K-rasAPC突变, 在19例结直肠癌患者中, 有11例(57.9%)结果为阳性. 同一个研究中心在2012年的一项研究[21]中, 采用甲基化定量检测方法QuARTS同时检测200余例结直肠癌患者和健康对照者粪便中Vimentin、N-myc下游调节基因4(N-myc downstream regulated gene 4, NDRG4)、骨形态形成蛋白3(bone morphogenetic protein3, BMP3)和组织因子通路抑制剂2(tissue factor pathway inhibitor 2, TFPI2)的甲基化, 结合突变型K-ras、血红蛋白的检测结果, 敏感性达84.9%, 特异性为90.1%.

3 早期结直肠癌的基因异常甲基化检测

Duke分期和肿瘤-淋巴结-转移(tumor-node-metastasis, TNM)分期均是临床上常用的结直肠癌分期方法, 早期Duke A期或TNM 1期的结直肠癌确诊无疑将大大提高患者根治的机会, 其中部分患者还可通过创伤较小的内镜下黏膜切除术(endoscopic mucosal resection, ESD)完整切除肿瘤. 已有研究结果显示早期结直肠癌甲基化阳性检出率亦明显高于健康对照者. Grützmann等[18]研究发现85例TNM 1期结直肠癌患者血浆甲基化Septin9的阳性率为41.2%(35例), 明显高于健康对照者的8.8%(25/285). Li等[26]报道了22例Duke A期结直肠癌和110例健康对照者中Vimentin出现甲基化的比例, 前者亦明显高于后者(50.0% vs 5.3%). 在2013年的一项报道中, 26例TNM 1期结直肠癌患者血清多配体蛋白聚糖(syndecan, SDC)甲基化出现的频率高达92.3%(24例), 而对照组中这一比例仅为4.8%(6/125)[33].

4 结直肠癌甲基化筛选指标和其他方法的比较

在Tóth等[22]的研究中, 作者对结直肠癌患者血浆Septin9的甲基化和其他筛查指标如血清CEA、粪便潜血进行了比较, 发现前者的敏感性(95.7%)明显高于血清CEA(51.8%)和粪便潜血(68.2%). He等[65]比较了61例结肠癌患者的粪便p33ING1b甲基化和粪便潜血的阳性率, 发现45例(73.8%)患者p33ING1b出现了甲基化, 明显高于粪便潜血的阳性率(49.2%). 粪便免疫化学检测(FIT)以血红蛋白的特异性抗原抗体反应为基础, 对结直肠癌患者的检测敏感性优于粪便潜血试验[71]. 2014年新英格兰医学杂志发表的一篇临床研究[72]纳入了65例结直肠癌患者, 同时进行了以甲基化指标为主的粪便多靶点检测(NDRG4BMP3的甲基化+K-ras突变+血红蛋白检测)和FIT检测, 发现前者的敏感性为92.3%, 明显高于后者(73.8%). 此外, 本研究还纳入了2896例早期腺瘤和758例进展期癌前病变(进展期腺瘤和直径≥1 cm的锯齿状息肉), 粪便多靶点检测的阳性率分别为17.2%和42.3%, 明显高于FIT检测的7.6%和23.7%.

5 结论

目前大便潜血和结直肠镜仍是临床上结直肠癌筛查指南推荐的主要手段, 然而其中任何一种手段都难以在准确性、经济性和人群接受性上同时令人满意. 一些非侵入性检查方法不断涌现, 如血循环miRNA、CEA、N-甲基转移酶等, 其中DNA高甲基是结直肠癌发生的早期事件, 为结直肠癌的筛查提供了新的选择.

既往研究在结直肠癌患者的血液和粪便中发现大量基因的启动子呈高甲基化状态, 且多数甲基化指标的敏感性和特异性要优于CEA和粪便潜血. 目前已有多个商业化的试剂盒用于临床实践, 为血液、粪便的甲基化规范检测提供了参考. DNA甲基化、血红蛋白、突变型K-ras等的联合检测可以明显提高对于结肠癌和早期腺瘤的检出率, 反映了其在临床应用中的巨大潜力.

由于结直肠癌的发生发展是一个多阶段的过程, 其中涉及一系列抑癌基因的高甲基化, 单一基因DNA甲基化检测的敏感性和特异性在不同人群中存在着较大的差别. 在未来的临床实践中, 开展有金标准对照的大样本、多中心研究, 综合分析这些甲基化指标在结直肠癌筛查中的价值, 将会有力推动结直肠癌的早诊早治工作.

