Review
Copyright ©The Author(s) 2023.
World J Gastroenterol. Jan 7, 2023; 29(1): 43-60
Published online Jan 7, 2023. doi: 10.3748/wjg.v29.i1.43
Table 1 Summary of the studies that evaluated radiomics to preoperatively predict hepatocellular cholangiocarcinoma histology
Ref.
Country
n
Imaging modality
Endpoint
Segmentation
ROI/VOI
No. of readers
Main results
Validation
Wang et al[92], 2022China196MRIcHCC-CC vs HCCManual, intratumoralROI1AUC (delayed phase MRI): 0.91None
Liu et al[24], 2021Canada85MRI and CTcHCC-CC vs HCC vs CCManual, intratumoralROI2AUC (MRI): 0.77-0.81. AUC (CT): 0.71-0.81Cross-validation
Lewis et al[25], 2019United States63MRIcHCC-CC vs HCC vs CCManual, intratumoralVOI2AUC (LI-RADS and male gender): 0.90None
Nie et al[27], 2020China156CTHCC vs FNHManual, intratumoralROI2AUC (radiomics): 0.96 training, 0.87 validation. AUC (radiomics + clinical factors): 0.98 training, 0.92 validationNone
Wu et al[28], 2019China369MRIHCC vs hemangiomaManual, intratumoralROI2AUC: 0.86 training, 0.89 testingNone
Mokrane et al[29], 2020United States178CTHCC diagnosisManual, intratumoralVOI2AUC: 0.70 training, 0.66 validationExternal
Brancato et al[34], 2022Italy38MRITumor gradeManual, intratumoralVOI1AUC: 0.89None
Gao et al[93], 2018ChinaTraining: 125. Validation: 45MRITumor gradeManual, intratumoralN/AN/AAUC: 0.83 training, 0.74 validationNone
Wu et al[30], 2019ChinaTraining: 125. Validation: 45MRITumor gradeManual, intratumoralROI1AUC: 0.83 training, 0.74 validationInternal
Zhou et al[94], 2017China46MRITumor gradeManual, intratumoralROI1AUC: 0.83-0.92None
Mao et al[31], 2022ChinaTraining: 85. Validation: 37MRITumor gradeManual, intratumoralROI2AUC: 0.97 training, 0.94 validationInternal
Chen et al[33], 2021ChinaTraining: 112. Validation: 49CTTumor gradeManual, intratumoralVOI2AUC: 0.90 training, 0.94 validationInternal
Yang et al[95], 2019ChinaTraining: 146. Validation: 62Gadoxetic acid-enhanced MRIMVIManual, intratumoralROI2 (consensus)AUC: 0.94 training, 0.86 validationInternal
Xu et al[39], 2019China495CTMVISemi-automatic, intratumoral and peritumoralVOI3AUC: 0.91 training, 0.89 validationInternal
Feng et al[40], 2019China160Gadoxetic acid-enhanced MRIMVIManual, intratumoral and peritumoralVOI3AUC: 0.85 training, 0.83 validationInternal
Zheng et al[41], 2017United States120CTMVISemi-automaticROI1AUC: 0.80None
Bakr et al[96], 2017United States28CTMVIManual, intratumoralROI4AUC: 0.76None
Ma et al[97], 2019China157CTMVIManual, intratumoralVOI1AUC (portal venous phase CT): 0.79Cross-validation
Table 2 Summary of the studies that evaluated radiomics models to predict genetic profile in patients with hepatocellular cholangiocarcinoma
Ref.
