基础研究 Open Access
Copyright ©The Author(s) 2005. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2005-10-28; 13(20): 2413-2419
在线出版日期: 2005-10-28. doi: 10.11569/wcjd.v13.i20.2413
人CD40 ligand基因真核表达质粒的构建及对人肝癌细胞HepG2的促凋亡作用
徐智, 沈苏南, 钱晓萍, 禹立霞, 刘宝瑞
徐智, 沈苏南, 钱晓萍, 禹立霞, 刘宝瑞, 南京大学医学院附属鼓楼医院肿瘤中心 江苏省南京市 210008
徐智, 女, 1980-06-19生, 江苏省南京市人, 汉族, 2003年南京大学医学院肿瘤学硕士生.
基金项目: 国家自然科学基金资助项目, No. 30471701.
通讯作者: 刘宝瑞, 210008, 江苏省南京市中山路321号, 南京大学医学院附属鼓楼医院肿瘤中心. baoruiliu@medmail.com.cn
电话: 025-83106666-76382
收稿日期: 2005-08-29
修回日期: 2005-09-01
接受日期: 2005-09-06
在线出版日期: 2005-10-28

目的: 构建含人CD40 ligand(CD40L)基因的真核表达载体, 并使之在人肝癌细胞HepG2中表达, 研究CD40L稳定表达对HepG2细胞的影响.

方法: 从人外周血单个核细胞总RNA中经RT-PCR扩增出人CD40L基因, 经过酶切连接进入真核表达载体pcDNATM3.1/myc-His(-)A制备重组质粒. 重组质粒经酶切及测序证实人CD40L基因成功克隆进入真核表达载体pcDNATM3.1/myc-His(-)A, 并进一步转入大肠杆菌(E.coli DH5α)大量扩增. 实验分4组, A组HepG2细胞转染重组质粒, B组HepG2细胞转染不含CD40L cDNA的空质粒, C组HepG2细胞正常培养, D组HepG2细胞加入G418作为转染对照. RT-PCR及流式细胞术鉴定A, B, C 3组细胞表面CD40L和CD40的表达后, A, B, C 3组细胞分别设6个复孔培养72 h后, 流式细胞术检测细胞凋亡、细胞周期分布和Fas表达.

结果: 测序结果显示人CD40L基因真核表达质粒CD40L-pcDNATM3.1/myc-His(-)A构建成功. 流式细胞术检测A组HepG2细胞表面CD40L表达为39.7%, CD40表达为15.4%; B和C组细胞表面仅有CD40表达, 分别为31.7%和28.5%. A组细胞凋亡率45.0±0.3%, B, C组均未发生明显凋亡(P<0.01). 与C组细胞比较, A组细胞周期分布主要阻滞在G1期(90.4±1.3% vs 60.6±1.5%, P<0.01), S期(6.32±1.0% vs 12.0±0.7%)和G2/M期分布(3.3±0.7% vs 27.3±1.2%)均有减少(P<0.01). A组细胞Fas表达率(27.8±1.5%)较B组(3.2±0.8%)和C组(4.2±1.0%)明显上调(P<0.01).

结论: 我们构建的人CD40L基因真核表达质粒CD40L-pcDNATM3.1/myc-His(-)A可以在人肝癌细胞HepG2中稳定表达, CD40L对于HepG2细胞具有促凋亡的作用, 这可能与CD40L-CD40作用后导致HepG2细胞Fas表达上调和细胞周期阻滞有关.

