修回日期: 2015-04-08
接受日期: 2015-04-17
在线出版日期: 2015-06-18
进行性家族性肝内胆汁淤积(progressive familial intrahepatic cholestasis, PFIC)是一组异质性的常染色体隐性遗传病, 临床上主要表现为严重的肝内胆汁淤积, 发病率为1/10000-1/5000. 通常在婴儿期或儿童期起病, 最终发展为肝衰竭而致死. 基于临床表现、实验室检查、肝组织学及遗传缺陷, PFIC大致分为三型: PFIC-1型、PFIC-2型和PFIC-3型. 研究已经证明, 所有这3种类型都与肝脏参与胆汁形成的转运系统的基因的突变有关. 促进转运体表达对治疗PFIC有着重要的临床意义. 本文就PFIC的病因、治疗现状、促进转运体表达治疗PFIC进行综述.
核心提示: 本文着重介绍了进行性家族性肝内胆汁淤积症(progressive familial intrahepatic cholestasis, PFIC)的病因、治疗现状和促进转运体表达治疗进行家族性肝内胆汁淤积症. 促进转运体表达治疗PFIC是一种新的思路.
引文著录: 张琰, 刘克辛. 促进转运体表达治疗进行性家族性肝内胆汁淤积症. 世界华人消化杂志 2015; 23(17): 2681-2687
Revised: April 8, 2015
Accepted: April 17, 2015
Published online: June 18, 2015
Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive genetic diseases with a major clinical manifestation of severe intrahepatic cholestasis and an incidence rate of 1/10000 to 1/5000. PFIC is usually first diagnosed in infancy or childhood and eventually develops into liver failure and death. Based on clinical manifestations, laboratory tests, and genetic defects in liver tissue, PFIC is roughly divided into three types: PFIC-1, PFIC-2 and PFIC-3. Studies have demonstrated that all three types of PFIC are associated with the mutations of bile transport system genes in the liver. Promoting transporter expression has important clinical significance for the treatment of PFIC. In this paper, we summarize the etiology and treatment status of PFIC and discuss the treatment of PFIC by promoting the expression of transporters.
- Citation: Zhang Y, Liu KX. Promoting expression of transporters for treatment of progressive familial intrahepatic cholestasis disease. Shijie Huaren Xiaohua Zazhi 2015; 23(17): 2681-2687
- URL: https://www.wjgnet.com/1009-3079/full/v23/i17/2681.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v23.i17.2681
转运体是承担物质转运维持细胞内环境, 存在于细胞膜上的蛋白质. 随着基因敲除动物的增多和各种染色体解析技术的发展, 转运体的生理机能研究及与之相关的各项疾病机制研究也越来越明确. 但是与转运体相关疾病的有效内科治疗方法却没有很好的建立起来[1]. 迄今为止大多数研究还都集中在药物代谢酶对药物处置过程的影响. 然而, 在过去的十几年中, 随着载体或转运体介导的药代动力学与疾病过程的研究不断深入, 使得转运体在许多药物的临床使用过程中发挥着关键作用. 例如P-糖蛋白(P-glycoprotein, P-gp)是一种药物膜泵, 药物扩散进入细胞后与P-gp结合, ATP水解提供能量, 将药物从胞内排出, 导致细胞内药物浓度不断下降, 其细胞毒素作用因而减弱至丧失. 例如依托泊苷是P-gp的底物, 奎尼丁是P-gp的抑制剂, 合用奎尼丁可以增加血中依托泊苷的浓度, 增强疗效. 转运体不仅能够转运外源性物质, 而且转运体介导的重要的生理功能往往通过转运内源性底物如氨基酸、胆汁酸及激素以达到维持人体正常的生理平衡. 转运体在疾病发展过程中的变化对临床疾病的诊断和治疗具有重要的意义. 通过改变转运体表达来达到治疗疾病的目的是疾病治疗的全新战略. 进行性家族性肝内胆汁淤积症(progressive familial intrahepatic cholestasis, PFIC)是一种死亡率非常高的遗传疾病, 如果不接受肝移植, 在青春期之前就会死亡[1]. 即使接受肝移植手术也不能保证生存, 而且风险很高, 容易出现自身免疫病[2], 患者将承受很大的痛苦. 目前临床上治疗PFIC的方法主要包括药物治疗、非移植外科治疗及肝移植. 随着对PFIC疾病发病机制的研究进展, 促进转运体表达治疗PFIC也许可以作为一种新的治疗方案.