Country
n
Imaging modality
Endpoint
Segmentation
ROI/VOI
No. of readers
Main results
Validation
Xia et al[98], 2018China38CTAssociation with gene expression profileManual, intratumoralROI1Individual textural features predicted gene modulesNo
Wu et al[44], 2022ChinaTraining: 120. Validation: 52CTKi-67 expressionManual, intratumoralVOI2AUC: 0.85 (training), 0.74 (validation)Internal
Li et al[45], 2019China83MRIKi-67 expressionManual, intratumoralROI2Some features were associated, no modelNo
Ye et al[47], 2019China89MRIKi-67 expressionManual, intratumoralVOI2C-index: 0.878No
Fan et al[46], 2021ChinaTraining: 103. Validation: 48MRIKi-67 expressionManual, intratumoralVOI2AUC: 0.88 (training), 0.80 (validation)Internal
Hu et al[48], 2022ChinaTraining: 87. Validation: 21MRIKi-67 expressionManual, intratumoralROI1AUC: 0.90 (training), 0.83 (validation)Internal
Wang et al[50], 2019China78MRICK19 positivityManual, intra- and peritumoralROI1AUC: 0.76No
Chen et al[51], 2021ChinaTraining: 102. Validation: 19MRICK19 positivityManual, intratumoralROI2AUC: 0.82 (training), 0.78 (external validation)Internal and external
Yang et al[52], 2021China (multi-center)Training: 143. Validation: 75MRICK19 positivityManual, intratumoralROI2AUC: 0.85 (training), 0.79 (external validation)Internal and external
Wu et al[55], 2019China63CTP53 mutation statusManual, intratumoralROI2AUC: 0.62-0.79No
Li et al[99], 2022China92MRIGene signatures associated with disease recurrenceManual, intratumoralROI2MRI radiomics features could help quantify GOLM1, SETD7, and RND1 expression levelsInternal
Liao et al[56], 2022ChinaTraining: 86. Validation: 46CTSomatic mutations of the PI3K signaling pathwayManual, intratumoral and peritumoralVOI2AUC: 0.74 (training), 0.73 (external validation)Internal and external
Che et al[60], 2022ChinaTraining: 69. Validation: 30CTβ-arrestin1 phosphorylationManual, intratumoralROI1AUC: 0.89 (training), 0.74 (validation)Internal
Table 3 Summary of the studies that assessed radiomics to predict recurrence and treatment response in patient with hepatocellular cholangiocarcinoma who underwent surgery, liver transplantation or locoregional treatment
Ref.CountrynImaging modalityEndpointTreatment typeSegmentationROI/VOINo. of readersMain resultsValidation
Hui et al[100], 2018Singapore50MRIRecurrenceHepatic resectionManual, intratumoralROI3AUC: 0.78-0.84None
Kim et al[65], 2019South KoreaTraining: 128. Validation: 39MRIRecurrenceHepatic resectionSemiautomatic, intra- and peritumoralVOI2C-index: 0.716Internal
Zhao et al[101], 2021ChinaTraining: 78. Validation: 35MRIRecurrenceHepatic resectionManual, intratumoralVOI2AUC: 0.83 (training), 0.77 (validation)Internal
Zhou et al[68], 2017China215CTRecurrenceHepatic resectionManual, intratumoralROI2AUC: 0.84 (combined model)None
Ji et al[64], 2020ChinaInternal: 177. External: 118CTRecurrenceHepatic resectionManual, intratumoralVOI1AUC: 0.77 (internal), 0.78 (external)External
Guo et al[69], 2019ChinaTraining: 93. Validation: 40CTRecurrenceLiver transplantSemiautomatic, intratumoralROI1AUC: 0.79 (training), 0.79 (validation)Internal
Shan et al[66], 2019ChinaTraining: 109. Validation: 47CTRecurrenceHepatic resection or ablationManual, intra- and peritumoralROI2AUC: 0.80 (training), 0.79 (validation)Internal
Zheng et al[79], 2018ChinaTraining: 212. Validation: 107CTRecurrence and survivalHepatic resectionManual, intratumoralROI2AUC: 0.64 (training), 0.59 (validation)Internal
Song et al[67], 2020ChinaTraining: 110. Validation: 74MRIRecurrenceTACESemiautomatic, intra- and peritumoralVOI2C-index: 0.82Internal
Lv et al[71], 2021ChinaTraining: 40. Validation: 18MRIRecurrenceRFASemiautomatic, intratumoralVOI2AUC: 0.94 (training), 0.82 (validation)Internal
Sun et al[70], 2020ChinaTraining: 67. Validation: 17MRIRecurrenceTACEManual (intratumoral)VOI2AUC: 0.71-0.79Internal
Cai et al[75], 2019ChinaTraining: 80. Validation: 32CTLiver failureHepatic resectionSemiautomatic, intratumoralROI2AUC: 0.82 (training), 0.76 (validation)Internal
Zhu et al[76], 2020China101MRILiver failureHepatic resectionManual, entire liverROI2AUC: 0.81-0.89None
Ivanics et al[73], 2021Canada88CTTreatment responseTACEManual, intratumoralVOI1AUC: 0.70-0.87None
Kong et al[72], 2021ChinaTraining: 69. Validation: 30MRITreatment responseTACEManual, intratumoralVOI2AUC: 0.81 (training), 0.87 (validation)Internal
Chen et al[63], 2021ChinaTraining: 355. Internal: 118. External: 122CTTreatment responseTACESemiautomatic, intra- and peritumoralROI2AUC: 0.94 (internal), 0.90 (external)Internal and external
Horvat et al[74], 2021Brazil34MRITreatment responseRFAManual, intratumoralVOI1AUC: 0.76None
Table 4 Summary of the studies that evaluated radiomics to predict survival in patients with hepatocellular cholangiocarcinoma
Ref.