关键词: 肝癌; CD40L; 质粒; 真核表达载体

引文著录: 徐智, 沈苏南, 钱晓萍, 禹立霞, 刘宝瑞. 人CD40 ligand基因真核表达质粒的构建及对人肝癌细胞HepG2的促凋亡作用. 世界华人消化杂志 2005; 13(20): 2413-2419
Construction and expression of a eukaryotic expression plasmid containing human CD40 ligand in human hepatocellular carcinoma cell line HepG2 and its effect on apoptosis
Zhi Xu, Su-Nan Shen, Xiao-Ping Qian, Li-Xia Yu, Bao-Rui Liu
Zhi Xu, Su-Nan Shen, Xiao-Ping Qian, Li-Xia Yu, Bao-Rui Liu, Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
Supported by: National Natural Science Foundation of China, No. 30471701.
Correspondence to: Professor Bao-Rui Liu, Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing 210008, Jiangsu Province, China. baoruiliu@medmail.com.cn
Received: August 29, 2005
Revised: September 1, 2005
Accepted: September 6, 2005
Published online: October 28, 2005

AIM: To construct and express a eukaryotic expression plasmid containing human CD40 ligand (CD40L) in human hepatocellular carcinoma cell line HepG2 for the biological function study of CD40L on HepG2 cells.

METHODS: Human CD40L cDNA was synthesized by reverse transcription-polymerase chain reaction (RT-PCR) with the specific primers from the RNA of human peripheral blood monocyte (PBMC) and directly ligated into the eukaryotic expression vector pcDNATM3.1/myc-His(-)A through digestion with specific restriction endonuclease. The recombined plasmid was transformed into the E. coli DH5α to amplify CD40L gene. Then HepG2 cells were divided into 4 groups. The cells in group A were transfected with the recombined plasmid, and group B with the blank plasmid (not containing CD40L cDNA). The cells in group C were just normally cultured, and the ones in group D weren't transfected but added G418 as the control for transfection. The expression of CD40L and CD40 were detected by RT-PCR and fluorescent activated cell sorter (FACS) in HepG2 cells, and the apoptosis, cell cycle, as well as Fas expression, were measured by FACS.

RESULTS: The full-length human CD40L cDNA was successfully cloned into the eukaryotic vector pcDNATM3.1/myc-His(-)A. The recombinant plasmid was stably transfected into group A and the rate of CD40L expression was 39.7%. There was no CD40L expression in group B and C. The rates of CD40 expression in group A, B and C were 15.4%, 31.7% and 28.5%, respectively. The apoptotic rate of group A was 45.0±0.3%, but neither group B or C showed obvious apoptosis (P <0.01). Compared with group C, a larger proportion of cells in group A was restrained at G0/G1 phase (90.4±1.3% vs 60.6±1.5%, P <0.01), while the proportions of the cells in S phase (6.32±1.0% vs 12.0±0.7%) and G2/M phase (3.3±0.7% vs 27.3±1.2%) were reduced (both P <0.01). The expression of Fas in group A showed marked increase as compared with that in group B and C (27.8±1.5% vs 3.2±0.8%, 4.2±1.0%, respectively, both P <0.01).

CONCLUSION: The eukaryotic expression plasmid pcDNATM3.1/myc-His(-)A can be stably expressed in HepG2 cell line. CD40L-induced apoptosis of HepG2 is correlated with the increased expression of Fas and cell cycle arrest.

Key Words: Hepatocellular carcinoma; CD40 ligand; Plasmid; Eukaryotic expression vector


0 引言

原发性肝癌(HCC)是最常见的恶性肿瘤, 除手术切除外对放疗和化疗多不敏感. 日本临床研究发现CD3mAb激活的淋巴细胞治疗手术后HCC患者与手术后未行免疫治疗的患者相比, 无病生存时间获得显著延长[1]. 提示免疫基因疗法(immunogenetic therapy)在肝癌的治疗中具有潜力. CD40 ligand(CD40L), 属于肿瘤坏死因子(TNF)基因超家族, 主要在活化的T淋巴细胞表面表达. 转基因表达CD40L的细胞联合其他细胞因子可刺激B细胞体外大量扩增, 使之成为丰富的抗原递呈细胞(APC), 在B细胞瘤苗制备及特异性免疫治疗领域发挥重要作用[2-5]. 我们在肝癌特异性B细胞瘤苗的制备中, 构建了含有人CD40L的真核表达载体, 并使其在人肝癌细胞HepG2中稳定表达, 发现CD40L对于HepG2细胞有促进凋亡的作用, 并对这一作用机制进行探讨.

