Qian GX, Xu ZL, Li YH, Lu JL, Bu XY, Wei MT, Jia WD. Computed tomography-based radiomics to predict early recurrence of hepatocellular carcinoma post-hepatectomy in patients background on cirrhosis. World J Gastroenterol 2024; 30(15): 2128-2142 [PMID: 38681988 DOI: 10.3748/wjg.v30.i15.2128]
Corresponding Author of This Article
Wei-Dong Jia, PhD, Doctor, Department of Hepatic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei 230001, Anhui Province, China. jwd1968@ustc.edu.cn
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Apr 21, 2024; 30(15): 2128-2142 Published online Apr 21, 2024. doi: 10.3748/wjg.v30.i15.2128
Table 1 The clinical-radiologic characteristics of primary cohort, n (%)
Variable
Training cohort (n = 150)
Validation cohort (n = 64)
P value
Tumor-volume (cm3), mean ± SD
249 ± 381
318 ± 361
0.219
Age (yr), mean ± SD
57.3 ± 10.1
54.5 ± 11.7
0.079
Rad-score
0.4 ± 0.2
0.52 ± 0.16
0.121
BMI
0.691
0, < 18.5
7 (4.67)
3 (4.69)
1, 18.5-25
109 (72.7)
43 (67.2)
2, ≥ 25
34 (22.7)
18 (28.1)
AFP (ng/mL)
0.382
0, ≤ 400
91 (60.7)
34 (53.1)
1, > 400
59 (39.3)
30 (46.9)
sex
0.839
0, male
128 (85.3)
56 (87.5)
1, female
22 (14.7)
8 (12.5)
Hepatitis (HBV/HCV)
0.407
0, absent
22 (14.7)
6 (34.4)
1, present
128 (85.3)
58 (90.6)
N (× 109/L)
0.275
0, < 1.8
127 (84.7)
54 (84.4)
1, 1.8-6.3
18 (12.0)
10 (15.6)
2, > 6.3
5 (3.33)
0 (0.00)
L (× 109/L)
0.504
0, ≥ 1.1
119 (79.3)
54 (84.4)
1, < 1.1
31 (20.7)
10 (15.6)
PLT (× 109/L)
0.703
0, > 100
120 (80.0)
49 (76.6)
1, ≤ 100
30 (20.0)
15 (23.4)
ALT (U/L)
0.959
0, ≤ 50
117 (78.0)
49 (76.6)
1, > 50
33 (22.0)
15 (23.4)
AST (U/L)
0.854
0, > 40
67 (44.7)
27 (39.1)
1, ≤ 40
83 (55.3)
39 (60.9)
GGT (U/L)
0.113
0, ≤ 60
78 (52.0)
25 (43.8)
1, > 60
72 (48.0)
39 (56.2)
TB (umol/L)
0.605
0, ≤ 21
110 (73.3)
44 (68.8)
1, > 21
40 (26.7)
20 (31.2)
ALB (g/L)
0.720
0, ≤ 40
76 (50.7)
30 (46.9)
1, > 40
74 (49.3)
34 (53.1)
NLR
0.697
0, ≤ 2
74 (49.3)
29 (45.3)
1, > 2
76 (50.7)
35 (54.7)
PLR
0.528
0, ≥ 95
78 (52.0)
37 (57.8)
1, < 95
72 (48.0)
27 (42.2)
HbsAg
1
Negative
18 (12.0)
8 (12.5)
Positive
132 (88.0)
56 (87.5)
BCLC
0.554
0, stage0
7 (4.67)
5 (7.81)
1, stageA
143 (95.3)
59 (92.2)
CNLC
0.308
0, Ia
74 (49.3)
26 (40.6)
1, Ib
76 (50.7)
38 (59.4)
Non-peripheral washout
0.738
0, absent
2 (1.33)
2 (3.12)
1, present
148 (98.7)
62 (96.9)
Tumor capsule
0.110
0, ill-defined capsule
58 (38.7)
33 (51.6)
1, well-defined capsule
92 (61.3)
31 (48.4)
Intratumor vascularity
0.654
0, absent
24 (16.0)
