Copyright
©The Author(s) 2021.
World J Gastroenterol. Apr 28, 2021; 27(16): 1664-1690
Published online Apr 28, 2021. doi: 10.3748/wjg.v27.i16.1664
Published online Apr 28, 2021. doi: 10.3748/wjg.v27.i16.1664
Ref. | Country | Disease studied | Design of study | Application | Number of cases | Type of machine learning algorithm | Outcomes (%) | |
Accuracy | Sensitivity/Specificity | |||||||
Esophagogastroduodenoscopy | ||||||||
Takiyama et al[19], 2018 | Japan | Anatomical location of upper gastrointestinal tract | Retrospective | Recognition of the anatomical location of upper gastrointestinal tract | Training: 27335 images: 663 larynx, 3252 esophagus, 5479 upper stomach, 7184 middle stomach, 7539 lower stomach, and 3218 duodenum; Testing: 17081 images: 363 larynx, 2142 esophagus, 3532 upper stomach, 6379 middle stomach, 3137 lower stomach, and 1528 duodenum | CNNs | Larynx: 100; Esopha us: 100; Stomach: 99; Duodenum: 99 | Larynx: 93.9/100; Esophagus: 95.8/99.7; Stomach: 98.9/93; Duodenum: 87/99.2 |
Wu et al[20], 2019 | China | Diseases of upper gastrointestinal tract | Prospective | Monitor blind spots of upper gastrointestinal tract | Training: 1.28 million images from 1000 object classes; Testing: 3000 images for DCNN1, and 2160 images for DCNN2 | CNNs | 90.4 | 87.57/95.02 |
van der Sommen et al[21], 2016 | Netherlands | EN-BE | Retrospective | Detection of EN in BE | 21 patients with EN-BE (60 images), 23 patients without EN-BE (40 images) | SVM | NA | 86/87 |
Swager et al[22], 2017 | Netherlands | EN-BE | Retrospective | Detection of EN in BE | 60 images: 40 with EN-BE and 30 without EN-BE | SVM | 95 | 90/93 |
Hashimoto et al[23], 2020 | United States | EN-BE | Retrospective | Detection of EN in BE | Training: 916 images with EN-BE; Testing: 458 images: 225 dysplasia and 233 non-dysplasia | CNNs | 95.4 | 96.4/94.2 |
Ebigbo et al[24], 2020 | Germany | EAC-BE | Retrospective | Detection of EAC in BE | Training: 129 images; Testing: 62 images: 36 EAC and 26 normal BE | CNNs | 89.9 | 83.7/100 |
Horie et al[25], 2019 | Japan | EAC and ESCC | Retrospective | Detection of EAC and ESCC | Training: 384 patients with 32 EAC and 397 ESCC (8428 images); Testing: 47 patients with 8 EAC and 41 ESCC (1118 images) | CNNs | 98 | 98/79 |
Kumagai et al[26], 2019 | Japan | ESCC | Retrospective | Detection of ESCC | Training: 240 patients (4715 images: 1141 ESCC and 3574 benign lesions); Testing: 55 patients (1520 images: 467 ESCC and 1053 benign) | CNNs | 90.9 | 92.6/89.3 |
Zhao et al[27], 2019 | China | ESCC | Retrospective | Detection of ESCC | 165 patients with ESCC and 54 patients without ESCC (1383 images) | CNNs | 89.2 | 87.0/84.1 |
Cai et al[28], 2019 | China | ESCC | Retrospective | Detection of ESCC | Training: 746 patients (2438 images: 1332 abnormal and 1096 normal); Testing: 52 patients (187 images) | CNNs | 91.4 | 97.8/85.4 |
Nakagawa et al[29], 2019 | Japan | ESCC | Retrospective | Determination of invasion depth | Training: 804 patients with ESCC (14338 images: 8660 non-ME and 5678 ME); Testing: 155 patients with ESCC (914 images: 405 non-ME and 509 ME) | CNNs | SM1/SM2, 3: 91.0; Invasion depth: 89.6 | SM1/SM2, 3: 90.1/95.8; Invasion depth: 89.8/88.3 |
