修回日期: 2012-12-20
接受日期: 2013-04-01
在线出版日期: 2013-04-28
目的: 探讨巨噬细胞移动抑制因子(macrophage migration inhibitory factor, MIF)_173G/C基因多态性与炎性肠疾病(inflammatory bowel disease, IBD)易感性的关系.
方法: 计算机检索CBM、CNKI、PubMed和 EMbase数据库, 收集关于MIF_173G/C基因多态性与溃疡性结肠炎(ulcerative colitis, UC)或克罗恩病(Crohn's disease, CD)的易感性病例-对照研究研究, 以IBD组与对照组人群基因型分布的比值比(odds ratio, OR)及95%CI可信区间(confidence interval, 95%CI)其为效应指标, 采用固定或随机效应模型进行合并分析, 并进行偏倚评估. 应用STATA10.0软件进行统计学处.
结果: 纯合子比较模型, 显性遗传模型, 隐性遗传模型Meta分析表明MIF_173G/C基因多态性与UC易感性有统计学意义(C/C vs G/G: OR = 1.54, 95%CI: 1.08-2.19; 显性遗传模型: OR = 1.15, 95%CI: 1.00-1.32; 隐性遗传模型: OR = 1.52, 95%CI: 1.07-2.17); 各遗传模型Meta分析结果显示: MIF_173G/C基因多态性与CD的易感性无统计学意义.
结论: 基于目前研究结果显示, MIF_173G/C可能是UC的易感性基因, 但与CD无明显相关性. 受纳入研究质量和数量限制, 上述结论尚待开展更多高质量的前瞻性研究进一步验证.
核心提示: 目前关于巨噬细胞移动抑制因子(macrophage migration inhibitory factor, MIF)_173G/C基因多态性与炎性肠疾病关联性结论不一, 本文通过Meta分析显示: MIF_173G/C可能是溃疡性结肠炎(ulcerative colitis)的易感性基因, 但与克罗恩病(Crohn's disease)无明显相关性.
引文著录: 谭诗云, 吴鹏波, 张国, 罗和生, 姚文敏. 巨噬细胞移动抑制因子_173G/C基因多态性与炎性肠疾病的Meta分析. 世界华人消化杂志 2013; 21(12): 1140-1145
Revised: December 20, 2012
Accepted: April 1, 2013
Published online: April 28, 2013
AIM: To explore the association between macrophage migration inhibitory factor (MIF) -173G/C polymorphism and susceptibility to inflammatory bowel disease.
METHODS: Searches of electronic databases CBM, CNKI, PubMed and EMbase were performed to retrieve published case-control studies investigating the association between MIF -173G/C polymorphism and susceptibility to ulcerative colitis (UC) or Crohn's disease (CD). The pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated using fixed-effect or random-effect methods based on the absence or presence of significant heterogeneity. Publication bias was assessed. All statistical analyses were conducted with STATA10.0 software.
RESULTS: Increased risk of UC was associated with MIF -173G/C polymorphism in the dominant genetic model (GG/C + C/C vs G/G: OR = 1.15, 95%CI: 1.00-1.32), the homozygote comparison (C/C vs G/G: OR = 1.54, 95%CI: 1.08-2.19) and recessive model (C/C vs G/C + G/G: OR = 1.52, 95%CI: 1.07-2.17). However, no association was found between MIF -173G/C polymorphism and susceptibility to CD.
CONCLUSION: Our meta-analysis strongly suggests that MIF -173G/C polymorphism is associated with susceptibility to UC. However, current studies do not support a direct relationship between MIF -173G/C polymorphism and susceptibility to CD.
- Citation: Tan SY, Wu PB, Zhang G, Luo HS, Yao WM. Association between macrophage migration inhibitory factor _173G/C polymorphism and inflammatory bowel disease: A meta-analysis. Shijie Huaren Xiaohua Zazhi 2013; 21(12): 1140-1145
- URL: https://www.wjgnet.com/1009-3079/full/v21/i12/1140.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v21.i12.1140
炎性肠疾病(inflammatory bowel disease, IBD)是一类肠道非特异性慢性炎症疾病, 包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(Crohn's disease, CD). 据报道, UC世界每年发生率为1.85/100 000, CD发生率为0.70/100 000[1]. 然而, IBD的发病机制尚不清楚, 但一致认为其发病与环境、遗传、微生物、免疫等因素有关. IBD的家族聚集现象和发病的种族差异性提示遗传因素在IBD的发生发展过程中起着不容忽视的作用. 近年来, 已有大量有关单核苷酸多态性和IBD发生风险之间关系的研究也证实这一观点[2-4].