1 材料和方法
1.1 材料

人肝癌HepG2细胞株、大肠杆菌E.coli DH5α由本实验室提供; 健康人外周血来源于南京市血液中心; 淋巴细胞分离液(Ficoll, 上海生化试剂二厂); pcDNATM3.1/myc-His(-)A、RPMI 1640培养液、Trizol试剂盒和LipofectamineTM 2000(Invitrogen公司); 小牛血清(FCS, 杭州四季青公司); M-MLV RTase cDNA Synthesis试剂盒、DL 2000 marker、BamHⅠ、EcoRⅠ、BglⅡ和HindⅢ(Takara公司); Taq酶和T4连接酶(Promega公司); 小量胶回收试剂盒(上海华舜生物公司); 鼠抗人FITC-CD40LmAb, 鼠抗人FITC-CD40mAb, 鼠抗人PE-FasmAb, Annexin V: PE Apoptosis Detection KitⅠ和CycleTEST PlusTM试剂盒(BD公司). 引物合成和测序由上海博亚生物公司完成.

1.2 方法

使用淋巴细胞分离液常规分离人外周血单个核细胞(PBMC). RPMI 1640, 100 mL/L FCS, 4 mg/L植物血凝素培养PBMC 12 h后收集细胞, 用Trizol抽提总RNA, M-MLV RTase cDNA Synthesis试剂盒制备cDNA文库. PCR扩增cDNA文库中CD40L cDNA. 引物f: CG GAA TTC GCC ACC ATG ATC GAA ACA TAC AAC C, r: CCG GGA TCC TCA GAG TTT GAG TAA GCC AAAG. 反应条件: 95℃ 5 min, 94℃ 30 s, 64℃ 45 s, 72℃ 1 min, 循环35次, 72℃ 10 min. 扩增后的CD40L cDNA和pcDNATM3.1/myc-His(-)A分别经过EcoRⅠ和BamHⅠ酶切后使用琼脂糖电泳, 小量胶回收试剂盒回收带有BamHⅠ和EcoRⅠ酶切位点的CD40L cDNA和pcDNATM3.1/myc-His(-)A, T4连接酶连接回收片断获得重组质粒. 重组质粒转化大肠杆菌E.coli DH5α, 在50 mg/L氨苄青霉素LB培养板上培养并筛选阳性克隆细菌. 挑取10个阳性克隆细菌经SDS碱裂解法抽提重组质粒后分别行EcoRⅠ和BamHⅠ, BglⅡ和EcoRⅠ以及Hind Ⅲ酶切鉴定. 3种酶切结果均与预计相符的重组质粒通过ABI 3730自动测序仪测序鉴定. 使用LipofectamineTM 2000转染HepG2细胞, 实验分4组: A组: 测序正确的重组质粒CD40L-pcDNATM3.1/myc-His(-)A转染HepG2细胞; B组: 不含CD40L的空质粒pcDNATM3.1/myc-His(-)A转染HepG2细胞; C组: HepG2细胞单纯培养; D组: HepG2细胞加入G418. 待细胞生长融合达90%后转染, 按4 mg质粒和10 mL LipofectamineTM 2000的比例制备脂质体DNA复合物转染细胞, 转染后24 h更换含100 mL/L FCS的RPMI 1640完全培养液, 48 h后1∶10稀释A, B, D组细胞并加入300 mg/L G418加压筛选, C组细胞继续单纯培养. 10 d后, D组细胞完全死亡, A, B组细胞形成具有G418抗性基因的克隆, 继续在96孔板中培养单克隆细胞并扩增. 使用Trizol抽提A, B, C组细胞中总RNA, 经RT-PCR扩增后琼脂糖电泳PCR产物. 引物使用f和r, 反应条件同上. A, B, C组细胞各取1×105个, 分别混合鼠抗人FITC-CD40LmAb和鼠抗人FITC-CD40mAb各10 mL, 室温避光孵育30 min, PBS洗涤2遍, 流式细胞仪(FACS)检测CD40L和CD40表达. 3组细胞各以2×105个/孔接种在6孔板内, 每组设6个复孔, 100 mL/L FCS RPMI 1640培养液在50 mL/L CO2, 37℃培养箱中培养72 h, 48 h后换液. 培养72 h后的3组细胞各复孔分别使用Annexin V: PE Apoptosis Detection KitⅠ, CycleTEST PlusTM试剂盒和鼠抗人E-FasmAb经流式细胞仪检测凋亡, 细胞周期分布和Fas表达, 实验按说明书操作.