8 (12.5)
1, present
126 (84.0)
56 (87.5)
Tumor growth pattern
0.635
0, intrahepatic growth
56 (37.3)
21 (32.8)
1, extrahepatic growth
94 (62.7)
43 (67.2)
Fusion lesions
0.255
0, absent
87 (58.0)
31 (48.4)
1, present
63 (42.0)
33 (51.6)
Intratumor necrosis
0.05
0, absent
47 (31.3)
11 (17.2)
1, present
103 (68.7)
53 (82.8)
Peritumoral enhancement
1
0, absent
90 (60.0)
39 (60.9)
1, present
60 (40.0)
25 (39.1)
Tumor margin
0.76
0, smooth
84 (56.0)
38 (59.4)
1, non-smooth
66 (44.0)
26 (40.6)
Arterial phase hyperenhancement
0.738
0, absent
2 (1.33)
2 (3.12)
1, present
148 (98.7)
62 (96.9)
Table 2 Of 150 patients univariate and multivariate logistic regression analysis
Variable
Univariable
Multivariable
OR
95%CI
P value
OR
95%CI
P value
Tumor-volume
1.00
1.00-1.00
0.022
1.00
1.00-1.00
0.189
Rad-score
238.02
20.57-2754.04
0.001
298.44
12.57-7083.67
< 0.001
AST
0, > 40
1, ≤ 40
0.47
0.25-0.91
0.025
0.93
0.38-2.29
0.875
GGT
0, ≤ 60
1, > 60
3.99
2.02-7.86
0.001
2.50
1.07-5.86
0.034
CNLC
0, Ia
1, Ib
2.26
1.17-4.35
0.015
1.02
0.39-2.63
0.975
Capsule appearance
0, ill-defined
1, well-defined capsule
0.44
0.23-0.86
0.017
0.33
0.14-0.77
0.01
Peritumoral enhancement
0, absent
1, present
3.21
1.62-6.34
0.001
3.85
1.67-8.88
0.002
Table 3 Comparison of machine learning model performance
Models
Training cohort
Validation cohort
Accuracy
Precision
AUC
Accuracy
Precision
AUC
Cli
SVM
0.720
0.750
0.736
0.688
0.867
0.686
RF
0.720
0.750
0.768
0.688
0.867
0.680
KNN
0.693
0.667
0.763
0.672
0.756
0.701
XGB
0.720
0.750
0.768
0.688
0.867
0.680
LightGBM
0.720
0.750
0.761
0.688
0.867
0.693
Rad
SVM
0.673
0.695
0.726
0.719
0.853
0.756
RF
0.753
0.761
0.849
0.672
0.744
0.688
KNN
0.713
0.716
0.809
0.656
0.778
0.690
XGBoost
0.860
0.849
0.945
0.594
0.700
0.588
LightGBM
0.727
0.696
0.820
0.688
0.729
0.629
Con
SVM
0.727
0.754
0.778
0.688
0.867
0.739
RF
0.727
0.731
0.820
0.797
0.872
0.777
KNN
0.767
0.747
0.844
0.719
0.816
0.790
XGB
0.840
0.875
0.924
0.609
0.743
0.656
LightGBM
0.807
0.787
0.892
0.719
0.800
0.771
Table 4 Delong test between models
Model
Model
Train
Validation
Z
P value
Z
P value
Cli
Rad
0.757
0.449
-0.791
0.429
Cli
Con
-2.988
0.003
-2.099
0.036
Rad
Con
-3.253
0.001
-0.713
0.476
Citation: Qian GX, Xu ZL, Li YH, Lu JL, Bu XY, Wei MT, Jia WD. Computed tomography-based radiomics to predict early recurrence of hepatocellular carcinoma post-hepatectomy in patients background on cirrhosis. World J Gastroenterol 2024; 30(15): 2128-2142