巨噬细胞移动抑制因子(macrophage migration inhibitory factor, MIF)是巨噬细胞自分泌的一种重促炎因子, 他能够抑制巨噬细胞的游走, 促使巨噬细胞在炎症部位浸润、聚集, 在细胞介导的免疫反应中发挥重要作用[5]. 基于MIF与免疫及炎症密切相关, 并可能成为治疗炎性疾病的潜在靶点, 国内外学者对MIF基因多态性与IBD易感性的关系进行了大量的研究. MIF编码基因位于人类染色体22q11.2, 目前已发现他在_173G/C、+254T/C、+656C/G处存在多态位点, 其中以MIF_173G/C多态性与IBD的关系最为紧密. 目前, 单个研究样本量小和地区差异, 导致各研究结论不一. 为解决这些分歧, 我们对已发表的相关研究进行Meta分析, 以明确MIF_173G/C多态性与IBD风险的相关性.
计算机检索EMbase、PubMed、CBM和CNKI, 检索时间均为1990/2012-10. 英文检索式: "Inflammatory bowel disease OR ulcerative colitis OR Crohn's disease OR IBD"AND"mutation OR variant OR polymorphism"AND"MIF OR macrophage migration inhibitory"; 中文检索式:"巨噬细胞移动抑制因子或MIF"和"基因多态性或突变"和"CD OR UC或炎症性肠病". 所有研究的研究对象限人类, 文种限中、英文, 同时追溯所获文献的参考文献以及手工检索相关杂志.
1.2.1 纳入标准: (1)涉及MIF_173G/C多态性与CD或者UC相关性的文献; (2)公开发表的病例对照研究或巢式病例对照研究; (3)全文发表; (4)文献中数据完整, 能直接或间接提供统计指标比值比(odds ratio, OR)及95%CI可信区间(confidence interval, 95%CI); (5)病例均为经确诊CD或者UC患者, 其诊断符合符合文诊断标准, 或者临床表现、影像学、病理检查以及内镜联合诊断[6,7].
1.2.2 排除标准: (1)研究未设立对照组; (2)具体数据描述不清; (3)重复报道; (4)克罗恩病或者UC相关的综述以及动物实验.
1.2.3 资料提取: 由2位评价者独立根据纳入标准, 对文献进行筛选, 通过讨论达成一致. 两位评阅人独立完成对原始文献记录数据的收集. 对检出的文献提取以下一般信息: 第一作者姓名、出版年份、国家、病例组对照组基因型分布及其频率、对照组是否符合H-W平衡(P<0.05认为不符合H-W平衡).
1.2.4 质量评价: 采用NOS(newcastle-ottawa scale)标准[8]评价纳入各个研究的质量. 该评分系统采取星级对3部分进行评价: (1)病例组和对照组研究对象选择; (2)病例组和对照组研究对象的可比性; (3)危险因素的暴露情况. 得分≥7分的研究为高质量.
统计学处理 合并效应量选用OR及其95%CI. OR值的计算分别根据纯合子比较模型C/C vs G/G、杂合子比较模型G/C vs G/G、显性遗传模型(GC+CC vs GG)和隐性遗传模型(CC vs GC+GG). 对纳入研究进行异质性检验, 各研究结果间无异质性采用固定效应模型进行合并分析, 否则采用随机效应模型进行合并分析. 各研究结果间的异质性检验采用Q检验和P统计量, P<0.1提示各研究间存在异质性, I2用来衡量异质性大小程度[9]. 敏感性分析为依次排除单个文献后重新进行Meta分析, 通过相关图片评估其对综合效应量的影响. 发表偏倚通过Egger回归法[10]、Begg秩相关法[11]进行量化检测, P<0.05认为存在发表倚通. 上述分析以及H-W平衡均运用Stata11.0软件完成分析.