评论
背景资料

结直肠癌是消化系最常见的恶性肿瘤之一, 给我国人民生活带来巨大的家庭和经济负担. 甲基化是肿瘤发生发展中的早期事件, 近年来的临床研究在结直肠癌患者的血液、粪便等非侵入性检测可取得的标本中检测到一系列启动子高甲基化的基因. 这些指标对结直肠癌诊断的敏感性和特异性均明显优于传统筛查指标如血癌胚抗原和粪便潜血等, 提示在结直肠癌筛查领域应用的诱人前景.

同行评议者

邓安梅, 教授, 主任医师, 长海医院; 白雪, 副主任医师, 中国人民解放军北京军区总医院普通外科

研发前沿

当前在结直肠癌患者血液、粪便中有大量启动子高甲基化的基因被鉴定出来, 系统分析这些指标来综合预测评判结直肠癌风险的大小是未来可能的研究方向.

相关报道

Zitt等详细总结了结直肠癌筛查工作中, 粪隐血、结肠镜、甲基化等方法的优缺点、推荐筛查频率等, Ganepola等则对各种方法的花费情况进行了总结.

创新盘点

本文主要是在前人研究的基础上, 对结直肠癌筛查中非侵入性甲基化指标进行总结提炼. 按单基因、组合基因、早期指标及和其他方法的比较4个方面对此领域的既往研究进行了全面系统的评述, 并详细列举了每项研究的甲基化检测方法.

应用要点

本文在总结既往研究的基础上, 提出了该领域未来研究的可能方向, 可能对未来相关研究方案的设计具有一定的指导意义.

名词解释

甲基化: 是指从活性甲基化合物上将甲基催化转移到其他化合物的过程, 可发生在DNA的核酸和蛋白质的氨基酸上.

同行评价

DNA甲基化作为结直肠癌早期筛选的分子标志物, 是目前重要的研究方向之一. 本文综述了该领域的最新研究进展, 提供了充足的有意义的信息, 具有一定的指导意义.