Tokai et al[30], 2020 | Japan | ESCC | Retrospective | Determination of invasion depth | Training: 1751 images with ESCC; Testing: 42 patients with ESCC (293 images) | CNNs | 80.9 | 84.1/80.9 |
Ali et al[31], 2018 | Pakistan | EGC | Retrospective | Detection of EGC | 56 patients with EGC, 120 patients without EGC | SVM | 87 | 91.0/82.0 |
Sakai et al[32], 2018 | Japan | EGC | Retrospective | Detection of EGC | Training: 58 patients (348943 images: 172555 EGC and 176388 normal); Testing: 58 patients (9650 images: 4653 EGC and 4997 normal) | CNNs | 87.6 | 80.0/94.8 |
Kanesaka et al[33], 2018 | Japan | EGC | Retrospective | Detection of EGC | Training: 126 images: 66 EGC and 60 normal; Testing: 81 images: 61 EGC and 20 normal | SVM | 96.3 | 96.7/95.0 |
Wu et al[34], 2019 | China | EGC | Retrospective | Detection of EGC | Training: 9691 images: 3710 EGC and 5981 normal; Testing: 100 patients: 50 EGC and 50 normal | CNNs | 92.5 | 94.0/91.0 |
Horiuchi et al[35], 2020 | Japan | EGC | Retrospective | Detection of EGC | Training: 2570 images: 1492 EGC and 1078 gastritis; Testing: 285 images: 151 EGC and 107 gastritis | CNNs | 85.3 | 95.4/71.0 |
Zhu et al[36], 2019 | China | Invasive GC | Retrospective | Determination of invasion depth | Training: 245 patients with GC and 545 patients without GC (5056 images); Testing: 203 images: 68 GC and 135 normal | CNNs | 89.2 | 76.5/95.6 |
Luo et al[37], 2019 | China | EAC, ESCC, and GC | Prospective | Detection of upper gastrointestinal cancers | Training: 15040 individuals (125898 images: 31633 cancer and 94265 control); Testing: 1886 individuals (15637 images: 3931 cancer and 11706 control) | CNNs | 91.5-97.7 | 94.2/85.8 |
Nagao et al[38], 2020 | Japan | GC | Retrospective | Determination of invasion depth | 1084 patients with GC (16557 images); Training: Testing = 4:1 | CNNs | 94.5 | 84.4/99.4 |
Wireless capsule endoscopy | ||||||||
Ayaru et al[39], 2015 | United Kingdom | Small bowel bleeding | Retrospective | Prediction of outcomes | Training: 170 patients with small bowel bleeding; Testing: 130 patients with small bowel bleeding | ANNs | Recurrent bleeding 88; Therapeutic intervention: 88; Severe bleeding: 78 | Recurrent bleeding: 67/91; Therapeutic intervention: 80/89; Severe bleeding: 73/80 |
Xiao et al[40], 2016 | China | Small bowel bleeding | Retrospective | Detection of bleeding in GI tract | Training: 8200 images: 2050 bleeding and 6150 non-bleeding; Testing: 1800 images: 800 bleeding and 1000 non-bleeding | CNNs | 99.6 | 99.2/99.9 |
Usman et al[41], 2016 | South Korea | Small bowel bleeding | Retrospective | Detection of bleeding in GI tract | Training: 75000 pixels: 25000 bleeding and 50000 non-bleeding; Testing: 8000 pixels: 3000 bleeding and 5000 non-bleeding | SVM | 91.8 | 93.7/90.7 |
Sengupta et al[42], 2017 | United States | Small bowel bleeding | Retrospective | Prediction of 30-d mortality | Training: 4044 patients with small bowel bleeding; Testing: 2060 patients with small bowel bleeding | ANNs | 81 | 87.8/90/9 |
Leenhardt et al[43], 2019 | France | Small bowel bleeding | Retrospective | Detection of GIA | Training: 600 images: 300 hemorrhagic GIA and 300 non-hemorrhagic GIA; Testing: 600 images: 300 hemorrhagic GIA and 300 non-hemorrhagic GIA | CNNs | 98 | 100.0/96.0 |