根据检索策略, 初检出41篇文献, 其中中文4篇, 英文37篇. 通过初步阅读文题和摘要, 排除26篇不符合纳入标准的文献经初步筛查. 进一步阅读全文, 1篇中文文献重复报道, 5篇文献涉及动物研究. 最终纳入9篇文献[12-20], 且Oliver等[20]一项研究中涉及到两组研究. 在纳入的9篇文献中分别有6、7篇文献涉及到MIF-173G/C多态性与CD、UC易感性研究. 9篇文献中Sivaram[12]对照组不遵守H-W平衡, 考虑做敏感性分析, 该项研究不予以剔除. 纳入的研究时间分布2004-2011年, 研究人群主要分布亚洲、欧洲. 各个纳入研究的基本特征见表1.
作者 | 地区 | 病种 | 发表年份 | 病例组 | 对照组 | NOS评分 | PH-W | ||||
TT | TC | CC | TT | TC | CC | ||||||
Nohara等[19] | Japan | UC | 2004 | 10 | 76 | 135 | 14 | 96 | 202 | 8 | 0.55 |
Oliver等[20] | Italy | UC | 2007 | 22 | 171 | 441 | 18 | 188 | 681 | 5 | 0.24 |
Griga等[16] | Germany | UC | 2007 | 2 | 28 | 72 | 15 | 156 | 318 | 8 | 0.43 |
Fei等[15] | China | UC | 2008 | 13 | 27 | 44 | 8 | 55 | 79 | 8 | 0.70 |
Shiroeda等[14] | Japan | UC | 2010 | 5 | 37 | 69 | 7 | 76 | 126 | 8 | 0.27 |
Przybyłowska等[13] | Spain | UC | 2011 | 1 | 19 | 38 | 1 | 23 | 99 | 6 | 0.79 |
Sivaram等[12] | India | UC | 2011 | 12 | 30 | 97 | 9 | 39 | 128 | 7 | 0.02 |
Oliver等[20] | Italy | CD | 2007 | 23 | 172 | 466 | 18 | 188 | 681 | 5 | 0.24 |
Dambacher等[17] | Germany | CD | 2007 | 7 | 45 | 146 | 6 | 45 | 108 | 7 | 0.63 |
Núñez等[18] | Spain | CD | 2007 | 10 | 149 | 372 | 18 | 188 | 681 | 6 | 0.24 |
Griga等[16] | Germany | CD | 2007 | 2 | 39 | 116 | 15 | 156 | 318 | 8 | 0.43 |
Fei等[15] | China | CD | 2008 | 2 | 5 | 8 | 8 | 55 | 79 | 8 | 0.70 |
Przybyłowska等[13] | Spain | CD | 2011 | 1 | 12 | 28 | 1 | 23 | 99 | 6 | 0.79 |
Meta分析的结果如表1所示, NOS评分结果显示平均得分为7(5-8分), 提示纳入的研究质量较好. MIF_173G/C基因多态性与UC易感性关系Meta分析结果除杂合子比较模型外其他模型均有统计学意义(杂合子比较模型: OR = 1.22, 95%CI: 0.82-1.82; 纯合子比较模型: OR = 1.54, 95%CI: 1.08-2.19; 显性遗传模型: OR = 1.15, 95%CI: 1.00-1.32; 隐性遗传模型: OR = 1.52, 95%CI: 1.07-2.17); MIF_173G/C基因多态性与CD易感性关系Meta分析结果显示个遗传模型均无统计学意义(杂合子比较模型: OR = 1.15, 95%CI : 0.99-1.32 ; 纯合子比较模型: OR = 1.22, 95%CI: 0.82-1.82; 显性遗传模型: OR = 1.09, 95%CI: 0.88-1.36; 隐性遗传模型: OR = 1.19, 95%CI: 0.80-1.77; 表2)
病种 | 基因模型 | 关联性及检验 | 异质性检验 | 发表偏倚检验 | ||||
OR (95%CI) | Z值 | P值 | I2% | Phet | PBegg's | PEgger's | ||
溃疡性结肠炎 | ||||||||
CC vs GG | 1.54 [1.08,2.19] | 2.73 | 0.02 | 0 | 0.70 | 0.76 | 0.59 | |