编辑:韦元涛 电编:都珍珍

1.  Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, Cantor SB, Chang GJ. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 2015;150:17-22.  [PubMed]  [DOI]
2.  杜 灵彬, 余 传定, 汪 祥辉, 牟 瀚舟. 浙江省4个肿瘤登记地区2004年恶性肿瘤发病资料分析. 中国肿瘤. 2008;17:270-273.  [PubMed]  [DOI]
3.  Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med. 2004;351:2704-2714.  [PubMed]  [DOI]
4.  Frazier AL, Colditz GA, Fuchs CS, Kuntz KM. Cost-effectiveness of screening for colorectal cancer in the general population. JAMA. 2000;284:1954-1961.  [PubMed]  [DOI]
5.  Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T, Midorikawa Y, Nishimura Y, Sakamoto H, Seto Y. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res. 2010;16:21-33.  [PubMed]  [DOI]
6.  Herbst A, Kolligs FT. Detection of DNA hypermethylation in remote media of patients with colorectal cancer: new biomarkers for colorectal carcinoma. Tumour Biol. 2012;33:297-305.  [PubMed]  [DOI]
7.  Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61:900-902.  [PubMed]  [DOI]
8.  Leung WK, To KF, Man EP, Chan MW, Bai AH, Hui AJ, Chan FK, Sung JJ. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am J Gastroenterol. 2005;100:2274-2279.  [PubMed]  [DOI]
9.  Wallner M, Herbst A, Behrens A, Crispin A, Stieber P, Göke B, Lamerz R, Kolligs FT. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res. 2006;12:7347-7352.  [PubMed]  [DOI]
10.  Zou HZ, Yu BM, Wang ZW, Sun JY, Cang H, Gao F, Li DH, Zhao R, Feng GG, Yi J. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res. 2002;8:188-191.  [PubMed]  [DOI]
11.  Tan SH, Ida H, Lau QC, Goh BC, Chieng WS, Loh M, Ito Y. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep. 2007;18:1225-1230.  [PubMed]  [DOI]
12.  Miotto E, Sabbioni S, Veronese A, Calin GA, Gullini S, Liboni A, Gramantieri L, Bolondi L, Ferrazzi E, Gafà R. Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res. 2004;64:8156-8159.  [PubMed]  [DOI]
13.  Ebert MP, Model F, Mooney S, Hale K, Lograsso J, Tonnes-Priddy L, Hoffmann J, Csepregi A, Röcken C, Molnar B. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology. 2006;131:1418-1430.  [PubMed]  [DOI]
14.  Tänzer M, Balluff B, Distler J, Hale K, Leodolter A, Röcken C, Molnar B, Schmid R, Lofton-Day C, Schuster T. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One. 2010;5:e9061.  [PubMed]  [DOI]
15.  He Q, Chen HY, Bai EQ, Luo YX, Fu RJ, He YS, Jiang J, Wang HQ. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet Cytogenet. 2010;202:1-10.  [PubMed]  [DOI]
16.  Cassinotti E, Melson J, Liggett T, Melnikov A, Yi Q, Replogle C, Mobarhan S, Boni L, Segato S, Levenson V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer. 2012;131:1153-1157.  [PubMed]  [DOI]
17.  Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414-423.  [PubMed]  [DOI]
18.  Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One. 2008;3:e3759.  [PubMed]  [DOI]
19.  deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55:1337-1346.  [PubMed]  [DOI]
20.  Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, Fang JC, Samowitz WS, Heichman KA. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133.  [PubMed]  [DOI]
21.  Ahlquist DA, Taylor WR, Mahoney DW, Zou H, Domanico M, Thibodeau SN, Boardman LA, Berger BM, Lidgard GP. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin Gastroenterol Hepatol. 2012;10:272-277.e1.  [PubMed]  [DOI]
22.  Tóth K, Sipos F, Kalmár A, Patai AV, Wichmann B, Stoehr R, Golcher H, Schellerer V, Tulassay Z, Molnár B. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One. 2012;7:e46000.  [PubMed]  [DOI]
23.  Su XL, Wang YF, Li SJ, Zhang F, Cui HW. High methylation of the SEPT9 gene in Chinese colorectal cancer patients. Genet Mol Res. 2014;13:2513-2520.  [PubMed]  [DOI]
24.  Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castaños-Vélez E, Blumenstein BA, Rösch T, Osborn N. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63:317-325.  [PubMed]  [DOI]
25.  Potter NT, Hurban P, White MN, Whitlock KD, Lofton-Day CE, Tetzner R, Koenig T, Quigley NB, Weiss G. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin Chem. 2014;60:1183-1191.  [PubMed]  [DOI]
26.  Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, Levin B, Juhl H, Arber N, Moinova H. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27:858-863.  [PubMed]  [DOI]
27.  Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, Park J, Kim DH. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15:6185-6191.  [PubMed]  [DOI]
28.  Liu W, Guan M, Su B, Li J, Ma W, Liu C, Li M, Lin Y, Lu Y. Rapid determination of AKAP12 promoter methylation levels in peripheral blood using methylation-sensitive high resolution melting (MS-HRM) analysis: application in colorectal cancer. Clin Chim Acta. 2010;411:940-946.  [PubMed]  [DOI]