统计学处理 使用方差分析和t检验.

2 结果

CD40L cDNA接入在pcDNATM3.1/myc-His(-)A多克隆位点EcoRⅠ和BamHⅠ之间, EcoRⅠ和BamHⅠ酶切结果显示pcDNATM3.1/myc-His(-)A长约5.5 kb, CD40L cDNA长约800 bp; BglⅡ和EcoRⅠ为CD40L-pcDNATM3.1/myc-His(-)A内在唯一限制性内切酶位点, BglⅡ和EcoRⅠ之间约为1.7 kb, 其余约为4.5 kb; Hind Ⅲ为CD40L cDNA和pcDNATM3.1/myc-His(-)A内部各含有的一个限制性内切酶位点, 之间长度约为300 bp, 其余约为6 kb(图1). 测序结果显示CD40L cDNA序列与NIH公布的CD40L cDNA序列一致, 并且接入方向正确(图2). RT-PCR后电泳结果显示所得PCR产物长度约为800 bp, 与CD40L cDNA长度一致, 而转染空质粒和未转染的HepG2细胞总RNA经RT-PCR后没有CD40L cDNA(图3). A组HepG2细胞表面有CD40L和CD40稳定表达, 其中CD40L表达为39.7%, CD40表达为15.4%; B, C组细胞表面仅有CD40表达, 分别为31.7%和28.5%(图4). A组细胞凋亡率45.0±0.3%, B和C组均未发生明显凋亡(P<0.01)(图5和表1). A组细胞周期G0/G1, S和G2/M分别为90.4±1.3%, 6.32±1.0%, 3.3±0.7%, C组分别为60.6±1.5%, 12.0±0.7%, 27.3±1.2%(图6). A组与C组相比, 细胞周期主要阻滞在G0/G1期(P<0.01), S和G2/M期分布减少(P<0.01)(表2). A, B, C组细胞Fas表达率分别为27.8±1.5%, 3.2±0.8%和4.2±1.0%(图7), A组表达率明显高于B, C组(P<0.01)(表3).

表1 3组细胞凋亡率(%, mean±SD).
ABC
凋亡率45.0±0.3b0.1±0.10.1±0.0
图1
图1 酶切检测各克隆质粒结果. A: EcoRⅠ和BamHⅠ酶切结果; B: Bgl Ⅱ和EcoRⅠ酶切结果; C: Hind Ⅲ酶切结果; M: DL 2000 marker (下同).
表2 细胞周期分布(%, mean±SD).
AC
G0/G190.4±1.3b60.6±1.5
S6.32±1.0d12.0±0.7
G2/M3.3±0.7f27.3±1.2
图2
图2 测序检测重组质粒结果.
表3 3组细胞Fas表达率(%, mean±SD).
ABC
Fas表达率27.8±1.5b3.2±0.84.2±1.0
图3
图3 RT-PCR检测3组细胞CD40L mRNA表达结果. 1: 重组质粒CD40L-pcDNATM3.1/myc-His(-)A转染的HepG2细胞; 2: 空质粒pcDNATM3.1/myc-His(-)A转染HepG2细胞; 3: HepG2细胞(下同).
图4
图4 FACS检测3组细胞CD40和CD40L结果.
图5
图5 FACS检测3组细胞凋亡结果.
图6
图6 FACS检测A, C组细胞周期分布. A: A组; B: C组.
图7
图7 FACS检测3组细胞Fas结果.
3 讨论