GC vs GG | 1.13 [1.07, 1.31] | 1.59 | 0.04 | 0 | 0.45 | 1.00 | 0.41 | |
GC+CC vs GG | 1.15 [1.00, 1.32] | 1.99 | 0.04 | 0 | 0.46 | 1.00 | 0.52 | |
CC vs GC+GG | 1.52 [1.07, 2.17] | 2.34 | 0.02 | 0 | 0.66 | 0.76 | 0.66 | |
克罗恩病 | ||||||||
CC vs GG | 1.22 [0.82,1.82] | 0.96 | 0.34 | 9.6 | 0.36 | 1.00 | 0.75 | |
GC vs GG | 1.15 [0.99, 1.32] | 1.87 | 0.06 | 44.3 | 0.11 | 0.71 | 0.45 | |
GC+CC vs GG | 1.09 [0.88, 1.36] | 0.80 | 0.42 | 48.2 | 0.09 | 0.71 | 0.62 | |
CC vs GC+GG | 1.19 [0.80, 1.77] | 0.84 | 0.40 | 0 | 0.43 | 1.00 | 0.85 |
MIF蛋白是一种相对分子质量为12.5 kDa非糖基化蛋白, 他由114个氨基酸残基组成的. 他参与免疫、炎症、机体感染等众多的生理功能的调节[21-23], 在各种炎性疾病中的促炎作用得到得到广泛的重视[24,25]. 其促炎作用可能机制是MIF可以拮抗机体内糖皮质激素诱导的I-κB产生, 减弱核因子(nuclear factor κB, NF-κB)和I-κB复合物对靶基因NF-κB转录活性的抑制作用, 最终使炎性细胞因子基因表达的重要调节因子NF-κB表达增加[26,27].
众所周知, IBD的发病是由于肠道黏膜内环境紊乱导致促进和抑制炎症反应二者失衡造成的. 鉴于MIF在机体炎症过程中的扮演着重要角色, MI在IBD的发生和发展的作用得到前所未有的重视. Ohkawara等[28]学者发现在正常大鼠结肠的上皮细胞有微量的MIF的表达, 且硫酸葡聚糖钠诱导的结肠炎中MIF表达量明显增加. Murakami[29]发现UC患者血清中的MIF水平明显高于正常对照组, 且与病情活动性有关, 而克隆病患者血清MIF水平与正常对照组没有明显差异. 我国学者张启芳[30]发现UC患者体内MIF较克罗恩患者明显上升.
MIF-173G/C多态性可通过影响机体内MIF水平的高低影响疾病的易感性[31,32], 本文结果分析显示MIF_173G/C多态性与UC发病风险明显相关, 但与CD发病风险无明显相关. 造成这种差异可能与二种疾病发病机制不同有关. 本研究虽然设计了科学研究方案, 本次分析仍存在一定的局限性, 其原因如下: (1)本Meta分析只检索了国内外几个代表性数据库, 检索语言仅为中文和英文, 且只限于公开发表的文献, 影响了纳入研究的全面性; (2)纳入研究的人群分布限于亚洲、欧洲, 未根据遗传背景做亚组分析; (3)饮食和社会环境是影响肠道疾病的易感性的重要因素, 本文纳入病例-健康对照组的研究往往忽略上述因素.
Meta分析能够将研究目的相同的多个病例一对照研究结果进行定量合并分析和综合评价, 以提高统计检验功效, 解决研究结果不一致的问题, 他克服了单个研究样本量小、地区局限的不足[33]. 敏感性分析是Meta分析结果质量衡量的一个重要手段[34], 常见的影响Meta分析结果稳定性的原因是各个纳入研究的样本量大小不一, 大样本研究对Meta分析结果影响较大, 小样本研究对Meta分析影响较小. 在这种情况下进行Meta分析其结果很容易向大样本研究结论偏倚. 本文通过敏感性分析发现多数基因模型Meta分析结果不稳定. 因而, 对于其结果我们应当甚至慎重对待.
总之, MIF_173G/C可能是UC的易感性基因, 但与CD无明显相关性. 然而, 受研究数量所限, 仍需开展更多高质量、大样本、包括不同种族群体的针对MIF_173G/C多态性和CD易感性之间关系的研究以进一步验证173G/C多态性与CD易感性的关系.
炎性肠疾病(inflammatory bowel disease, IBD)是常见的慢性胃肠道非特异性炎性疾病, 目前对于IBD的病因和发病机制尚未完全明了, 其发生可能与精神心理因素、感染、免疫异常、等多种因素有关. 巨噬细胞移动抑制因子(migration inhibitory factor, MIF)的功能基因多态性可以通过影响其表达高低调节宿主炎性反应强弱及炎症转归结果, 最终改变其罹患IBD的风险.
