修回日期: 2012-08-27
接受日期: 2012-09-15
在线出版日期: 2012-10-08
肝星状细胞(hepatic stellate cells, HSC)是肝纤维化的主要细胞, 是细胞外基质(extracellular matrix, ECM)的重要来源. 烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH oxidase, NOX)产生活性氧(reactive oxygen species, ROS), 调控HSCs内信号转导, 在肝纤维化发病中起关键作用. NOX产生的ROS可介导丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)和磷脂酰肌醇-3激酶/蛋白激酶(phosphatidylinositol-3 kinase/Akt, PI3K/Akt)信号通路激活, 促进HSC增殖、抑制其凋亡, 导致肝纤维化形成. 抑制NOX产生ROS, 阻断相应的信号通路可诱导HSC凋亡. 因此, 探索出以NOX为作用靶点的抗纤维化药物意义重大.
引文著录: 施凤, 朱萱. NOX介导的MAPK、PI3K/Akt信号通路与肝纤维化. 世界华人消化杂志 2012; 20(28): 2685-2690
Revised: August 27, 2012
Accepted: September 15, 2012
Published online: October 8, 2012
Hepatic satellite cells (HSCs) are the main cell type involved in the development of liver fibrosis and have been recognized as the important cellular source of extracellular matrix (ECM). NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS), regulates signal transduction in HSCs, and thereby plays a key role in the pathogenesis of hepatic fibrosis. ROS generated by NOX promotes proliferation and inhibits apoptosis of HSCs by activation of mitogen-activated protein kinase and phosphatidylinositol-3 kinase/Akt signaling pathways, thus contributing to the development of liver fibrosis. Inhibition of NOX activation to generate ROS and NOX-mediated signal transduction induces HSC apoptosis. Therefore, drugs that target specific NOX can be expected to be useful in arresting the progression of liver fibrosis.
- Citation: Shi F, Zhu X. NOX-mediated MAPK and PI3K/Akt signaling pathways and liver fibrosis. Shijie Huaren Xiaohua Zazhi 2012; 20(28): 2685-2690
- URL: https://www.wjgnet.com/1009-3079/full/v20/i28/2685.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v20.i28.2685
肝星状细胞(hepatic stellate cells, HSC)内的活性氧(reactive oxygen species, ROS)通过氧化敏感的蛋白激酶和转录因子调控各种介质的活化和表达, 诱导肝纤维化[1,2]. 烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH oxidase, NOX)是细胞内ROS产生的主要酶来源, 在肝纤维化中起重要作用, 也许因此成为治疗肝纤维化的重要新型靶点[3]. NOX能针对刺激因素如血小板源性生长因子(platelet-derived growth factor, PDGF)、瘦素(leptin, LP)等通过活化多种信号通路调控HSC的增殖、激活, 促进肝纤维化形成[4]. 因此, 本文将对HSC内NOX产生ROS介导的丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、磷脂酰肌醇-3激酶/蛋白激酶(phosphatidylinositol-3 kinase/Akt, PI3K/Akt)信号通路与肝纤维化的关系作一综述.
哺乳动物类细胞中ROS产生的简单例子是可催化呼吸爆炸的巨噬细胞型NOX, 他表达于所有典型的巨噬细胞, 也表达于B淋巴细胞和T淋巴细胞[5]. NOX是由位于细胞膜的催化亚基gp91phox(又为NOX2)和调节亚基p22phox及其他位于细胞质的调节亚基p47phox、p40phox、p67phox和小GTP连接酶Rac(即Rac1)[6]组成的多蛋白复合体. 一旦被刺激, 胞质蛋白移至胞膜, 与膜蛋白相互作用后, 激活NOX[7]. 活化的NOX产生大量胞外超氧化物(如ROS), 在抵制微生物感染的宿主防御中起关键作用[8].
除了细胞膜亚基NOX2, 还有6种NOX同系物, 为非巨噬细胞型NOX(NOX1、NOX3、NOX4、NOX5、DUOX1和DUOX2). NOX1主要表达于消化道, 在调控NOX2中起重要作用. NOX4, 主要表达于肾脏, 能依赖其他可诱导的NOX亚基活化, 产生一定的ROS. 另外, NOX3表达于内耳, NOX5表达于淋巴组织. NOX2的其他2个同系物近来被证实, 为特异成熟亚基DUOX1和DUOX2, 主要表达于甲状腺, 是以额外的过氧化物存在为特征[9,10]. NOXO1为P47phox的同系物, 不过他缺乏自身抑制结构域. NOXA1为P67phox的同系物, 有类似的组织结构域. 所有NOX家族均为跨膜蛋白, 可将电子传递给氧分子产生超氧化物[11-15].