CD40L是35 ku的Ⅱ型膜蛋白, 属于肿瘤坏死因子(TNF)家族, 可以短暂表达在成熟的CD4+T细胞、CD8+T细胞亚群、γδT细胞、肥大细胞、IL-2激活的NK细胞等多种细胞表面. CD40L与CD40胞外区结合后, CD40形成多聚体复合物激活NF-κB(nuclear factor kappa of B cells)或经过TRAF家族分子、JAK3、STAT3等信号途径活化第二信使, 进一步调控核内基因转录[6]. 在正常B细胞中, CD40L-CD40通过NF-κB上调IL-6、黏附分子(CD54)和抗凋亡蛋白(cIAP1, cIAP2, Bcl-xL, A1等)表达[7,8], 促使B细胞增殖活化. 在T细胞中, CD40L-CD40上调TRAF1表达进而抑制CD8+T细胞凋亡[9]. 目前CD40L-CD40对肿瘤细胞生长调控机制尚未明确: 对于Hodgkin淋巴瘤, 低分化B细胞恶性肿瘤(如滤泡细胞淋巴瘤)等, CD40L-CD40可以导致肿瘤增殖、耐受化疗; 对于HIV相关淋巴瘤, CD40L-CD40活化的NF-κB促进病毒复制, 加速肿瘤的生长; 对于非HIV淋巴瘤, CD40L-CD40导致TRAF的活化促使其他TNFR家族成员(如Fas等)表达, 诱导细胞进入凋亡相关级联反应途径, 抑制肿瘤细胞生长[10-13].

我们发现, 转染重组质粒的HepG2细胞与对照组细胞(转染空质粒和未转染的HepG2细胞)相比CD40的表达发生下调, 推测这一变化可能与CD40L-CD40相互作用有关, 或由于CD40L基因在转录过程中产生了影响CD40转录的信号分子. CD40L在HepG2细胞中表达后对CD40表达影响的具体调控机制尚有待进一步研究. 我们构建的CD40L-pcDNATM3.1/myc-His(-)A可以在人肝癌细胞HepG2中稳定表达, 转染重组质粒的HepG2在表达CD40和CD40L的同时出现凋亡现象, 而对照组细胞在相同培养条件下均未出现凋亡, 说明pcDNATM3.1/myc-His(-)A对于HepG2细胞本身并不具有促凋亡作用, 而是由于CD40L-CD40相互作用而导致凋亡发生. 目前研究显示CD40L可以通过细胞周期阻断和/或诱导凋亡对多种肿瘤细胞(如乳腺癌、非小细胞肺癌、宫颈癌、膀胱癌、胶质细胞瘤等)产生生长抑制效应, 但是对于其相应的正常细胞并没有明显的副作用[14-21]. 本研究结果表明稳定表达CD40L的HepG2细胞, Fas表达上调, 细胞周期主要阻滞在G0/G1期, S期和G2/M期分布减少, 推断CD40L对HepG2的生长调控机制可能是通过CD40L-CD40作用促使TNFR家族成员Fas表达并阻断细胞生长周期, 诱导凋亡的发生.