29.  Tang D, Liu J, Wang DR, Yu HF, Li YK, Zhang JQ. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin Invest Med. 2011;34:E88-E95.  [PubMed]  [DOI]
30.  Herbst A, Rahmig K, Stieber P, Philipp A, Jung A, Ofner A, Crispin A, Neumann J, Lamerz R, Kolligs FT. Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am J Gastroenterol. 2011;106:1110-1118.  [PubMed]  [DOI]
31.  Hibi K, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H, Sanada Y. Detection of TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011;311:96-100.  [PubMed]  [DOI]
32.  Wu PP, Zou JH, Tang RN, Yao Y, You CZ. Detection and Clinical Significance of DLC1 Gene Methylation in Serum DNA from Colorectal Cancer Patients. Chin J Cancer Res. 2011;23:283-287.  [PubMed]  [DOI]
33.  Oh T, Kim N, Moon Y, Kim MS, Hoehn BD, Park CH, Kim TS, Kim NK, Chung HC, An S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J Mol Diagn. 2013;15:498-507.  [PubMed]  [DOI]
34.  Lyu Z, Chen H, Jiang L, Zheng H, Hu J. [Detection of RASSF2 and sFRP1 promoter region methylation in sporadic colorectal cancer patients]. Zhonghua Weichang Waike Zazhi. 2014;17:41-44.  [PubMed]  [DOI]
35.  Pedersen SK, Mitchell SM, Graham LD, McEvoy A, Thomas ML, Baker RT, Ross JP, Xu ZZ, Ho T, LaPointe LC. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia. Epigenetics. 2014;9:1071-1082.  [PubMed]  [DOI]
36.  Müller HM, Oberwalder M, Fiegl H, Morandell M, Goebel G, Zitt M, Mühlthaler M, Ofner D, Margreiter R, Widschwendter M. Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet. 2004;363:1283-1285.  [PubMed]  [DOI]
37.  Huang ZH, Li LH, Yang F, Wang JF. Detection of aberrant methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. World J Gastroenterol. 2007;13:950-954.  [PubMed]  [DOI]
38.  Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol. 2008;14:524-531.  [PubMed]  [DOI]
39.  Nagasaka T, Tanaka N, Cullings HM, Sun DS, Sasamoto H, Uchida T, Koi M, Nishida N, Naomoto Y, Boland CR. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J Natl Cancer Inst. 2009;101:1244-1258.  [PubMed]  [DOI]
40.  Chang E, Park DI, Kim YJ, Kim BK, Park JH, Kim HJ, Cho YK, Sohn CI, Jeon WK, Kim BI. Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients. Hepatogastroenterology. 2010;57:720-727.  [PubMed]  [DOI]
41.  Zhang H, Zhu YQ, Wu YQ, Zhang P, Qi J. Detection of promoter hypermethylation of Wnt antagonist genes in fecal samples for diagnosis of early colorectal cancer. World J Gastroenterol. 2014;20:6329-6335.  [PubMed]  [DOI]
42.  Lu H, Huang S, Zhang X, Wang D, Zhang X, Yuan X, Zhang Q, Huang Z. DNA methylation analysis of SFRP2, GATA4/5, NDRG4 and VIM for the detection of colorectal cancer in fecal DNA. Oncol Lett. 2014;8:1751-1756.  [PubMed]  [DOI]
43.  Lenhard K, Bommer GT, Asutay S, Schauer R, Brabletz T, Göke B, Lamerz R, Kolligs FT. Analysis of promoter methylation in stool: a novel method for the detection of colorectal cancer. Clin Gastroenterol Hepatol. 2005;3:142-149.  [PubMed]  [DOI]
44.  Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, Platzer P, Lu S, Dawson D, Willis J. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst. 2005;97:1124-1132.  [PubMed]  [DOI]
45.  Itzkowitz SH, Jandorf L, Brand R, Rabeneck L, Schroy PC, Sontag S, Johnson D, Skoletsky J, Durkee K, Markowitz S. Improved fecal DNA test for colorectal cancer screening. Clin Gastroenterol Hepatol. 2007;5:111-117.  [PubMed]  [DOI]
46.  Itzkowitz S, Brand R, Jandorf L, Durkee K, Millholland J, Rabeneck L, Schroy PC, Sontag S, Johnson D, Markowitz S. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol. 2008;103:2862-2870.  [PubMed]  [DOI]
47.  Baek YH, Chang E, Kim YJ, Kim BK, Sohn JH, Park DI. Stool methylation-specific polymerase chain reaction assay for the detection of colorectal neoplasia in Korean patients. Dis Colon Rectum. 2009;52:1452-1459; discussion 1459-1463.  [PubMed]  [DOI]
48.  Zhang JP, Wang J, Gui YL, Zhu QQ, Xu ZW, Li JS. [Human stool vimentin, oncostatin M receptor and tissue factor pathway inhibitor 2 gene methylation analysis for the detection of colorectal neoplasms]. Zhonghua Yixue Zazhi. 2011;91:2482-2484.  [PubMed]  [DOI]
49.  Amiot A, Mansour H, Baumgaertner I, Delchier JC, Tournigand C, Furet JP, Carrau JP, Canoui-Poitrine F, Sobhani I. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS One. 2014;9:e99233.  [PubMed]  [DOI]
50.  Kisiel JB, Yab TC, Nazer Hussain FT, Taylor WR, Garrity-Park MM, Sandborn WJ, Loftus EV, Wolff BG, Smyrk TC, Itzkowitz SH. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;37:546-554.  [PubMed]  [DOI]
51.  Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, Biondo S, Blanco I, Peinado MA, Moreno V. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer. 2010;9:168-176.  [PubMed]  [DOI]