总之, NOX为针对各种刺激因素产生ROS的多蛋白复合物, 在活化信号通路方面起关键作用, 与肝纤维化密切相关[4]. 先前已报道在缺乏p47phox的小鼠实验中发现其能减轻胆管结扎(bile duct ligation, BDL)诱导的肝损伤和纤维化[16]. 在过度表达Rac1的转基因小鼠中发现其可促进HSC激活, 加重四氯化碳(CCL4)诱导的肝损伤和纤维化[17]. 缺乏NOX2将减轻CCl4诱导的小鼠肝纤维化[18]. 再者, 近来的研究也显示NOX2在HSC激活和凋亡肝细胞的吞噬中起关键作用[19]. NOX1可诱导HSC活化, 且在敲除NOX1基因的小鼠实验中显示NOX1可通过产生ROS, 激活Akt/人叉头框蛋白4(forkhead box4, FOXO4)/p47kipl信号通路, 进而促进HSC增殖, 加快BDL诱导的肝损伤后肝纤维化形成[20]. 最近发现NOX4在肝纤维化中的重要作用, 用抑制剂GKT137831(为新型NOX4/NOX1抑制剂)或敲除NOX4基因可减轻BDL诱导的小鼠肝纤维化[21]. 另外, 在长期门脉高压致肝硬化大鼠中发现P22phox表达上调[22]. 由此可见, NOX在肝纤维化中起关键作用, 可能为其成为抗纤维化综合治疗的新型靶点提供重要依据.
氧化还原酶可催化电子从还原剂传递给氧化剂. 在生物体内, 这些化学反应总是伴随着超氧化物形成, 分子氧获得电子主要产生ROS[3]. 多种氧化还原酶已被证实为ROS的潜在来源, 包括环氧酶[23]、氮氧合酶[24]、脂氧合酶[25]、细胞色素P450[26]、黄嘌呤氧化酶[27]、线粒体NADPH[28](辅酶Q)及NOX[29]. 细胞内ROS主要由NOX产生, 因为该酶专职产生ROS, 而其他酶仅通过特殊的催化方式且作为副产物产生ROS[30]. NOX通过产生ROS参与宿主防御和炎症, 细胞信号转导, 基因表达, 细胞生长发育、死亡和衰老, 生物合成和蛋白反应(如甲状腺激素合成), 血管生成等[15]. 在病理情况下, 大部分NOX相关的疾病均因ROS增加所致, 仅仅少数由ROS减少引起, 且大部分为慢性病[31], 如糖尿病肾病[32-34]、肺动脉高压[35,36]、心肌梗死[37,38]、缺血性中风[39,40]、阿尔茨默症[41,42]及帕金森病[43]等.
MAPK是信号转导中一个重要的丝氨酸/苏氨酸蛋白激酶通路. MAPK一般分为4个亚族: 细胞外信号调节激酶1/2(也为ERK1/2, P44/42), P38MAPKs, 应激活化蛋白激酶/C-Jun氨基端激酶(SAPK/JNK), 大丝裂原活化蛋白酶BMK1/ERK5[44]. MAPK通路由MAPKKK、MAPKK和MAPK 3个蛋白激酶组成. 这些蛋白激酶被依次活化, MAPKKK磷酸化MAPKK上的丝氨酸位点, 活化的MAPKK磷酸化MAPK的苏氨酸/酪氨酸位点[45]. 多种MAPKKK-MAPKK-MAPK通路已被广泛认识. Raf-MEK1/2-ERK1/2、MLK3-MKK3/6-P38、ASK1-MKK4/7-JNK及BMK1/ERK5通路均能被氧化应激、生长因子激活[46,47]. MAPK均在蛋白激酶Ⅷ亚区苏氨酸(threonine, Thr)和酪氨酸(tyrosine, Tyr)位点被双重磷酸化, 并能磷酸化胞核、胞质蛋白并改变其功能, 也能被特异性磷酸酶去磷酸化而失活. 因此, 磷酸化和去磷酸化之间的平衡可通过这些通路调控信号转导.