所有3种类型的PFIC的疾病都是由肝脏分泌胆汁的缺陷引起的.
PFIC-1型又称为Byler病, 由ATP8B1基因突变引起[3]. 该基因定位于常染色体18q21-22, 编码的是一种氨基磷脂P类型ATP酶-家族性肝内胆汁淤积症1(familial intrahepatic cholestasis 1, FIC1)蛋白[4-6]. FIC1蛋白位于肝脏细胞毛细管膜侧, 但在肝内主要表达在胆管上皮细胞, 该酶能促进细胞膜蛋白的流动, 对维持细胞膜的结构有一定的作用[7]. PFIC-1型产生胆汁淤积机制和其他症状的机制尚未完全阐明, 可能的机制包括以下几方面:
1.1.1 金合欢醇X受体(farnesoid X receptor, FXR)下调:ATP8B1基因缺失可降低胆汁酸代谢核受体-FXR的活性或表达水平[8-10], 从而下调肝脏胆盐转运体表达, 上调回肠肠细胞顶端膜Na+依赖性胆盐转运蛋白(apical sodium-dependent bile acid transporter, ASBT)表达, 进而导致肝内胆汁淤积[11-16]. 目前尚不清楚FXR下调主要是由基因缺陷还是继发于胆盐浓度增加引起的.
1.1.2 胆盐外排泵(bile salt export pump, BSEP)受损: 在ATP8B1基因敲除小鼠中发现胆固醇从肝细胞顶端或小管膜的分泌增多[17,18]. 膜上胆固醇的含量是影响BSEP活性的重要因素. 在PFIC-2型中详述BSEP受损导致胆汁淤积的机制.
1.1.3 囊性纤维化跨膜传导因子(cystic fibrosis transmembrane conductance regulator, CFTR)下调:有报道[9]称PFIC-1型患者胆管中CFTR下调可能解释该疾病的肝外以及胆汁分泌功能障碍.
1.1.4 ATP8B1基因表达多位点:ATP8B1基因也在小肠、肾及胰腺的细胞膜表达, 其中最多的是小肠[8,9], 这可能解释PFIC-1所致的的肝外表现, 如胰腺功能不全、汗液电解质异常及腹泻. 其他肝外表现, 如身高矮小、耳聋和胰腺炎等还表明FIC1蛋白具有其他的细胞生物学功能[9].
1.1.5 其他:ATP8B1基因突变患者的基因型与表型之间的关系复杂, ATP8B1突变也表现在良性复发性胆汁淤积症l型(benign recurrent intrahepatic cholestasis 1, BRIC1), 暂时性新生儿胆汁淤积和妊娠期肝内胆汁淤积[19]. 这些疾病都有FIC1蛋白的连续缺失, FIC1蛋白功能缺失是这几种疾病的一部分. PFIC-1患者中约10%可见只有一个突变的等位基因或没有突变基因. 在这些患者中, 可能的发病机制包括可能存在的调控序列中的基因的突变, 或其参与PFIC-1基因转录的其他基因突变或调控FIC1蛋白转运的基因突变[20].
PFIC-2型以前被称为Byler综合征, 是由ABCB11基因突变引起[21-23]. 该基因位于常染色体2q24区域, 编码BSEP. BSEP是表达在肝细胞毛细胆管膜的转运蛋白, 属于ABC转运蛋白[24,25], 主要功能是逆浓度梯度将胆汁从肝脏排到胆管中. 基因突变(插入、缺失、无义、裂解)可导致蛋白过早的断裂或者蛋白合成失败[26-29]. 因此通常PFIC-2患儿免疫组织化学检测不到BSEP蛋白. 有时错义突变导致BSEP蛋白组装和运输发生错误, 或者蛋白的结构和功能区发生断裂[30]. 这些患者的肝脏免疫组织化学染色在胆管膜上有BSEP, 但没有相应的功能. 在BSEP合成和或功能上的缺陷导致胆盐分泌降低, 胆汁流量减少, 从而使得胆盐在肝脏蓄积, 损伤肝细胞.
正如ATP8B1突变, 温和的基因突变导致较轻的胆汁淤积症如: BRIC2、ICP2、药物引起的胆汁淤积及一过性新生儿胆汁淤积症. 在这些温和突变的类型主要是错义并且位于该基因保守性较低的区域[31].