Aoki et al[44], 2020 | Japan | Small bowel bleeding | Retrospective | Detection of small bowel bleeding | Training: 41 patients (27847 images: 6503 bleeding and 21344 normal); Testing: 25 patients (10208 images: 208 bleeding and 10000 non-bleeding) | CNNs | 99.89 | 96.63/99.96 |
Yang et al[45], 2020 | China | Small bowel polyps | Retrospective | Detection of small bowel polyps | 1000 images: 500 polyps and 500 non-polyps | SVM | 96.00 | 95.80/96.20 |
Vieira et al[46], 2020 | Portugal | Small bowel tumors | Retrospective | Detection of small bowel tumors | 39 patients (3936 images: 936 tumors and 3000 normal) | SVM | 97.6 | 96.1/98.3 |
Colonoscopy | ||||||||
Fernández-Esparrach et al[47], 2016 | Spain | Colorectal polyps | Retrospective | Detection of polyps | 24 videos containing 31 different polyps | Energy maps | 79 | 70.4/72.4 |
Komeda et al[48], 2017 | Japan | Colorectal polyps | Retrospective | Detection of polyps | Training: 1800 images: 1200 adenoma and 600 non-adenoma; Testing: 10 cases | CNNs | 70.0 | 83.3/50.0 |
Misawa et al[49], 2017 | Japan | Colorectal polyps | Retrospective | Detection of polyps | Training: 1661 images: 1213 neoplasm and 448 non-neoplasm; Testing: 173 images: 124 neoplasm and 49 non-neoplasm | SVM | 87.8 | 94.3/71.4 |
Misawa et al[50], 2018 | Japan | Colorectal polyps | Retrospective | Detection of polyps | 196631 frames: 63135 polyps and 133496 non-polyps | CNNs | 76.5 | 90.0/63.3 |
Chen et al[51], 2018 | China | Colorectal polyps | Retrospective | Detection of diminutive colorectal polyps | Training: 2157 images: 681 hyperplastic and 1476 adenomas; Testing: 284 images: 96 hyperplastic and 188 adenomas | DNNs | 90.1 | 96.3/78.1 |
Urban et al[52], 2018 | United States | Colorectal polyps | Retrospective | Detection of polyps | Training: 8561 images: 4008 polyps and 4553 non-polyps; Testing: 1330 images: 672 polyps and 658 non-polyps | CNNs | 96.4 | 96.9/95.0 |
Renner et al[53], 2018 | Germany | Colorectal polyps | Retrospective | Differentiation of neoplastic from non-neoplastic polyps | Training: 788 images: 602 adenomas and 186 non-adenomatous polyps; Testing: 186 images: 52 adenomas and 48 hyperplastic lesions | DNNs | 78.0 | 92.3/62.5 |
Wang et al[54], 2018 | United States | Colorectal polyps | Retrospective | Detection of polyps | Training: 5545 images: 3634 polyps and 1911 non-polyps; Testing: 27113 images: 5541 polyps and 21572 non-polyps | CNNs | 98 | 94.4/95.9 |
Mori et al[55], 2018 | Japan | Colorectal polyps | Prospective | A diagnose-and-leave strategy for diminutive, non-neoplastic rectosigmoid polyps | Training: 61925 images; Testing: 466 cases (287 neoplastic polyps, 175 nonneoplastic polyps, and 4 missing specimens) | SVM | 96.5 | 93.8/91.0 |
Byrne et al[56], 2019 | Canada | Colorectal polyps | Retrospective | Detection and classification of polyps | Training: 60089 frames of 223 videos (29% NICE type 1, 53% NICE type 2 and 18% of normal mucosa with no polyp); Testing: 125 videos: 51 hyperplastic polyps and 74 adenoma | CNNs | 94.0 | 98.0/83.0 |