万军, 教授, 中国人民解放军总医院南楼老年消化科
我国学者张启芳报道MIF参与溃疡性结肠炎(ulcerative colitis, UC)的发病机制,可能是UC活动的指标, 控制MIF的产生可能有治疗的作用.
近年来, 有大量关于MIF_173G/C基因多态性与IBD患者易感性的关系的研究, 但结论不一致, 所以本文就此进行研究, 分析MIF_173G/C基因多态性与IBD易感性的关系.
相同的基因位点, 不同的研究结论可能与样本量大小、环境因素及种族遗传变异有关. 本文将MIF_173G/C位点与IBD的功能基因多态性文章进行荟萃分析, 为以后科研和临床研究提供一定的思路.
本文选题较为新颖, 纳入的文献质量较高, 统计学方法选择正确, 讨论合理, 结论客观, 具有一定的代表性和临床应用价值.
编辑:田滢 电编:闫晋利
1. | Edwards CN, Griffith SG, Hennis AJ, Hambleton IR. Inflammatory bowel disease: incidence, prevalence, and disease characteristics in Barbados, West Indies. Inflamm Bowel Dis. 2008;14:1419-1424. [PubMed] [DOI] |
2. | Wang Z, Hu J, Fan R, Zhou J, Zhong J. Association between CD14 gene C-260T polymorphism and inflammatory bowel disease: a meta-analysis. PLoS One. 2012;7:e45144. [PubMed] [DOI] |
3. | Zhang ZF, Yang N, Zhao G, Zhu L, Wang LX. Association between the Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma 2 and inflammatory bowel disease: a meta-analysis. PLoS One. 2012;7:e30551. [PubMed] [DOI] |
4. | Latiano A, Palmieri O, Latiano T, Corritore G, Bossa F, Martino G, Biscaglia G, Scimeca D, Valvano MR, Pastore M. Investigation of multiple susceptibility loci for inflammatory bowel disease in an Italian cohort of patients. PLoS One. 2011;6:e22688. [PubMed] [DOI] |
5. | Metz CN, Bucala R. Role of macrophage migration inhibitory factor in the regulation of the immune response. Adv Immunol. 1997;66:197-223. [PubMed] [DOI] |
6. | Podolsky DK. Inflammatory bowel disease (2). N Engl J Med. 1991;325:1008-1016. [PubMed] [DOI] |
7. | Lennard-Jones JE. Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl. 1989;170:2-6; discussion 16-19. [PubMed] [DOI] |
8. | Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603-605. [PubMed] [DOI] |
9. | Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-560. [PubMed] [DOI] |
10. | Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088-1101. [PubMed] [DOI] |
11. | Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629-634. [PubMed] [DOI] |
12. | Sivaram G, Tiwari SK, Bardia A, Anjum F, Vishnupriya S, Habeeb A, Khan AA. Macrophage migration inhibitory factor, Toll-like receptor 4, and CD14 polymorphisms with altered expression levels in patients with ulcerative colitis. Hum Immunol. 2012;73:201-205. [PubMed] [DOI] |
13. | Przybyłowska K, Mrowicki J, Sygut A, Narbutt P, Dziki Ł, Dziki A, Majsterek I. Contribution of the -173 G/C polymorphism of macrophage migration inhibitory factor gene to the risk of inflammatory bowel diseases. Pol Przegl Chir. 2011;83:76-80. [PubMed] [DOI] |
14. | Shiroeda H, Tahara T, Nakamura M, Shibata T, Nomura T, Yamada H, Hayashi R, Saito T, Yamada M, Fukuyama T. Association between functional promoter polymorphisms of macrophage migration inhibitory factor (MIF) gene and ulcerative colitis in Japan. Cytokine. 2010;51:173-177. [PubMed] [DOI] |
15. | Fei BY, Lv HX, Yang JM, Ye ZY. Association of MIF-173 gene polymorphism with inflammatory bowel disease in Chinese Han population. Cytokine. 2008;41:44-47. [PubMed] [DOI] |
16. | Griga T, Wilkens C, Wirkus N, Epplen J, Schmiegel W, Klein W. A polymorphism in the macrophage migration inhibitory factor gene is involved in the genetic predisposition of Crohn's disease and associated with cumulative steroid doses. Hepatogastroenterology. 2007;54:784-786. [PubMed] |
17. | Dambacher J, Staudinger T, Seiderer J, Sisic Z, Schnitzler F, Pfennig S, Hofbauer K, Konrad A, Tillack C, Otte JM. Macrophage migration inhibitory factor (MIF) -173G/C promoter polymorphism influences upper gastrointestinal tract involvement and disease activity in patients with Crohn's disease. Inflamm Bowel Dis. 2007;13:71-82. [PubMed] [DOI] |