52.  Kang YP, Cao FA, Chang WJ, Lou Z, Wang H, Wu LL, Fu CG, Cao GW. [Gene methylation in stool for the screening of colorectal cancer and pre-malignant lesions]. Zhonghua Weichang Waike Zazhi. 2011;14:52-56.  [PubMed]  [DOI]
53.  Abbaszadegan MR, Tavasoli A, Velayati A, Sima HR, Vosooghinia H, Farzadnia M, Asadzedeh H, Gholamin M, Dadkhah E, Aarabi A. Stool-based DNA testing, a new noninvasive method for colorectal cancer screening, the first report from Iran. World J Gastroenterol. 2007;13:1528-1533.  [PubMed]  [DOI]
54.  Zhang W, Bauer M, Croner RS, Pelz JO, Lodygin D, Hermeking H, Stürzl M, Hohenberger W, Matzel KE. DNA stool test for colorectal cancer: hypermethylation of the secreted frizzled-related protein-1 gene. Dis Colon Rectum. 2007;50:1618-1626; discussion 1626-1627.  [PubMed]  [DOI]
55.  Kim MS, Louwagie J, Carvalho B, Terhaar Sive Droste JS, Park HL, Chae YK, Yamashita K, Liu J, Ostrow KL, Ling S. Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS One. 2009;4:e6555.  [PubMed]  [DOI]
56.  Salehi R, Mohammadi M, Emami MH, Salehi AR. Methylation pattern of SFRP1 promoter in stool sample is a potential marker for early detection of colorectal cancer. Adv Biomed Res. 2012;1:87.  [PubMed]  [DOI]
57.  Mayor R, Casadomé L, Azuara D, Moreno V, Clark SJ, Capellà G, Peinado MA. Long-range epigenetic silencing at 2q14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease. Br J Cancer. 2009;100:1534-1539.  [PubMed]  [DOI]
58.  Glöckner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, Chan TA, Kleeberger W, de Bruïne AP, Smits KM. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009;69:4691-4699.  [PubMed]  [DOI]
59.  Melotte V, Lentjes MH, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, Daenen KL, Partouns-Hendriks IE, Stessels F, Louwagie J. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Cancer Inst. 2009;101:916-927.  [PubMed]  [DOI]
60.  Ausch C, Kim YH, Tsuchiya KD, Dzieciatkowski S, Washington MK, Paraskeva C, Radich J, Grady WM. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem. 2009;55:1559-1563.  [PubMed]  [DOI]
61.  Bosch LJ, Oort FA, Neerincx M, Khalid-de Bakker CA, Terhaar sive Droste JS, Melotte V, Jonkers DM, Masclee AA, Mongera S, Grooteclaes M. DNA methylation of phosphatase and actin regulator 3 detects colorectal cancer in stool and complements FIT. Cancer Prev Res (Phila). 2012;5:464-472.  [PubMed]  [DOI]
62.  Kato I, Badsha KZ, Land S, Nechvatal JM, Matherly LH, Tarca AL, Majumdar AP, Basson MD, Ram JL. DNA/RNA markers for colorectal cancer risk in preserved stool specimens: a pilot study. Tumori. 2009;95:753-761.  [PubMed]  [DOI]
63.  Zhang H, Song YC, Dang CX. Detection of hypermethylated spastic paraplegia-20 in stool samples of patients with colorectal cancer. Int J Med Sci. 2013;10:230-234.  [PubMed]  [DOI]
64.  Guo Q, Song Y, Zhang H, Wu X, Xia P, Dang C. Detection of hypermethylated fibrillin-1 in the stool samples of colorectal cancer patients. Med Oncol. 2013;30:695.  [PubMed]  [DOI]
65.  He CG, Huang QY, Chen LS, Ling ZA, Wu HG, Deng HQ. p33(ING1b) methylation in fecal DNA as a molecular screening tool for colorectal cancer and precancerous lesions. Oncol Lett. 2014;7:1639-1644.  [PubMed]  [DOI]
66.  Carmona FJ, Azuara D, Berenguer-Llergo A, Fernández AF, Biondo S, de Oca J, Rodriguez-Moranta F, Salazar R, Villanueva A, Fraga MF. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev Res (Phila). 2013;6:656-665.  [PubMed]  [DOI]
67.  Song BP, Jain S, Lin SY, Chen Q, Block TM, Song W, Brenner DE, Su YH. Detection of hypermethylated vimentin in urine of patients with colorectal cancer. J Mol Diagn. 2012;14:112-119.  [PubMed]  [DOI]
68.  Harada T, Yamamoto E, Yamano HO, Nojima M, Maruyama R, Kumegawa K, Ashida M, Yoshikawa K, Kimura T, Harada E. Analysis of DNA methylation in bowel lavage fluid for detection of colorectal cancer. Cancer Prev Res (Phila). 2014;7:1002-1010.  [PubMed]  [DOI]
69.  Reddy R, Kelly SB, Welfare M, Janssens L, Williams EA, Mathers JC. Detection of APC and HPP1 gene methylation using rectal brush biopsy as an alternate approach for bowel research. Proceedings of the XXXIX Congress of the European Society for Surgical Research. 2004;133-135.  [PubMed]  [DOI]
70.  Ahlquist DA, Sargent DJ, Loprinzi CL, Levin TR, Rex DK, Ahnen DJ, Knigge K, Lance MP, Burgart LJ, Hamilton SR. Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med. 2008;149:441-450, W81.  [PubMed]  [DOI]
71.  Lee JK, Liles EG, Bent S, Levin TR, Corley DA. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann Intern Med. 2014;160:171.  [PubMed]  [DOI]
72.  Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;371:187-188.  [PubMed]  [DOI]