PI3K/Akt是信号转导中另一个重要的丝氨酸/苏氨酸蛋白激酶通路. PI3K是由85 kDa的调节亚基(P85)和110 kDa的催化亚基(P110)组成的异二聚体. 经生长因子如PDGF激活后, PI3K能催化磷脂酰肌醇的3-OH端磷酸化, 产生磷脂酰肌醇三磷酸盐(phosphatidylinositol trisphosphate, PIP3)[48]. PIP3聚集磷脂酰肌醇依赖激酶1(phosphoinositide-dependent protein kinase 1, PDK1), 在细胞膜磷酸化, 进而激活Ser/Thr位点激活Akt, 调控下游效应蛋白, 促进细胞增殖与存活[49,50]. Akt, 即蛋白激酶B(protein kinase B, PKB), 包括3种形式即Akt1/PKBα、Akt2/PKBβ和Akt3/PKBγ. 这3种形式有类似的磷酸化位点, 一个是氨基端的Thr308, 另一个是羧基端的Ser473. 这两个磷酸化位点对于Akt的完全激活是必不可少的. Akt的磷酸化因素包括糖原合成酶3(GSK-3), 叉头转录因子、坏蛋白及哺乳动物雷帕霉素靶点(the mammalian target of rapamycin, mTOR). Akt磷酸化GSK-3b、叉头及坏蛋白将这些蛋白失活, 而磷酸化mTOR可将其激活[44]. 肿瘤抑制基因(phosphatase and tensin homolog, PTEN)(从10号染色体上敲除的同源性磷酸酶张力蛋白), 是一种双重特异性蛋白和脂质磷酸酶, 通过去磷酸化减少PIP3, 从而负调控PI3K/Akt通路[50,51].
NOX产生的ROS介导的MAPK和PI3K/Akt信号转导通路与肝纤维化密切相关. HSC内的ROS通过氧化敏感的蛋白激酶和转录因子调控各种介质的活化和表达. 各种促纤维化因素活化的NOX产生ROS, 在细胞信号通路中起关键作用[2]. Bataller等[16]首先报道血管紧张素Ⅱ(angiotensin, AngⅡ)与HSC上的受体结合后, 激活P47phox, 诱导ROS产生, 活化Akt和MAPK并增加活性蛋白1(activated protein1, AP-1)的DNA结合活性, 促进Ⅰ型胶原、转化生长因子(transforming growth factor, TGF)β1表达, 进而导致肝纤维化. 这与体内实验结果是一致的. Adachi等[52]随后发现PDGF可激活HSC内NOX产生ROS, 介导P38MAPK磷酸化, 进而促进HSC增殖, 导致肝纤维化. 在体内二甲基亚硝胺(dimethylnitrosamine, DMN)诱导的肝纤维化模型也证实了NOX在HSC激活和增殖中的作用. Proell等[53]研究显示TGF-β诱导NOX产生ROS, 促使活化型HSC分化为富含超氧化物歧化酶肌成纤维细胞(myofibroblast, MF), 提供谷胱甘肽以清除细胞内自由基, 加强细胞防御机制以保护细胞免于肝损伤. 之后De Minicis等[54]发现LP通过JAK激活NOX产生ROS, 活化Akt、ERK1/2等下游信号通路, 导致HSC增殖、纤维化形成. NOX抑制剂DPI、JAK抑制剂AG4T90或敲除P47phox亚基等NOX的药物和基因抑制可减弱这些效应, 并下调纤维化标志物如Ⅰ型胶原、炎性介质如单核细胞趋化蛋白-1(monocyte chemotactic protein-1, MCP-1)表达, 进而抑制HSC增殖. 最近Aleffi等[55]发现LP及PDGF也可通过激活NOX产生ROS, 介导mTOR通路, 增加血管内皮生长因子(vascular endothelial growth factor, VEGF)及低氧诱导因子-1α(hypoxia-inducible factor 1 alpha, HIF-1α)表达. 孕酮[56]、趋化因子受体[57]、凋亡小体[58]、高半胱氨酸[59]、胆汁酸[60]及高级聚糖化终产物[61]等均可激活HSC内的NOX产生ROS, 活化MAPK、PI3K/Akt及AP-1等信号通路, 引起HSC激活、增殖及纤维化形成. 因此, NOX在肝纤维化中起关键作用, 可能成为抗纤维化治疗的潜在药理学靶点.
