Minireviews
Copyright ©The Author(s) 2022.
World J Gastroenterol. Oct 14, 2022; 28(38): 5530-5546
Published online Oct 14, 2022. doi: 10.3748/wjg.v28.i38.5530
Table 1 Application of ultrasound-based artificial intelligence in diffuse liver diseases
Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Byra et al[21]Severely obese patients: 55B-modeCNNSensitivity: 100%
Specificity: 88%
Accuracy: 96%
AUC: 0.98
Fatty liver disease: 38
Biswas et al[22]Normal patients: 27B-mode Deep learningAccuracy: 100%
Fatty liver disease: 36AUC: 1.0
Han et al[24]NAFLD: 140 B-mode CNNSensitivity: 97%
Specificity: 94%
Accuracy: 96%
Control: 64
AUC: 0.98
Yeh et al[28]Postsurgical human liver samples: 20B-mode SVMF2 accuracy: 91%
F3 accuracy: 85%
F4 accuracy: 81%
F6 accuracy: 72%
Zhang et al[29]Liver fibrosis or cirrhosis: 239Duplex ANNSensitivity: 95%
Specificity: 85%
Training group: 179
Validation group: 60Accuracy: 88%
Gao et al[30]S0: 4B-mode ANNS0 accuracy: 100%
S1: 16S1 accuracy: 90%
S2 accuracy: 70%
S3 accuracy: 90%
S2: 8S4 accuracy: 100%
S3: 5
S4: 4
Lee et al[31]Patients: 3446B-mode CNNAUC: 0.86
Internal validation set: 263
Internal test set: 266
External test set: 572
Gatos et al[34,35]Chronic liver disease: 70Shear-wave elastography SVMSensitivity: 94%
Healthy: 56Specificity: 81%
Accuracy: 87%
Wang et al[36]Liver fibrosis: 398Shear-wave elastography Deep learning radiomicF4 AUC: 0.97
Training group: 266
Validation group: 132F3 AUC: 0.98
F2 AUC: 0.85
Xue et al[38]Liver fibrosis: 401ElastographyCNN by TL radiomicsS2 AUC: 0.95
S3 AUC: 0.93
Patient without fibrosis: 65
S4 AUC: 0.93
Table 2 Application of ultrasound-based artificial intelligence in focal liver lesions
Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Xi et al[42]Benign lesions: 300B-mode CNNAll lesions
Accuracy: 84%
Uncertain set of lesions
Malignant lesions: 296Accuracy: 79%
Yang et al[43]Benign tumor: 427B-mode CNNAUC for EV: 0.924
Sensitivity: 86.5%
Malignant tumor: 1786
Specificity: 85.5%
Virmani et al[44]HCC: 27B-mode SVMAccuracy of HCC: 91.6%
Sensitivity
Metastatic liver tumor: 24HCC: 90%
Metastatic liver tumor: 93.3%
Hwang et al[49]Cyst: 29B-mode ANNAccuracy: 96%
Cyst vs hemangioma
Cyst vs malignant
Hemangioma: 37
Hemangioma vs malignant
Malignant: 33
Schmauch et al[50]Non-tumorous liver: 258B-mode CNNAUC
Hemangioma: 17FLL detection: 0.935
Metastasis: 48
HCC: 6
FLL discrimination: 0.916
Cyst: 30
FNH: 8
Tiyarattanachai et al[51]HCC: 2414B-mode CNNDetection rate: 87.0%
Cyst: 6600Sensitivity: 83.9%
Hemangioma: 5374
Specificity: 97.1%
Focal fatty sparing: 5110
Focal fatty infiltration: 934
Gatos et al[47]Benign FLL: 30CEUSSVMAccuracy: 90.3%
Sensitivity: 93.1%
Malignant FLL: 22Specificity: 86.9%
Kondo et al[46]Benign FLL: 31CEUSSVMBenign vs malignant
Accuracy: 91.8%
Sensitivity: 94%