Country
n
Imaging modality
Endpoint
Treatment type
Segmentation
ROI/VOI
No. of readers
Main results
Validation
Kiryu et al[77], 2017Japan122CTSurvivalHepatic resectionManual, intra- and peritumoralROI1OS and DFS were significantly different between 2 rad score groupsNone
Xu et al[39], 2019ChinaTraining: 350. Validation: 145CTSurvivalHepatic resectionSemiautomatic, intratumoralVOI3AUC: 0.91 (training), 0.81 (validation)Internal
Akai et al[78], 2018Japan127CTSurvivalHepatic resectionManual, intratumoralROI1OS and DFS were significantly different between 2 rad score groupsNone
Kim et al[80], 2018South Korea88CTSurvivalTACEManual, intratumoralROI1Combined clinical and radiomics score was a better predictor of survivalNone
Blanc-Durand et al[81], 2018Switzerland4718F-FDG PET-CTSurvivalTARESemiautomatic, whole liverVOIN/APFS-Rad Score and OS-Rad Score were independent negative predictorsNone
Petukhova-Greenstein et al[82], 2022United States65MRISurvivalRFASemiautomatic, intra- and peritumoralVOI2OS was significantly different between 2 rad score groupsNone
Zheng et al[79], 2018ChinaTraining: 212. Validation: 107CTSurvivalHepatic resectionManual, intratumoralROI2AUC: 0.71 (training and validation)Internal
Table 5 Summary of the studies that assessed reproducibility of hepatocellular cholangiocarcinoma textural features
Ref.
Country
n
Imaging modality
Segmentation
Segmentation software
ROI/VOI
No. of readers
Intra-reader reproducibility
Inter-reader reproducibility
Other reproducibility
Duan et al[88], 2022China19CT, MRIManual, intra- and peritumoral3D-SlicerROI2 (1 radiologist and 1 radiation oncologist)Features with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MRFeatures with ICC ≥ 0.75 in both tumoral and peritumoral tissue greatest in MRN/A
Zhang et al[102], 2022China90 (31 HCC)MRIManual, intratumoralITK-SNAPROI and VOI2 radiologistsN/AICC > 0.8 usedN/A
Carbonell et al[89], 2022United States55 (16 HCC)MRIManual, intratumoral and liver parenchymaOlea sphere 3.0, Olea MedicalROI for normal liver, VOI for HCC2 radiologistsN/ACCC: 0.80-0.99For test-retest (same MRI system, 2 different MRI exams): ICC: 0.53-0.99; and in liver parenchyma: ICC: 0.53-0.73. For inter-platform reproducibility (MRI systems from 2 different vendors): CCC: 0.58-0.99
Park et al[103], 2022South Korea249CTManual followed by automatic segmentation, intratumoralMEDIP PROROI and VOI1 radiologistFor VOI: Manual: ICC 0.594-0.998 for FO, 0.764-0.997 for shape, and 0.190-0.926 for SO; DL-AS: ICC > 0.75 for all. For ROI: Manual: 0.698-0.997 for FO, 0.556-0.997 for shape, and 0.341-0.935 for SO; DL-AS ICC > 0.75 for allN/A
Haniff et al[104], 2021Malaysia30MRIManual and semi-automatic, intratumoral3D-SlicerVOIManual: 4 readers. Semi-automatic: 2 readersN/AManual segmentation: ICC 0.897. Semi-automatic segmentation: ICC 0.952NA
Ibrahim et al[90], 2021Germany61 patients, 104 lesionsCTManual, intratumoralMIM softwareROI1 nonradiologist revised by radiologistN/AN/AAcross different contrast imaging phases: 25% of extracted features had CCC > 0.9 across arterial and portal venous phases
Hu et al[105], 2021China30CTManual, intratumoralMaZda softwareROI2 radiologistsICC > 0.7ICC > 0.7N/A
Mao et al[32], 2020China30CTManual, intratumoralITK-SNAPROI2 radiologistsN/AICC ≥ 0.8 N/A
Hu et al[106], 2020China50CTSemi-automatic, peritumoralNot mentionedROI2 radiologistsN/AICC > 0.6N/A
Qiu et al[107], 2019China26CTManual and semi-automatic, intratumoralGrowCut and GraphCutROIManual: 5 radiation oncologists. Semi-automatic: 2 radiation oncologistsN/AICC ≥ 0.75 in 69% of features extracted from manual segmentation, 73% from GraphCut, and 79% from GrowCutAcross different centers: Poor reproducibility of CT-based peritumoral-radiomics model
Zhang et al[108], 2019China46 (34 HCC)MRIManual, intratumoralMIM softwareVOI1 radiologistN/AN/AAcross different b-values: radiomic features extracted from b = 0, 20, 50, 100, 200 s/mm2 and b = 1000 s/mm2 and nearby b-values DWIs showed a high reproducibility (ICC ≥ 0.8)
Feng et al[40], 2019China160 (110)MRIManual, intra- and peritumoralITK-SNAPVOI3 radiologists85% ICC ≥ 0.882% ICC ≥ 0.8N/A
Perrin et al[91], 2018United States38 (6 HCC)CTSemi-automatic, intratumoral and liver parenchymaScout LiverVOI1 research fellow under supervision of radiologistN/AN/AAcross different contrast injection rates, pixel resolutions, and scanner models: Number of reproducible radiomic features (CCC > 0.9) decreased with variations in contrast injection rate, pixel resolution, and scanner model