目前已有研究证实将稳定表达CD40L的NIH3T3细胞作为刺激源活化DC与既往使用GM-CSF和IL-4培养方法相比, CD40L活化的DC MHCⅡ类分子、CD80和IL-12的表达更高, 可以在体内产生更强的激活CTL能力[22-27]. 另有研究报道CD40L可以持续扩增B细胞达56 d之久, 使之高表达MHCⅠ, MHCⅡ, CD80, CD86等抗原递呈必需的分子, 并有效提呈肿瘤细胞裂解物、抗原肽、抗原cDNA甚至RNA, 诱发特异性细胞免疫反应[28-30]. 我们构建的稳定表达CD40L的HepG2细胞是否具有同样活化DC或B细胞的能力, 同时CD40L作为细胞免疫应答中关键的共刺激分子, 能否增强HepG2细胞作为抗原的免疫原性, 这些表达CD40L的HepG2细胞和凋亡细胞可否成为更有利于APC提呈的抗原, 将是我们深入研究的方向. 总之, 人CD40L基因真核表达质粒CD40L-pcDNATM3.1/myc-His(-)A可以在人肝癌细胞HepG2中稳定表达, CD40L的稳定表达引起HepG2细胞CD40表达下调、Fas表达上调和细胞周期阻滞在G1期, 产生促凋亡作用. 以上结果将有助于今后对CD40L在肝癌免疫治疗中的应用进行深入研究.