Specificity: 87.1%
Accuracy
Malignant FLL: 67
Benign: 84.4%
HCC: 87.7%
Metastatic liver tumor: 85.7%
Guo et al[48]Benign FLL: 46CEUSDeep canonical correlation analysis and multiple kernel learning Accuracy: 90.4%
Sensitivity: 93.6%
Malignant FLL: 47Specificity: 86.8%
Streba et al[52]HCC: 41CEUSANNTraining accuracy: 94.5%
Hypervascular liver metastasis: 20Testing accuracy: 87.1%
Hypovascular liver metastasis: 12Sensitivity: 93.2%
Specificity: 89.7%
Hemangioma: 16
Focal fatty changes: 23
Căleanu et al[53]HCC: 30CEUSDeep neural network Accuracy: 88%
Hypervascular liver metastasis: 11
Hypovascular liver metastasis: 11
Hemangioma: 23
FNH: 16
Dong et al[56]HCC: 322B-mode RadiomicsAUC: 0.81
Hu et al[57]HCC: 482CEUSRadiomicsAUC: 0.731
Training cohort: 341
Validation cohort: 141
Zhang et al[58]HCC: 313CEUSRadiomicsAUC
Primary cohort: 192Primary dataset: 0.849
Validation cohort: 121Validation dataset: 0.788
Liu et al[63]HCC: 130CEUSDeep learning radiomicsAUC: 0.93
Training cohort: 89
Validation cohort: 41
Ma et al[66]HCC: 318CEUSRadiomicsAUC: 0.89
Training cohort: 255
Validation cohort: 63
Liu et al[69]HCC: 419CEUSDeep learning radiomicsC-index
RFA: 214RFA: 0.726
SR: 0.741
SR: 205
Table 3 Application of ultrasound-based artificial intelligence in gastrointestinal disease
Ref.
Diseases: number of cases
Type of ultrasound
Algorithm of AI
Performance
Kim et al[76]GISTs: 125B-mode EUSCNNSensitivity: 83.0%
Leiomyomas: 33Specificity: 75.5%
Accuracy: 79.2%
Schwannomas: 21
Norton et al[80]Chronic pancreatitis: 14B-mode EUSBasic neural networkSensitivity: 89%
Pancreatic cancer: 21Accuracy: 80%
Das et al[81]Chronic pancreatitis: 12B-mode EUSANNSensitivity: 93%
Pancreatic cancer: 22
Specificity: 92%
Normal patient: 22
AUC: 0.93
Zhu et al[82]Chronic pancreatitis: 126B-mode EUSSVMSensitivity: 96.25%
Specificity: 93.38%
Accuracy: 94.2%
Pancreatic cancer: 262
Zhang et al[83]Pancreatic cancer: 153B-mode EUSSVMSensitivity: 94.32%
Specificity: 99.45%
Normal patient: 63
Accuracy: 97.98%
Ozkan et al[84]Pancreatic cancer: 202B-mode EUSANNSensitivity: 83.3%
Specificity: 93.3%
Normal patient: 130Accuracy: 87.5%
Tonozuka et al[85]Chronic pancreatitis: 34B-mode EUSCNNSensitivity: 90.2%
Pancreatic cancer: 76
Normal patient: 29
Specificity: 74.9%
Săftoiu et al[88]Chronic pancreatitis: 47EUS elastographyANNSensitivity: 87.59%
Specificity: 82.94%
Pancreatic cancer: 211
Săftoiu et al[90]Chronic pancreatitis: 55Contrast-enhanced EUSANNSensitivity: 94.64%
Pancreatic cancer: 122Specificity: 94.44%
Kuwahara et al[94]IPMN: 50B-mode EUSCNNSensitivity: 95.7%
Specificity: 92.6%
Accuracy: 94.0%
Zhang et al[95]Training: 291B-mode EUSCNNAccuracy: 90.0%
Testing: 181
Chen et al[101]Rectal cancer: 127Endorectal ultrasoundANNSensitivity: 72.7%
Specificity: 75.9%
Shear-wave elastography
AUC: 0.743