此外, 许多体内外实验发现P38MAPK、PI3K/AKT信号通路与HSC激活及肝纤维化相关. 早期Varela-Rey等[62]研究显示肿瘤坏死因子α(tumor necrosis factor α, TNF-α)减少大鼠HSC内P38MAPK磷酸化, 而TNFβ增加P38MAPK磷酸化, 进而调节Ⅰ型胶原表达. Cao等[63]发现DLPC可通过抑制氧化应激及过氧化氢依赖的P38MAPK活性, 从而阻止TGF-β1诱导的Ⅰ型胶原增加, 进而起抗纤维化效应. Lechuga等[64]研究发现P38MAPK信号通路参与TGF-β1介导的基质金属蛋白酶13(matrix metalloproteinase13, MMP-13)表达, 及上调Ⅰ型胶原表达. 近年来Ye等[65]体外研究证实全反式维甲酸(ATRA)通过阻断JNK及AP-1活性, 抑制HSC增殖及其胶原产生, 减少促纤维化基因如TIMP-1等mRNA表达, 并明显诱导MMP-3及MMP-13的mRNA表达, 起抗纤维化作用. Yang等[66]发现大麻素(Anandamide, AEA)通过β-甲基环糊精(一种胆固醇成分), 而非阻断大麻素受体CB1、CB2, 明显抑制PI3K/AKT磷酸化, 促进IL-2、IL-6释放, 进而诱导HSC坏死, 发挥抗纤维化效应. 随后Szuster-Ciesielska等[67]研究发现桦木醇和桦木酸可通过阻断ROS产生, 进而抑制JNK和p38MAPK信号通路, 使TGF-β等细胞因子表达下调, 减弱乙醇诱导的HSC激活及纤维化形成. 之后他们[68]还发现新型三嗪衍生物(IMT)也可抑制JNK、P38MAPK磷酸化, 进而拮抗乙醇诱导的大鼠HSC活化, 提示其可能为防治肝纤维化的新型治疗靶点, 为其制备抗肝纤维化综合治疗方案提供重要依据.
HSC的激活和增殖是肝纤维化的中心事件. HSC激活引起肝纤维化, 不管其病因, 最终将活化HSC. 活化型HSC为具有增殖性、纤维性及收缩性的肌成纤维细胞. HSC凋亡将导致纤维分解和肝纤维化恢复. 在生理情况下, HSC的增殖和凋亡保持平衡. 一旦这种平衡被慢性肝损伤破坏, 持续的HSC增殖及胶原分泌将促使肝纤维化形成. 因此, 抑制HSC增殖和诱导其凋亡是延缓或阻止纤维化的两种方法, 而MAPK、PI3K/Akt是促进HSC增殖、抑制其凋亡的两条重要信号通路. 先前用药物如维生素C[69]或饮食如异黄酮[70]、多酚[71]减少内源性ROS的方法大部分已消失, 可能因为内源性抗氧化剂(过氧化物歧化酶、过氧化氢酶、氧化酶等)较多且活性较强, 以至于外源性抗氧化剂不可能对稳定的ROS起主要作用, 除了在某些少量抗氧化剂的细胞和组织处. 因此, 期望阻断ROS产生的主要来源(如NOX)可对组织ROS水平起很大作用, 与传统的抗氧化治疗相比发挥更加好的治疗效应.
总之, 探索以NOX为特异性作用靶点, 阻断NOX产生ROS, 进而抑制MAPK、PI3K/Akt信号通路的药物对于阻断肝纤维化意义重大. 虽已发现早期抑制NOX的药物如氯化二亚苯基碘嗡, 但其为非特异性药物. 因此, 研制出低毒、高效的NOX抑制剂将成为目前生物学研究和临床诊疗的重要方向.
肝纤维化是各种病因所致慢性肝损伤的创伤愈合反应, 持续的炎症与纤维形成最终导致肝硬化. 目前, 抗病毒治疗、抗血吸虫、戒酒等病因治疗可延缓或阻止肝纤维化的发展. 肝星状细胞(HSC)的激活、转化被认为是肝纤维化发病的中心事件. 氧化应激是肝纤维化的主要病因, 阻断活性氧(ROS)产生可能发挥抗纤维化效应, 而NADPH氧化酶(NOX)为肝脏中ROS的重要来源, 在肝纤维化中起重要作用. 近年来针对促纤维化因子及其介导的信号通路对肝纤维化的影响有了进一步研究, 阻断这些信号通路有望为肝纤维化的治疗带来新突破.