PFIC-3是由ABCB4基因突变引起. 该基因位于常染色体7q21区域, 编码多药耐药蛋白3(multidrug resistance 3 protein, MDR3)[24]. MDR3是主要表达在肝细胞毛细胆管膜的转运蛋白, 其功能将磷脂酰胆碱从肝小叶胆管膜内转运到膜外. 磷脂起到中和疏水性胆盐的去污剂的作用. MDR3蛋白缺乏导致胆汁成分失衡, 胆汁中磷脂酰胆碱含量不足、胆酸盐相对过剩, 引发胆道上皮和毛细胆管损伤, 最终导致胆汁淤积[32]. 胆汁缺乏磷脂还可以破坏微粒, 并促进胆固醇结晶, 导致增加胆汁结石形成, 进一步阻塞小胆道加重肝损伤.
在多数病例中ABCB4基因突变位于两个等位基因. 约1/3的突变导致肝细胞毛细胆管膜免疫组织化学染色检测不出MDR3糖蛋白. 由于截断蛋白合成后迅速降解或产生终止密码子使ABCB4 mRNA不稳定和衰减导致免疫组织化学检测不出MDR3糖蛋白[33,34]. 另外的2/3突变为错义突变可造成MDR3糖蛋白转运功能缺陷或MDR3糖蛋白胞内组装错误[35,36]. 这些错义突变通常出现在高度保守的Walker A和B氨基酸序列[37]. 在这些病例中, 免疫组织化学染色可检测出微弱的或者正常水平的MDR3糖蛋白. PFIC-3温和表型表现为妊娠期肝内胆汁淤积症(intrahepatic cholestasis of pregnancy, ICP)、胆囊胆固醇结石症、药物性胆汁淤积、成人特发性肝硬化及一过性新生儿胆汁淤积等病例.
目前还没有理想的方法来治疗PFIC, 临床上主要使用的方法有药物治疗、非移植外科治疗及肝移植3大类. 常规药物治疗作用有限, 只能用来缓解部分患者的症状和预防并发症, 对PFIC的病因没有作用. 临床上治疗PFIC最常用的药物是熊去氧胆酸. 熊去氧胆酸治疗应用在所有类型的PFIC[38]. 熊去氧胆酸在治疗某些患者中有效, 特别是错义突变的PFIC-3. 非移植外科治疗主要包括部分胆道外分流术(partial external biliary diversion, PEBD)和部分胆汁内分流术(partial internal biliary diversion, PIBD), 这两种方法有助于人体排出肝内蓄积的胆汁, 缓解症状. 但PEBD术后在腹壁形成一个永久的外瘘, 影响人的正常生活, 同时并发症发生率高[39]. PIBD可以避免在腹壁形成外瘘[2], 但由于胆盐大量分流进入结肠可能引起暂时性胆源性腹泻. 目前肝移植被认为治愈该病的唯一可能的治疗措施[40], 如果患者接受了肝移植, 除了要承担手术的高风险及高昂的手术费外, 还要终身服用免疫抑制剂, 对患者及其家庭都带来严重的负担.
目前, 药物治疗是临床上治疗该病最初的治疗策略, 熊去氧胆酸治疗PFIC-2的作用机制是通过促进胆汁的排出, 进而减轻体内的胆汁含量, 缓解肝内胆汁蓄积对肝细胞的损害. 但对患儿的严重瘙痒改善甚微[41]. Hayashi等[42]研究发现4-苯基丁酸(4-phenylbutyrate, 4PBA)可以促进欧洲人BSEP转运体常见的突变E297G和D482G在小管膜侧的表达, 增强细胞对胆酸盐的转运能力, 有效地治疗PFIC-2和其他由于BSEP转运体表达减少引起的胆汁淤积. 此外研究[43]表明苯扎贝特通过增加MDR3的表达可以使PFIC-1患者的LPX水平升高从而起到治疗作用. 通过促进转运体表达治疗PFIC可以作为一种新的治疗思路. 影响BSEP转运体表达的因素有很多, 如: 炎症诱导物、促炎细胞因子、抗炎药物以及其他炎症相关因素.
BSEP为ABC转运蛋白(ATP-binding cassette)超家族B亚型成员, 分子量为160 kDa包含1321个氨基酸, 12个跨膜区和2个ATP结合位点[44]. BSEP的主要功能是逆浓度梯度将胆汁从肝脏排到胆管中, 是一种胆盐外排泵[30,45]. 人类BSEP基因是通过在PFIC2型(PFIC-2)患者定位克隆缺陷基因确定的, 这些患者的胆汁中几乎没有胆盐[26].
