Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jan 21, 2025; 31(3): 102283
Published online Jan 21, 2025. doi: 10.3748/wjg.v31.i3.102283
Table 1 Patient characteristics in the training and test cohorts
Clinical characteristicsTraining cohort (n = 55)
Test cohort (n = 18)
MH
Non-MH
P value
MH
Non-MH
P value
Age (year)27.32 ± 11.7334.81 ± 10.930.00731.67 ± 8.5040.92 ± 13.910.158
Gender, n (%)0.3840.316
Male16 (84.21)25 (69.44)6 (100.00)8 (66.67)
Female3 (15.79)11 (30.56)0 (0.00)4 (33.33)
Disease duration, months27.11 (23.50)48.58 (43.50)0.02125.67 (3.00)49.83 (37.00)0.11
Montreal location, n (%)0.7150.761
L113 (68.42)20 (55.56)4 (66.67)7 (58.33)
L34 (21.05)12 (33.33)2 (33.33)4 (33.33)
L1 + L41 (5.26)3 (8.33)0 (0.00)1 (8.33)
L3 + L41 (5.26)1 (2.78)0 (0.00)0 (0.00)
Montreal behavior, n (%)0.2190.187
B115 (78.95)21 (58.33)4 (66.67)3 (25.00)
B24 (21.05)12 (33.33)1 (16.67)7 (58.33)
B30 (0.00)3 (8.33)1 (16.67)2 (16.67)
Perianal involvement, n (%)13 (68.42)10 (27.78)0.0091 (16.67)3 (25.00)1.000
Treatment history, n (%)
5-aminosalicylic acid2 (10.53)5 (13.89)1.000 (0.00)0 (0.00)1.000
Steroids4 (21.05)15 (41.67)0.2182 (33.33)5 (41.67)1.000
Immunomodulator4 (21.05)19 (52.78)0.0482(33.33)5 (41.67)1.000
Anti-TNF agent17 (89.47)27 (75.00)0.3574 (66.67)9 (75.00)1.000
Smoking history, n (%)3 (15.79)6 (16.67)1.0003 (50.00)3 (25.00)0.596
CDAI, mean (IQR)63.51 (31.09)92.84 (89.14)0.58951.72 (35.21)82.96 (62.13)0.200
BMI (mean ± SD)20.98 ± 3.2821.15 ± 3.730.93723.75 ± 5.0620.60 ± 1.990.250
WBC (× 109/L)5.69 ± 1.565.97 ± 1.920.5865.50 ± 2.405.08 ± 1.640.779
NLR1.67 ± 0.702.47 ± 1.110.0061.93 ± 1.173.80 ± 5.710.335
HB (g/L)139.58 ± 11.79120.19 ± 27.900.004136.83 ± 15.94132.08 ± 23.510.664
HCT (%)42.07 ± 3.5037.12 ± 7.340.00441.05 ± 4.8139.61 ± 6.490.638
ALB (g/L)42.55 ± 2.8539.07 ± 4.750.00642.60 ± 1.4138.87 ± 5.240.068
CRP (mg/dL)2.56 (1.44)9.86 (8.38)0.0001.51 (0.24)9.00 (10.64)0.067
CPT (μg/g)348.02 (455.37)513.29 (410.31)0.012349.45 (374.54)677.13 (258.78)0.111
Table 2 Diagnostic performance of the radiomic signature based on different machine learning models in the training and test cohorts
Model

AUC (95%CI)
ACC
SENS
SPEC
PPV
NPV
LRTraining0.950 (0.893-1.000)0.9270.8420.9720.9410.921
Test0.806 (0.598-1.000)0.7221.0000.5830.5451.000
SVMTraining0.959 (0.887-1.000)0.9640.9470.9720.9470.972
Test0.944 (0.843-1.000)0.8890.8330.9170.8330.917
ExtraTreesTraining0.965 (0.915-1.000)0.9450.8950.9720.9440.946
Test0.917 (0.783-1.000)0.8331.0000.7500.6671.000
XGBoostTraining0.971 (0.938-1.000)0.9090.9470.8890.8180.970
Test0.882 (0.741-1.000)0.7781.0000.6670.6001.000
LightGBMTraining0.932 (0.863-1.000)0.8910.8950.9140.8100.941
Test0.750 (0.506-0.994)0.6671.0000.5000.5001.000
Table 3 Diagnostic performance of the clinical, radiomic, and nomogram models
ModelTraining cohort (n = 55)
Test cohort (n = 18)
AUC (95%CI)
ACC
SENS
SPEC
AUC (95%CI)
ACC
SENS
SPEC
Clinical model0.917 (0.828-1.000)0.8910.8950.8890.854 (0.678-1.000)0.7781.0000.667
Radiomic model0.959 (0.887-1.000)0.9640.9470.9720.944 (0.843-1.000)0.8890.8330.917
Nomogram0.961 (0.886-1.000)0.9640.9470.9720.958 (0.877-1.000)0.8891.0000.833