高泽立, 副教授, 上海交大医学院九院周浦分院
近年来HSC内的信号转导在肝纤维化中的作用得到广泛关注, 进一步认识了NOX及其介导的信号通路与肝纤维化的关系, 如激活NOX及其介导的信号通路可促进HSC增殖、转化, 引起肝纤维化.
近年来已有很多研究显示各种促纤维化因子(如转化生长因子-β、瘦素等)通过激活NOX产生ROS, 介导MAPK、PI3K/Akt、JAK-STAT、NF-κB、AP-1等信号通路活化, 促进HSC增殖、转化, 导致肝纤维化形成.
本文就HSC内NOX产生ROS及其介导的MAPK、PI3K/Akt信号通路作了一较新、系统而全面的阐述.
NADPH氧化酶(NOX): 一种多蛋白复合物, 可针对各种促纤维化因子(如血管紧张素Ⅱ、转化生长因子-β、血小板源性生长因子(PDGF)及瘦素等)促进ROS形成.
本文密切联系常见病与多发病, 从信号传导与阻断机制探讨HSC与肝纤维化的发生及阻断, 对新药的研发有一定指导作用.
编辑:李军亮 电编:闫晋利
1. | Cui W, Matsuno K, Iwata K, Ibi M, Matsumoto M, Zhang J, Zhu K, Katsuyama M, Torok NJ, Yabe-Nishimura C. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54:949-958. [PubMed] [DOI] |
2. | Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425-456. [PubMed] [DOI] |
3. | Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218-242. [PubMed] [DOI] |
4. | Blankestijn J, Panders AK, Wymenga JP. Ameloblastic fibroma of the mandible. Br J Oral Maxillofac Surg. 1986;24:417-421. [PubMed] [DOI] |
5. | Paik YH, Iwaisako K, Seki E, Inokuchi S, Schnabl B, Osterreicher CH, Kisseleva T, Brenner DA. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53:1730-1741. [PubMed] [DOI] |
6. | Bosco EE, Mulloy JC, Zheng Y. Rac1 GTPase: a "Rac" of all trades. Cell Mol Life Sci. 2009;66:370-374. [PubMed] [DOI] |
7. | Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009;11:2607-2619. [PubMed] [DOI] |
8. | Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113:343-355. [PubMed] [DOI] |
9. | Lambeth JD, Kawahara T, Diebold B. Regulation of Nox and Duox enzymatic activity and expression. Free Radic Biol Med. 2007;43:319-331. [PubMed] [DOI] |
10. | Guichard C, Pedruzzi E, Fay M, Ben Mkaddem S, Coant N, Daniel F, Ogier-Denis E. [The Nox/Duox family of ROS-generating NADPH oxidases]. Med Sci (Paris). 2006;22:953-959. [PubMed] [DOI] |
11. | Bánfi B, Clark RA, Steger K, Krause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem. 2003;278:3510-3513. [PubMed] [DOI] |
12. | Geiszt M, Lekstrom K, Witta J, Leto TL. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem. 2003;278:20006-20012. [PubMed] [DOI] |
13. | Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K, Tsunawaki S, Hirayama T, Rokutan K. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol. 2004;172:3051-3058. [PubMed] |
14. | Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo S, Takeya R, Tsunawaki S, Wada A, Sumimoto H, Rokutan K. Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol. 2005;288:C450-C457. [PubMed] [DOI] |
15. | Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245-313. [PubMed] [DOI] |
16. | Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, Qian T, Schoonhoven R, Hagedorn CH, Lemasters JJ. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest. 2003;112:1383-1394. [PubMed] |
17. | Choi SS, Sicklick JK, Ma Q, Yang L, Huang J, Qi Y, Chen W, Li YX, Goldschmidt-Clermont PJ, Diehl AM. Sustained activation of Rac1 in hepatic stellate cells promotes liver injury and fibrosis in mice. Hepatology. 2006;44:1267-1277. [PubMed] [DOI] |
18. | Aram G, Potter JJ, Liu X, Wang L, Torbenson MS, Mezey E. Deficiency of nicotinamide adenine dinucleotide phosphate, reduced form oxidase enhances hepatocellular injury but attenuates fibrosis after chronic carbon tetrachloride administration. Hepatology. 2009;49:911-919. [PubMed] [DOI] |
19. | Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, Adamson R, Devaraj S, Shah V, Gershwin ME. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology. 2010;139:1375-1384. [PubMed] [DOI] |
20. | Lambeth JD, Krause KH, Clark RA. NOX enzymes as novel targets for drug development. Semin Immunopathol. 2008;30:339-363. [PubMed] [DOI] |
21. | Jiang JX, Chen X, Serizawa N, Szyndralewiez C, Page P, Schröder K, Brandes RP, Devaraj S, Török NJ. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53:289-296. [PubMed] [DOI] |
22. | de Las Heras N, Aller MA, Martín-Fernández B, Miana M, Ballesteros S, Regadera J, Cachofeiro V, Arias J, Lahera V. A wound-like inflammatory aortic response in chronic portal hypertensive rats. Mol Immunol. 2012;51:177-187. [PubMed] [DOI] |
