Copyright
©The Author(s) 2022.
World J Gastroenterol. Jan 7, 2022; 28(1): 108-122
Published online Jan 7, 2022. doi: 10.3748/wjg.v28.i1.108
Published online Jan 7, 2022. doi: 10.3748/wjg.v28.i1.108
Author | Study design | AI model type | Data source | Total sample size/training cohort/validation cohort | AUC training/AUC validation | Sensitivity/specificity | PPV/NPV | Accuracy |
CRLM development | ||||||||
Li et al[23] (2020) | Retrospective; Single center | Radiomics/ML | CT images ± clinical data | 100/NA/80 | 0.90/0.906 | 81%/84% | 85%/79% | NA |
Taghavi et al[24] (2021) | Retrospective; Multicenter | Radiomics/ML | CT images ± clinical data | 91/70/21 | 0.952-0.683-0.954/0.862-0.713-0.864 | NA/NA | NA/NA | NA |
Lee et al[25] (2020) | Retrospective; Single center | Radiomics/CNN | CT images ± clinical data | 2019/1413/606 | NA/0.6062-0.7093-0.7474 | NA/NA | NA/NA | NA |
Diagnosis | ||||||||
Vorontsov et al[26] (2017) | Retrospective; Single center | Radiomics/CNN | CT images | 40/32/8 | NA/NA | 84%/92% | NA/NA | 88% |
Vorontsov et al[28] (2019) | Retrospective; Single center | Radiomics/CNN | CT images | 156/115/15 | NA/NA | 59%5/NA | 80%5/NA | NA |
Ma et al[30] (2020) | Retrospective; Multicenter | CNN | CT images | 909/479/202 (2286) | NA/0.837-0.8446 | 82%6/74%5 | 75%6/81%6 | NA |
Kim et al[31] (2021) | Retrospective; Single center | DL | CT images | 587/502/85 | NA/0.631 | 81.82%/22.22% | NA/NA | NA |
Khalili et al[34] (2020) | Retrospective; Single center | CNN | CT images ± liver metastatic status | 199/150/49 | NA/0.84-0.957 | (81.5%-81.5%7)/(76.2%-96.4%7) | NA/NA | 78.3%; 90.6%6 |
Jansen et al[38] (2019) | Retrospective; Single center | CNN | MRI images | 121/3341/861 | NA/NA | 99.8%/NA | NA/NA | NA |
Steenhuis et al[39] (2020) | Retrospective; Single center | ML | VOCs | 62/NA/NA | NA/0.86 | 88%/75% | 72%/90% | 81% |
Miller-Atkins et al[40] (2020) | Prospective; Single center | ML | VOCs | 296/284/NA | NA/NA | 51%/94% | NA/NA | 86% |
Kiritani et al[41] (2021) | Retrospective; Single center | ML | Histologic markers | 183/NA/40 | NA/0.999 | 100%/99% | NA/NA | 99.5% |
Han et al[47] (2020) | Retrospective; Single center | Radiomics/ML | MRI images ± clinical data | 107/611/311 | 0.9742-0.6593-0.9714/0.9122-0.6763-0.9094 | 95.2%2-57.1%3-95.2%4/80.0%2-70.0%3-70.0%4 | NA/NA | 90.3%2; 61.3%3; 87.1%4 |
Chemotherapy response | ||||||||
Maaref et al[54] (2020) | Retrospective; Single center | DL CNN | CT images | 202/70%/10% | 0.97/0.88 | 98%/54% | NA/NA | 91%8; 78%9 |
Wei et al[55] (2021) | Retrospective; Single center | Radiomics/DL | CT images ± CEA | 192/144/48 | 0.90310-0.93511/0.82010-0.83011 | 90.9%/73.3% | 88.2%/78.6% | 85.4% |
Giannini et al[57] (2020) | Retrospective; Multicenter | Radiomics/ML | CT images | 38/28/10 | NA/NA | 92%/86% | 96%/75% | NA |
Nakanishi et al[58] (2021) | Retrospective; Single center | Radiomics | CT images | 42/941/321 | 0.8512/0.7792 | NA/NA | NA/NA | NA |
Local ablative therapies efficacy | ||||||||
Taghavi et al[59] (2021) | Retrospective; Single center | Radiomics/ML | CT images | 90/63/27 | NA/0.782-0.563-0.794 | NA/NA | NA/NA | NA |
Survival prediction | ||||||||
Mühlberg et al[60] (2021) | Retrospective; Single center | Radiomics/ML | CT images ± WLTB ± TBS | 103/NA/NA | NA/0.7012–0.7313-0.7614 | NA/NA | NA/NA | NA |
Hao et al[62] (2017) | Retrospective; Multicenter | ML | DNA methylation | 17921/NA/8841 (7181,6) | NA/NA | NA/NA | NA/NA | 98.4% |
Dercle et al[64] (2020) | Retrospective; Multicenter | ML | CT images | 667/438/229 | 0.83/0.80 | 80%/78% | NA/NA | NA |
Spelt et al[65] (2013) | Retrospective; Single center | ANN | Clinical variables | 241/NA/NA | NA/NA | NA/NA | NA/NA | 72% |
Paredes et al[66] (2020) | Retrospective; Multicenter | ML | Clinical variables | 1406/703/703 | 0.52715-0.52516-0.69317/0.52415-0.50116-0.64217 | NA/NA | NA/NA | NA |
- Citation: Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, Troisi RI. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol 2022; 28(1): 108-122
- URL: https://www.wjgnet.com/1007-9327/full/v28/i1/108.htm
- DOI: https://dx.doi.org/10.3748/wjg.v28.i1.108