Mao J, Chao K, Jiang FL, Ye XP, Yang T, Li P, Zhu X, Hu PJ, Zhou BJ, Huang M, Gao X, Wang XD. Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population. World J Gastroenterol 2023; 29(24): 3855-3870 [PMID: 37426324 DOI: 10.3748/wjg.v29.i24.3855]
Corresponding Author of This Article
Xue-Ding Wang, PharmD, Professor, Teacher, Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, No. 132 Waihuan Dong Road, Guangzhou 510006, Guangdong Province, China. wangxd@mail.sysu.edu.cn
Research Domain of This Article
Medicine, Research & Experimental
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Jun 28, 2023; 29(24): 3855-3870 Published online Jun 28, 2023. doi: 10.3748/wjg.v29.i24.3855
Table 1 Patients characteristics
Characteristics
Values (n = 164)
Male/Female
119/45
Age (yr)
34.3 ± 12.7
Thalidomide dosage mg/kg/d
1.5 (0.3-2.9)
White blood cell ( 109/L)
6.2 ± 2.7
Peripheral neuropathy
59 (36%)
Duration of thalidomide treatment (m)
17.2 (1-60)
Table 2 Univariate analyses of factors associated with thalidomide-induced peripheral neuropathy
SNP
Gene
Minor allele
Main allele
OR
95%CI
P value
rs1353248
IL-12
T
C
8.983
2.497-30.90
0.0004
rs6265
BDNF
T
C
3.150
1.546-6.073
0.001
rs2030324
BDNF
G
A
3.164
1.561-6.434
0.001
rs11030104
BDNF
G
A
3.091
1.525-5.960
0.001
rs10991419
ABCA1
T
C
3.833
1.521-8.926
0.002
rs7795841
ABCB1
G
T
4.333
1.371-13.39
0.014
rs2575876
ABCA1
A
G
2.559
1.306-5.209
0.007
rs3918249
MMP9
T
C
3.800
1.208-10.50
0.016
rs7795846
ABCB1
A
G
3.690
1.155-10.25
0.020
rs62447181
IKZF1
A
G
2.933
0.763-9.514
0.096
rs11030100
BDNF
G
T
2.205
1.074-4.430
0.030
rs2777795
ABCA1
A
G
1.830
0.793-4.114
0.09
rs12718731
IKZF1
G
A
2.471
0.686-8.328
0.1
rs34165419
ABCA1
T
C
2.564
0.664-10.41
0.1
Table 3 Performance of the models for training set (all features)
Model
Precision
Sensitivity
Specificity
Accuracy
AUROC
F1 score
XGBoost
0.904
1
0.94
0.962
0.988
0.949
ET
0.526
1
0.471
0.667
0.999
0.69
GBDT
0.952
1
0.971
0.981
1
0.976
LR
0.613
0.95
0.647
0.759
0.907
0.745
RF
0.769
1
0.824
0.889
0.996
0.87
Table 4 Performance of the models for testing set (all features)
Model
Precision
Sensitivity
Specificity
Accuracy
AUROC
F1 score
XGBoost
0.75
0.75
0.857
0.818
0.889
0.75
ET
0.667
1
0.667
0.8
0.833
0.8
GBDT
0.667
1
0.667
0.8
0.87
0.8
LR
0.8
0.667
0.889
0.8
0.741
0.727
RF
0.625
0.833
0.667
0.733
0.907
0.714
Citation: Mao J, Chao K, Jiang FL, Ye XP, Yang T, Li P, Zhu X, Hu PJ, Zhou BJ, Huang M, Gao X, Wang XD. Comparison and development of machine learning for thalidomide-induced peripheral neuropathy prediction of refractory Crohn’s disease in Chinese population. World J Gastroenterol 2023; 29(24): 3855-3870