23. | Kukreja RC, Kontos HA, Hess ML, Ellis EF. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 1986;59:612-619. [PubMed] [DOI] |
24. | Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267:24173-24176. [PubMed] |
25. | Roy P, Roy SK, Mitra A, Kulkarni AP. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta. 1994;1214:171-179. [PubMed] [DOI] |
26. | Puntarulo S, Cederbaum AI. Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med. 1998;24:1324-1330. [PubMed] [DOI] |
27. | Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589-606. [PubMed] [DOI] |
28. | Lambert AJ, Brand MD. Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J. 2004;382:511-517. [PubMed] [DOI] |
29. | Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494-501. [PubMed] [DOI] |
30. | Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181-189. [PubMed] [DOI] |
31. | Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43:332-347. [PubMed] [DOI] |
32. | Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 2005;67:1890-1898. [PubMed] [DOI] |
33. | Tojo A, Asaba K, Onozato ML. Suppressing renal NADPH oxidase to treat diabetic nephropathy. Expert Opin Ther Targets. 2007;11:1011-1018. [PubMed] [DOI] |
34. | Nam SM, Lee MY, Koh JH, Park JH, Shin JY, Shin YG, Koh SB, Lee EY, Chung CH. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: the role of reducing oxidative stress in its protective property. Diabetes Res Clin Pract. 2009;83:176-182. [PubMed] [DOI] |
35. | Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2008;295:L881-L888. [PubMed] [DOI] |
36. | Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan TH, Mitchell PO, Sutliff RL, Hart CM. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol. 2009;40:601-609. [PubMed] [DOI] |
37. | Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension. 2008;51:319-325. [PubMed] [DOI] |
38. | Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med. 2007;43:271-281. [PubMed] [DOI] |
39. | Liu W, Chen Q, Liu J, Liu KJ. Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke. Med Gas Res. 2011;1:22. [PubMed] [DOI] |
40. | Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol. 2006;291:H2210-H2215. [PubMed] [DOI] |
41. | Block ML. NADPH oxidase as a therapeutic target in Alzheimer's disease. BMC Neurosci. 2008;9 Suppl 2:S8. [PubMed] [DOI] |
42. | Simonyi A, He Y, Sheng W, Sun AY, Wood WG, Weisman GA, Sun GY. Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease. Mol Neurobiol. 2010;41:73-86. [PubMed] [DOI] |
43. | Koppula S, Kumar H, Kim IS, Choi DK. Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson's disease. Mediators Inflamm. 2012;2012:823902. [PubMed] |
44. | Maeda N, Fu W, Ortin A, de las Heras M, Fan H. Roles of the Ras-MEK-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt-mTOR pathways in Jaagsiekte sheep retrovirus-induced transformation of rodent fibroblast and epithelial cell lines. J Virol. 2005;79:4440-4450. [PubMed] [DOI] |
45. | Goldsmith ZG, Dhanasekaran DN. G protein regulation of MAPK networks. Oncogene. 2007;26:3122-3142. [PubMed] [DOI] |
46. | Rubinfeld H, Seger R. The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol. 2005;31:151-174. [PubMed] [DOI] |
47. | Cameron SJ, Abe J, Malik S, Che W, Yang J. Differential role of MEK5alpha and MEK5beta in BMK1/ERK5 activation. J Biol Chem. 2004;279:1506-1512. [PubMed] [DOI] |
48. | Wang Y, Jiang XY, Liu L, Jiang HQ. Phosphatidylinositol 3-kinase/Akt pathway regulates hepatic stellate cell apoptosis. World J Gastroenterol. 2008;14:5186-5191. [PubMed] [DOI] |
49. | Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA, Rippe RA. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278:8083-8090. [PubMed] [DOI] |
50. | Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, Vasko V, El-Naggar AK, Xing M. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106-3116. [PubMed] [DOI] |