对人类来说, BSEP在胆汁排泄过程的重要作用, 反应了PFIC-2的严重性, 其中最严重的是发生在儿童早期的肝内胆汁淤积症. PFIC-2是由编码BSEP的基因突变引起的, 这种基因突变患者胆汁中几乎没有胆盐[46]. 在这些患者中, 由于胆汁酸等有毒物质在肝细胞内蓄积, 导致严重的进行性肝损伤[47,48]. 同时胆汁中缺少胆酸引起肠吸收脂质和脂溶性维生素障碍. 对PFIC-2型严重缺乏BSEP患者进行基因组分析, 结果显示有多种基因突变类型, 包括: 插入、缺失、无义、裂解[26,37,49]. 对BSEP基因突变患者的肝组织进行免疫组织化学研究显示, 这些患者大多数在小管膜上缺少BSEP信号, 异常的BSEP染色包括BSEP在肝脏的表达减少和BSEP在肝细胞错误定位. 这些结果表明, BSEP在细胞活动的不同阶段受到影响(例如: mRNA的转录、mRNA稳定性、蛋白稳定性及蛋白质运输), 这取决于编码BSEP的基因的特异性突变[50].
各型PFIC疾病都与肝脏参与胆汁形成的转运系统基因突变有关, 而PFIC的治疗现状并不乐观. 肝移植被认为是治疗PFIC最有效的方法, 但肝移植本身又涉及很多问题, 如供体、免疫排异等问题. 因此开发新的药物治疗方案来治疗PFIC迫在眉睫. 通过对肝脏转运体的功能改变进行研究, 有助于更透彻地阐明胆汁淤积症的发生机制, 从而为临床提供更加正确的治疗方案. 促进转运体表达治疗PFIC是一种新的思路, 治疗PFIC的前景将十分广阔.
进行性家族性肝内胆汁淤积症(progressive familial intrahepatic cholestasis, PFIC)是一种死亡率非常高的遗传疾病, 通常在婴儿期或儿童期起病, 最终发展为肝衰竭而致死. 各型PFIC疾病都与肝脏参与胆汁形成的转运系统的基因突变有关. 而与转运体相关疾病的有效内科治疗方法却没有很好的建立起来.
薛东波, 教授, 哈尔滨医科大学附属第一医院
通过促进转运体表达治疗疾病是目前转运体研究的热点. 如何通过促进转运体表达治疗PFIC是目前肝脏疾病研究的新方向.
Hayash等研究发现4-苯基丁酸(4-phenylbutyrate, 4PBA)可以促进欧洲人胆盐外排泵(bile salt export pump, BSEP)转运体常见的突变E297G和D482G在小管膜侧的表达, 增强细胞对胆酸盐的转运能力, 有效地治疗PFIC-2和其他由于BSEP转运体表达减少引起的胆汁淤积.
本文简要的从PFIC的基因层面对3种类型的PFIC均进行了分析和比较, 又用临床研究作为补充, 说明了3种类型PFIC与其各自基因缺陷的重要关联意义, 同时与现在常见对于PFIC临床治疗方法联系, 提出研究促进转运体表达的新药来治疗PFIC这一思路.
通过药物促进转运体表达治疗PFIC可能成为临床治疗PFIC的新方法, 为临床肝病治疗提供了新思路.
转运体: 是承担物质转运维持细胞内环境, 存在于细胞膜上的蛋白质.
文章选题较好, 内容全面, 层次、逻辑、整体把握较好.