18. | Núñez C, Rueda B, Martínez A, López-Nevot MA, Fernández-Arquero M, de la Concha EG, Martín J, Urcelay E. Involvement of macrophage migration inhibitory factor gene in celiac disease susceptibility. Genes Immun. 2007;8:168-170. [PubMed] [DOI] |
19. | Nohara H, Okayama N, Inoue N, Koike Y, Fujimura K, Suehiro Y, Hamanaka Y, Higaki S, Yanai H, Yoshida T. Association of the -173 G/C polymorphism of the macrophage migration inhibitory factor gene with ulcerative colitis. J Gastroenterol. 2004;39:242-246. [PubMed] [DOI] |
20. | Oliver J, Márquez A, Gómez-Garcia M, Martinez A, Mendoza JL, Vilchez JR, López-Nevot MA, Piñero A, de la Concha EG, Nieto A. Association of the macrophage migration inhibitory factor gene polymorphisms with inflammatory bowel disease. Gut. 2007;56:150-151. [PubMed] [DOI] |
21. | Rosado Jde D, Rodriguez-Sosa M. Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci. 2011;7:1239-1256. [PubMed] [DOI] |
22. | Grieb G, Merk M, Bernhagen J, Bucala R. Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect. 2010;23:257-264. [PubMed] [DOI] |
23. | Bach JP, Rinn B, Meyer B, Dodel R, Bacher M. Role of MIF in inflammation and tumorigenesis. Oncology. 2008;75:127-133. [PubMed] [DOI] |
24. | Wong BL, Zhu SL, Huang XR, Ma J, Xia HH, Bucala R, Wong BC, Lan HY. Essential role for macrophage migration inhibitory factor in gastritis induced by Helicobacter pylori. Am J Pathol. 2009;174:1319-1328. [PubMed] [DOI] |
25. | Makhija R, Kingsnorth A, Demaine A. Gene polymorphisms of the macrophage migration inhibitory factor and acute pancreatitis. JOP. 2007;8:289-295. [PubMed] |
26. | Denkinger CM, Metz C, Fingerle-Rowson G, Denkinger MD, Forsthuber T. Macrophage migration inhibitory factor and its role in autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2004;52:389-400. [PubMed] |
27. | Daun JM, Cannon JG. Macrophage migration inhibitory factor antagonizes hydrocortisone-induced increases in cytosolic IkappaBalpha. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1043-R1049. [PubMed] |
28. | Ohkawara T, Takeda H, Nishihira J, Miyashita K, Nihiwaki M, Ishiguro Y, Takeda K, Akira S, Iwanaga T, Sugiyama T. Macrophage migration inhibitory factor contributes to the development of acute dextran sulphate sodium-induced colitis in Toll-like receptor 4 knockout mice. Clin Exp Immunol. 2005;141:412-421. [PubMed] [DOI] |
29. | Murakami H, Akbar SM, Matsui H, Onji M. Macrophage migration inhibitory factor in the sera and at the colonic mucosa in patients with ulcerative colitis: clinical implications and pathogenic significance. Eur J Clin Invest. 2001;31:337-343. [PubMed] [DOI] |
31. | Akyildiz M, Gunsar F, Nart D, Sahin O, Yilmaz F, Akay S, Ersoz G, Karasu Z, Ilter T, Batur Y. Macrophage migration inhibitory factor expression and MIF gene -173 G/C polymorphism in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2010;22:192-198. [PubMed] [DOI] |
32. | Herder C, Klopp N, Baumert J, Müller M, Khuseyinova N, Meisinger C, Martin S, Illig T, Koenig W, Thorand B. Effect of macrophage migration inhibitory factor (MIF) gene variants and MIF serum concentrations on the risk of type 2 diabetes: results from the MONICA/KORA Augsburg Case-Cohort Study, 1984-2002. Diabetologia. 2008;51:276-284. [PubMed] [DOI] |
33. | Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics. 2000;1:247-262. [PubMed] [DOI] |