电编: 张敏 编辑: 潘伯荣 审读: 张海宁

1.  Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. 2000;356:802-807.  [PubMed]  [DOI]
2.  von Bergwelt-Baildon MS, Vonderheide RH, Maecker B, Hirano N, Anderson KS, Butler MO, Xia Z, Zeng WY, Wucherpfennig KW, Nadler LM. Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential for clinical application. Blood. 2002;99:3319-3325.  [PubMed]  [DOI]
3.  Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 2003;63:2836-2843.  [PubMed]  [DOI]
4.  Ivanov R, Aarts T, Hagenbeek A, Hol S, Ebeling S. B-cell expansion in the presence of the novel 293-CD40L-sCD40L cell line allows the generation of large numbers of efficient xenoantigen-free APC. Cytotherapy. 2005;7:62-73.  [PubMed]  [DOI]
5.  Coughlin CM, Vance BA, Grupp SA, Vonderheide RH. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood. 2004;103:2046-2054.  [PubMed]  [DOI]
6.  Xu Y, Song G. The role of CD40-CD154 interaction in cell immunoregulation. J Biomed Sci. 2004;11:426-438.  [PubMed]  [DOI]
7.  Herold MJ, Kuss AW, Kraus C, Berberich I. Mitochondria-dependent caspase-9 activation is necessary for antigen receptor-mediated effector caspase activation and apoptosis in WEHI 231 lymphoma cells. J Immunol. 2002;168:3902-3909.  [PubMed]  [DOI]
8.  Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680-1683.  [PubMed]  [DOI]
9.  Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem. 1998;273:34120-34127.  [PubMed]  [DOI]
10.  Clodi K, Asgari Z, Younes M, Palmer JL, Cabanillas F, Carbone A, Andreeff M, Younes A. Expression of CD40 ligand (CD154) in B and T lymphocytes of Hodgkin disease: potential therapeutic significance. Cancer. 2002;94:1-5.  [PubMed]  [DOI]
11.  Johnson PW, Watt SM, Betts DR, Davies D, Jordan S, Norton AJ, Lister TA. Isolated follicular lymphoma cells are resistant to apoptosis and can be grown in vitro in the CD40/stromal cell system. Blood. 1993;82:1848-1857.  [PubMed]  [DOI]
12.  Berberich I, Shu G, Siebelt F, Woodgett JR, Kyriakis JM, Clark EA. Cross-linking CD40 on B cells preferentially induces stress-activated protein kinases rather than mitogen-activated protein kinases. EMBO J. 1996;15:92-101.  [PubMed]  [DOI]
13.  Schattner EJ, Mascarenhas J, Bishop J, Yoo DH, Chadburn A, Crow MK, Friedman SM. CD4+ T-cell induction of Fas- mediated apoptosis in Burkitt's lymphoma B cells. Blood. 1996;88:1375-1382.  [PubMed]  [DOI]
14.  Alexandroff AB, Jackson AM, Paterson T, Haley JL, Ross JA, Longo DL, Murphy WJ, James K, Taub DD. Role for CD40-CD40 ligand interactions in the immune response to solid tumours. Mol Immunol. 2000;37:515-526.  [PubMed]  [DOI]
15.  Tong AW, Papayoti MH, Netto G, Armstrong DT, Ordonez G, Lawson JM, Stone MJ. Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res. 2001;7:691-703.  [PubMed]  [DOI]
16.  Cui W, Li LY. Functional modulating effect of CD40 ligand on CD40-transfected human lung carcinomas. Zhonghua Zhongliu Zazhi. 2004;26:150-153.  [PubMed]  [DOI]
17.  Gao YL, Shi HZ, Liu M, Gu XS. Inhibition of human glioma cell growth by a soluble recombinant human CD40 ligand. Aizheng. 2002;21:1112-1115.  [PubMed]  [DOI]
18.  Yamada M, Shiroko T, Kawaguchi Y, Sugiyama Y, Egilmez NK, Chen FA, Bankert RB. CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors. Int J Cancer. 2001;92:589-599.  [PubMed]  [DOI]
19.  Hess S, Engelmann H. A novel function of CD40: induction of cell death in transformed cells. J Exp Med. 1996;183:159-167.  [PubMed]  [DOI]
20.  Eliopoulos AG, Dawson CW, Mosialos G, Floettmann JE, Rowe M, Armitage RJ, Dawson J, Zapata JM, Kerr DJ, Wakelam MJ. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene. 1996;13:2243-2254.  [PubMed]  [DOI]
21.  Bugajska U, Georgopoulos NT, Southgate J, Johnson PW, Graber P, Gordon J, Selby PJ, Trejdosiewicz LK. The effects of malignant transformation on susceptibility of human urothelial cells to CD40-mediated apoptosis. J Natl Cancer Inst. 2002;94:1381-1395.  [PubMed]  [DOI]
22.  Mazouz N, Ooms A, Moulin V, Van Meirvenne S, Uyttenhove C, Degiovanni G. CD40 triggering increases the efficiency of dendritic cells for antitumoral immunization. Cancer Immun. 2002;2:2.  [PubMed]  [DOI]
23.  Li Q, Grover AC, Donald EJ, Carr A, Yu J, Whitfield J, Nelson M, Takeshita N, Chang AE. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J Immunol. 2005;175:1424-1432.  [PubMed]  [DOI]
24.  Korokhov N, Noureddini SC, Curiel DT, Santegoets SJ, Scheper RJ, de Gruijl TD. A single-component CD40-targeted adenovirus vector displays highly efficient transduction and activation of dendritic cells in a human skin substrate system. Mol Pharm. 2005;2:218-223.  [PubMed]  [DOI]
25.  Cignetti A, Vallario A, Roato I, Circosta P, Allione B, Casorzo L, Ghia P, Caligaris-Cappio F. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses. J Immunol. 2004;173:2855-2865.  [PubMed]  [DOI]
26.  Schlienger K, Chu CS, Woo EY, Rivers PM, Toll AJ, Hudson B, Maus MV, Riley JL, Choi Y, Coukos G. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin Cancer Res. 2003;9:1517-1527.  [PubMed]  [DOI]
27.  Loskog A, Totterman TH, Bohle A, Brandau S. In vitro activa-tion of cancer patient-derived dendritic cells by tumor cells genetically modified to express CD154. Cancer Gene Ther. 2002;9:846-853.  [PubMed]  [DOI]
28.  Schultze JL, Michalak S, Seamon MJ, Dranoff G, Jung K, Daley J, Delgado JC, Gribben JG, Nadler LM. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest. 1997;100:2757-2765.  [PubMed]  [DOI]
29.  Van den Bosch GA, Ponsaerts P, Nijs G, Lenjou M, Vanham G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF. Ex vivo induction of viral antigen-specific CD8 T cell responses using mRNA-electroporated CD40-activated B cells. Clin Exp Immunol. 2005;139:458-467.  [PubMed]  [DOI]
30.  Rodriguez-Pinto D, Moreno J. B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol. 2005;35:1097-1105.  [PubMed]  [DOI]