编辑:郭鹏 电编:都珍珍
1. | Hayashi H. [Development of new therapeutic strategy for transporter-related diseases]. Yakugaku Zasshi. 2014;134:1007-1011. [PubMed] [DOI] |
2. | Mousavi SA, Karami H. Partial internal biliary diversion in progressive familial intrahepatic cholestasis: introduction of a new approach. Hepat Mon. 2014;14:e13549. [PubMed] [DOI] |
3. | Chen F, Ghosh A, Shneider BL. Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1. J Lipid Res. 2013;54:379-385. [PubMed] [DOI] |
4. | Stapelbroek JM, van Erpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol. 2010;52:258-271. [PubMed] [DOI] |
5. | Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, Klomp LW, Lomri N, Berger R, Scharschmidt BF. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet. 1998;18:219-224. [PubMed] [DOI] |
6. | van Mil SW, Klomp LW, Bull LN, Houwen RH. FIC1 disease: a spectrum of intrahepatic cholestatic disorders. Semin Liver Dis. 2001;21:535-544. [PubMed] [DOI] |
8. | Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2012;36 Suppl 1:S26-S35. [PubMed] [DOI] |
9. | Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009;4:1. [PubMed] [DOI] |
10. | Cai SY, Gautam S, Nguyen T, Soroka CJ, Rahner C, Boyer JL. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology. 2009;136:1060-1069. [PubMed] [DOI] |
11. | Alvarez L, Jara P, Sánchez-Sabaté E, Hierro L, Larrauri J, Díaz MC, Camarena C, De la Vega A, Frauca E, López-Collazo E. Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet. 2004;13:2451-2460. [PubMed] [DOI] |
12. | Chen F, Ananthanarayanan M, Emre S, Neimark E, Bull LN, Knisely AS, Strautnieks SS, Thompson RJ, Magid MS, Gordon R. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology. 2004;126:756-764. [PubMed] [DOI] |
13. | Chen F, Ellis E, Strom SC, Shneider BL. ATPase Class I Type 8B Member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes. Pediatr Res. 2010;67:183-187. [PubMed] [DOI] |
14. | Koh S, Takada T, Kukuu I, Suzuki H. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells. J Gastroenterol. 2009;44:592-600. [PubMed] [DOI] |
15. | Martínez-Fernández P, Hierro L, Jara P, Alvarez L. Knockdown of ATP8B1 expression leads to specific downregulation of the bile acid sensor FXR in HepG2 cells: effect of the FXR agonist GW4064. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1119-G1129. [PubMed] [DOI] |
16. | Cebecauerová D, Strautnieks SS, Byrne JA, Jirsa M, Thompson RJ. ATP8B1 gene expression is driven by a housekeeping-like promoter independent of bile acids and farnesoid X receptor. PLoS One. 2012;7:e51650. [PubMed] [DOI] |
17. | Groen A, Kunne C, Jongsma G, van den Oever K, Mok KS, Petruzzelli M, Vrins CL, Bull L, Paulusma CC, Oude Elferink RP. Abcg5/8 independent biliary cholesterol excretion in Atp8b1-deficient mice. Gastroenterology. 2008;134:2091-2100. [PubMed] [DOI] |
18. | Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res. 2013;54:1567-1577. [PubMed] [DOI] |
19. | Klomp LW, Vargas JC, van Mil SW, Pawlikowska L, Strautnieks SS, van Eijk MJ, Juijn JA, Pabón-Peña C, Smith LB, DeYoung JA. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology. 2004;40:27-38. [PubMed] [DOI] |
20. | Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RP. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology. 2008;47:268-278. [PubMed] [DOI] |
21. | Strautnieks SS, Kagalwalla AF, Tanner MS, Knisely AS, Bull L, Freimer N, Kocoshis SA, Gardiner RM, Thompson RJ. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet. 1997;61:630-633. [PubMed] [DOI] |
22. | Francalanci P, Giovannoni I, Candusso M, Bellacchio E, Callea F. Bile salt export pump deficiency: A de novo mutation in a child compound heterozygous for ABCB11. Laboratory investigation to study pathogenic role and transmission of two novel ABCB11 mutations. Hepatol Res. 2013;43:315-319. [PubMed] [DOI] |
23. | Gonzales E, Grosse B, Schuller B, Davit-Spraul A, Conti F, Guettier C, Cassio D, Jacquemin E. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: Evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology. 2015;62:558-566. [PubMed] [DOI] |
24. | Kubitz R, Dröge C, Kluge S, Stindt J, Häussinger D. Genetic variations of bile salt transporters. Drug Discov Today Technol. 2014;12:e55-e67. [PubMed] [DOI] |
25. | Davit-Spraul A, Oliveira C, Gonzales E, Gaignard P, Thérond P, Jacquemin E. Liver transcript analysis reveals aberrant splicing due to silent and intronic variations in the ABCB11 gene. Mol Genet Metab. 2014;113:225-229. [PubMed] [DOI] |
26. | Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233-238. [PubMed] [DOI] |
27. | van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology. 2004;127:379-384. [PubMed] [DOI] |
28. | Lam CW, Cheung KM, Tsui MS, Yan MS, Lee CY, Tong SF. A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2. J Hepatol. 2006;44:240-242. [PubMed] [DOI] |
29. | Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerová D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134:1203-1214. [PubMed] [DOI] |
30. | Stindt J, Ellinger P, Weissenberger K, Dröge C, Herebian D, Mayatepek E, Homey B, Braun S, Schulte am Esch J, Horacek M. A novel mutation within a transmembrane helix of the bile salt export pump (BSEP, ABCB11) with delayed development of cirrhosis. Liver Int. 2013;33:1527-1535. [PubMed] [DOI] |
31. | Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis. 2010;30:125-133. [PubMed] [DOI] |
33. | Hori T, Nguyen JH, Uemoto S. Progressive familial intrahepatic cholestasis. Hepatobiliary Pancreat Dis Int. 2010;9:570-578. [PubMed] |
34. | Deleuze JF, Jacquemin E, Dubuisson C, Cresteil D, Dumont M, Erlinger S, Bernard O, Hadchouel M. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology. 1996;23:904-908. [PubMed] |
35. | Dixon PH, Weerasekera N, Linton KJ, Donaldson O, Chambers J, Egginton E, Weaver J, Nelson-Piercy C, de Swiet M, Warnes G. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet. 2000;9:1209-1217. [PubMed] [DOI] |
36. | Delaunay JL, Durand-Schneider AM, Delautier D, Rada A, Gautherot J, Jacquemin E, Aït-Slimane T, Maurice M. A missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature. Hepatology. 2009;49:1218-1227. [PubMed] [DOI] |
37. | Amer S, Hajira A. A comprehensive review of progressive familial intrahepatic cholestasis (PFIC): Genetic disorders of hepatocanalicular transporters. Gastroenterology Research. 2014;7:39-43. [DOI] |
38. | Jankowska I, Czubkowski P, Kaliciński P, Ismail H, Kowalski A, Ryżko J, Pawłowska J. Ileal exclusion in children with progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. 2014;58:92-95. [PubMed] [DOI] |
39. | Ekinci S, Karnak I, Gürakan F, Yüce A, Senocak ME, Cahit Tanyel F, Büyükpamukçu N. Partial external biliary diversion for the treatment of intractable pruritus in children with progressive familial intrahepatic cholestasis: report of two cases. Surg Today. 2008;38:726-730. [PubMed] [DOI] |
40. | Hasegawa Y, Hayashi H, Naoi S, Kondou H, Bessho K, Igarashi K, Hanada K, Nakao K, Kimura T, Konishi A. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J Rare Dis. 2014;9:89. [PubMed] [DOI] |
41. | Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid 'mechanisms of action and clinical use in hepatobiliary disorders'. J Hepatol. 2001;35:134-146. [PubMed] [DOI] |
42. | Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology. 2007;45:1506-1516. [PubMed] [DOI] |
43. | Nagasaka H, Yorifuji T, Hirano K, Ota A, Toyama-Nakagawa Y, Takatani T, Tsukahara H, Kobayashi K, Takayanagi M, Inomata Y. Effects of bezafibrate on dyslipidemia with cholestasis in children with familial intrahepatic cholestasis-1 deficiency manifesting progressive familial intrahepatic cholestasis. Metabolism. 2009;58:48-54. [PubMed] [DOI] |
44. | Hayashi H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11): trafficking and sorting disturbances. Curr Mol Pharmacol. 2013;6:95-103. [PubMed] [DOI] |
45. | Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med. 2014;37:3-14. [PubMed] [DOI] |
46. | Yang K, Pfeifer ND, Köck K, Brouwer KL. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther. 2015;353:415-423. [PubMed] [DOI] |
47. | Kenna JG, Stahl SH, Noeske T. Strategies for minimisation of the cholestatic liver injury liability posed by drug-induced bile salt export pump (BSEP) inhibition, in Tactics in Contemporary Drug Design. Springer. 2015;191-223. [DOI] |
48. | Marin JJ, Houwen RH. Treatment of paediatric cholestasis due to canalicular transport defects: yet another step forward. Gut. 2015;64:6-8. [PubMed] [DOI] |
49. | Varma S, Revencu N, Stephenne X, Scheers I, Smets F, Beleza-Meireles A, Reding R, Roskams T, Sokal EM. Retargeting of bile salt export pump and favorable outcome in children with progressive familial intrahepatic cholestasis type 2. Hepatology. 2015;62:198-206. [PubMed] [DOI] |
50. | Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos. 2014;42:318-322. [PubMed] [DOI] |