Copyright
©The Author(s) 2021.
World J Gastroenterol. May 28, 2021; 27(20): 2531-2544
Published online May 28, 2021. doi: 10.3748/wjg.v27.i20.2531
Published online May 28, 2021. doi: 10.3748/wjg.v27.i20.2531
Ref. | Year | Imaging | Study design | Study aim | DL model | Dataset | Outcomes |
Cai et al[30] | 2019 | WLE | Retrospective | Detection of precancerous lesions and early ESCC | -- | 2615 images | Sensitivity: 97.8%. Specificity: 85.4%. Accuracy: 91.4% |
Guo et al[31] | 2020 | NBI, M-NBI | Retrospective | Detection of precancerous lesions and early ESCC | SegNet | 13144 images and 168865 video frames | Sensitivity: 96.10% for M-NBI videos, 60.80% for non-M-NBI videos, 98.04% for images. Specificity: 99.90% for non-M-NBI/M-NBI videos, 95.30% for images |
de Groof et al[32] | 2020 | WLE | Retrospective | Detection of Barrett’s neoplasia | ResNet/U-Ne | 1544 images | Sensitivity: 91%. Specificity: 89%. Accuracy: 90% |
de Groof et al[33] | 2020 | WLE | Retrospective | Detection of Barrett’s neoplasia | ResNet/U-Ne | 494364 unlabeled images and 1704 labeled images | Sensitivity: 90%. Specificity: 88%. Accuracy: 89% |
Struyvenberg et al[34] | 2021 | NBI | Retrospective | Detection of Barrett’s neoplasia | ResNet/U-Ne | 2677 images | Sensitivity: 88%. Specificity: 78%. Accuracy: 84% |
Hashimoto et al[35] | 2020 | WLE, NBI | Retrospective | Recognition of early neoplasia in BE | Inception-ResNet-v2, YOLO-v2 | 2290 images | Sensitivity: 96.4%. Specificity: 94.2%. Accuracy: 95.4% |
Hussein et al[36] | 2020 | WLE | Retrospective | Diagnosis of early neoplasia in BE | Resnet101 | 266930 video frames | Sensitivity: 88.26%. Specificity: 80.13% |
Ebigbo et al[37] | 2020 | WLE | Retrospective | Diagnosis of early EAC in BE | DeepLab V.3+, Resnet101 | 191 images | Sensitivity: 83.7%. Specificity: 100%. Accuracy: 89.9% |
Liu et al[38] | 2020 | WLE | Retrospective | Detection of esophageal cancer from precancerous lesions | Inception-ResNet | 1272 images | Sensitivity: 94.23%. Specificity: 94.67%. Accuracy: 85.83% |
Wu et al[39] | 2021 | WLE | Retrospective | Automatic classification and segmentation for esophageal lesions | ELNet | 1051 images | Classification sensitivity: 90.34%. Classification specificity: 97.18%. Classification accuracy: 96.28%. Segmentation sensitivity: 80.18%. Segmentation Specificity: 96.55%, Segmentation accuracy: 94.62% |
Ghatwary et al[40] | 2021 | WLE | Retrospective | Detection of esophageal abnormalities from endoscopic videos | DenseConvLstm, Faster R-CNN | 42425 video frames | Sensitivity: 93.7%. F-measure: 93.2% |
Ref. | Year | Imaging | Study design | Study aim | DL model | Dataset | Outcomes |
Shichijo et al[47] | 2017 | WLE | Retrospective | Diagnosis of H. pylori infection | GoogLeNet | 43689 images | Sensitivity: 88.9%; Specificity: 87.4%; Accuracy: 87.7% |
Itoh et al[48] | 2018 | WLE | Retrospective | Analysis of H. pylori infection | GoogLeNet | 179 images | Sensitivity: 86.7%; Specificity: 86.7% |
Zheng et al[49] | 2019 | WLE | Retrospective | Evaluation of H. pylori infection status | ResNet-50 | 15484 images | Sensitivity: 91.6%; Specificity: 98.6%; Accuracy: 93.8% |
Nakashima et al[50] | 2018 | BLI-bright, LCI | Prospective | Prediction of H. pylori infection status | GoogLeNet | 666 images | Sensitivity: 96.7%; Specificity: 86.7% |
Nakashima et al[51] | 2020 | WLE, LCI | Prospective | Diagnosis of H. pylori infection | -- | 13127 images | For currently infected patients, the sensitivity and specificity are 62.5% and 92.5%, respectively |
Guimarães et al[53] | 2020 | WLE | Retrospective | Diagnosis of atrophic gastritis | VGG16 | 270 images | Accuracy: 93% |
Zhang et al[54] | 2020 | WLE | Retrospective | Diagnosis of atrophic gastritis | DenseNet121 | 5470 images | Sensitivity: 94.5%; Specificity: 94.0%; Accuracy: 94.2% |
Horiuchi et al[55] | 2020 | M-NBI | Retrospective | Differentiation between early gastric cancer and gastritis | GoogLeNet | 2826 images | Sensitivity: 95.4%; Specificity: 71.0%; Accuracy: 85.3% |
Wang et al[57] | 2019 | WLE | Retrospective | Localization and identification of GIM | DeepLab V.3+ | 200 images | Accuracy: 89.51% |
Zheng et al[58] | 2020 | WLE | Retrospective | Detection of atrophic gastritis and GIM | ResNet-50 | 3759 images | Sensitivity for atrophic gastritis: 87.2%; Specificity for atrophic gastritis: 91.1%; Sensitivity for GIM: 90.3%; Specificity for GIM: 93.7% |
Yan et al[18] | 2020 | NBI, M-NBI | Retrospective | Diagnosis of GIM | EfficientNetB4 | 2357 images | Sensitivity: 91.9%; Specificity: 86.0%; Accuracy: 88.8% |
Cho et al[60] | 2019 | WLE | Prospective | Classification of multiclass gastric neoplasms | Inception-Resnet-v2 | 5217 images | Accuracy: 84.6% |
Inoue et al[61] | 2020 | WLE, NBI | Retrospective | Detection of duodenal adenomas and high-grade dysplasias | Single-Shot Multibox Detector | 1511 images | For high-grade dysplasia, the sensitivity and specificity are all 100% |
Lui et al[62] | 2020 | NBI | Retrospective | Classification of gastric lesions | ResNet | 3000 images | Sensitivity: 97.1%; Specificity: 85.9%; Accuracy: 91.0% |
- Citation: Yan T, Wong PK, Qin YY. Deep learning for diagnosis of precancerous lesions in upper gastrointestinal endoscopy: A review. World J Gastroenterol 2021; 27(20): 2531-2544
- URL: https://www.wjgnet.com/1007-9327/full/v27/i20/2531.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i20.2531