51. | Jin Q, Jhun BS, Lee SH, Lee J, Pi Y, Cho YH, Baik HH, Kang I. Differential regulation of phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, and AMP-activated protein kinase pathways during menadione-induced oxidative stress in the kidney of young and old rats. Biochem Biophys Res Commun. 2004;315:555-561. [PubMed] [DOI] |
52. | Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K, Kawata S. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology. 2005;41:1272-1281. [PubMed] [DOI] |
53. | Proell V, Carmona-Cuenca I, Murillo MM, Huber H, Fabregat I, Mikulits W. TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol. 2007;6:1. [PubMed] [DOI] |
54. | De Minicis S, Seki E, Oesterreicher C, Schnabl B, Schwabe RF, Brenner DA. Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells. Hepatology. 2008;48:2016-2026. [PubMed] [DOI] |
55. | Aleffi S, Navari N, Delogu W, Galastri S, Novo E, Rombouts K, Pinzani M, Parola M, Marra F. Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2011;301:G210-G219. [PubMed] [DOI] |
56. | Itagaki T, Shimizu I, Cheng X, Yuan Y, Oshio A, Tamaki K, Fukuno H, Honda H, Okamura Y, Ito S. Opposing effects of oestradiol and progesterone on intracellular pathways and activation processes in the oxidative stress induced activation of cultured rat hepatic stellate cells. Gut. 2005;54:1782-1789. [PubMed] [DOI] |
57. | Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185-197. [PubMed] [DOI] |
58. | Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology. 2006;43:435-443. [PubMed] [DOI] |
59. | Zou CG, Gao SY, Zhao YS, Li SD, Cao XZ, Zhang Y, Zhang KQ. Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med (Berl). 2009;87:75-84. [PubMed] [DOI] |
60. | Sommerfeld A, Reinehr R, Häussinger D. Bile acid-induced epidermal growth factor receptor activation in quiescent rat hepatic stellate cells can trigger both proliferation and apoptosis. J Biol Chem. 2009;284:22173-22183. [PubMed] [DOI] |
61. | Guimarães EL, Empsen C, Geerts A, van Grunsven LA. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol. 2010;52:389-397. [PubMed] [DOI] |
62. | Varela-Rey M, Montiel-Duarte C, Osés-Prieto JA, López-Zabalza MJ, Jaffrèzou JP, Rojkind M, Iraburu MJ. p38 MAPK mediates the regulation of alpha1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells(1). FEBS Lett. 2002;528:133-138. [PubMed] [DOI] |
63. | Cao Q, Mak KM, Lieber CS. DLPC decreases TGF-beta1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1051-G1061. [PubMed] |
64. | Lechuga CG, Hernández-Nazara ZH, Domínguez Rosales JA, Morris ER, Rincón AR, Rivas-Estilla AM, Esteban-Gamboa A, Rojkind M. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k. Am J Physiol Gastrointest Liver Physiol. 2004;287:G974-G987. [PubMed] [DOI] |
65. | Ye Y, Dan Z. All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal. J Huazhong Univ Sci Technolog Med Sci. 2010;30:726-733. [PubMed] [DOI] |
66. | Yang Q, Liu HY, Zhang YW, Wu WJ, Tang WX. Anandamide induces cell death through lipid rafts in hepatic stellate cells. J Gastroenterol Hepatol. 2010;25:991-1001. [PubMed] [DOI] |
67. | Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszeń M. Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS), cytokine (TNF-α, TGF-β) production and by influencing intracellular signaling. Toxicology. 2011;280:152-163. [PubMed] [DOI] |
68. | Szuster-Ciesielska A, Sztanke K, Kandefer-Szerszeń M. A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells. Chem Biol Interact. 2012;195:18-24. [PubMed] [DOI] |
69. | Mitchell C, Robin MA, Mayeuf A, Mahrouf-Yorgov M, Mansouri A, Hamard M, Couton D, Fromenty B, Gilgenkrantz H. Protection against hepatocyte mitochondrial dysfunction delays fibrosis progression in mice. Am J Pathol. 2009;175:1929-1937. [PubMed] [DOI] |
70. | Siow RC, Mann GE. Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med. 2010;31:468-477. [PubMed] [DOI] |
71. | Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci. 2010;3:34-42. [PubMed] [DOI] |