Blanes-Vidal et al[57], 2019 | Denmark | Colorectal polyps | Retrospective | Detection of polyps | 131 patients with polyps and 124 patients without polyps | CNNs | 96.4 | 97.1/93.3 |
Lee et al[58], 2020 | South Korea | Colorectal polyps | Retrospective | Detection of polyps | Training: 306 patients (8593 images: 8495 polyp and 98 normal); Testing: 15 patients (15 polyps videos) | CNNs | 93.4 | 89.9/93.7 |
Gohari et al[59], 2011 | Iran | CRC | Retrospective | Determination of prognostic factors of CRC | 1219 patients with CRC | ANNs | Colon cancer: 89; Rectum cancer: 82.7 | NA/NA |
Biglarian et al[60], 2012 | Iran | CRC | Retrospective | Prediction of distant metastasis in CRC | 1219 patients with CRC | ANNs | 82 | NA/NA |
Takeda et al[61], 2017 | Japan | CRC | Retrospective | Diagnosis of invasive CRC | Training: 5543 images: 2506 non-neoplasms, 2667 adenomas, and 370 invasive cancers; Testing: 200 images: 100 adenomas and 100 invasive cancers | SVM | 94.1 | 89.4/98.9 |
Ito et al[62], 2019 | Japan | CRC | Retrospective | Diagnosis of cT1b CRC | Training: 9942 images: 5124 cTis + cT1a, 4818 cT1b, and 2604 cTis + cT1a; Testing: 5022 images: 2604 cTis + cT1a, and 2418 cT1b | CNNs | 81.2 | 67.5/89.0 |
Zhou et al[63], 2020 | China | CRC | Retrospective | Diagnosis of CRC | Training: 3176 patients with CRC and 9003 patients without CRC (464105 images: 28071 CRC and 436034 non-CRC); Testing: 307 patients with CRC and 1956 patients without CRC (84615 images: 11675 CRC and 72940 non-CRC) | CNNs | 96.3 | 91.4/98.0 |
Ref. | Country | Disease studied | Design of study | Application | Number of cases | Type of machine learning algorithm | Outcomes (%) | |
Accuracy | Sensitivity/Specificity | |||||||
Ultrasound-based medical image recognition | ||||||||
Gatos et al[72], 2016 | United States | Hepatic fibrosis | Retrospective | Classification of CLD | 85 images: 54 healthy and 31 CLD | SVM | 87 | 83.3/89.1 |
Gatos et al[73], 2017 | United States | Hepatic fibrosis | Retrospective | Classification of CLD | 124 images: 54 healthy and 70 CLD | SVM | 87.3 | 93.5/81.2 |
Chen et al[74], 2017 | China | Hepatic fibrosis | Retrospective | Classification of the stages of hepatic fibrosis in HBV patients | 513 HBV patients with different hepatic fibrosis (119 S0, 164 S1, 88 S2, 72 S3, and 70 S4) | SVM, Naive Bayes, RF, KNN | 82.87 | 92.97/82.50 |
Li et al[75], 2019 | China | Hepatic fibrosis | Prospective | Classification of the stages of hepatic fibrosis in HBV patients | 144 HBV patients | Adaptive boosting, decision tree, RF, SVM | 85 | 93.8/76.9 |
Gatos et al[76], 2019 | United States | Hepatic fibrosis | Retrospective | Classification of CLD | 88 healthy individuals (88 F0 fibrosis stage images) and 112 CLD patients (112 images: 46 F1, 16 F2, 22 F3, and 28 F4) | CNNs | 82.5 | NA/NA |
Wang et al[77], 2019 | China | Hepatic fibrosis | Prospective | Classification of the stages of hepatic fibrosis in HBV patients | Training: 266 HBV patients (1330 images); Testing: 132 HBV patients (660 images) | CNNs | F4: 100; ≥ F3: 99; ≥ F2: 99 | F4: 100.0/100.0; ≥ F3: 97.4/95.7; ≥ F2: 100.0/97.7 |
Kuppili et al[78], 2017 | United States | MAFLD | Retrospective | Detection and characterization of FLD | 63 patients: 27 healthy and 36 MAFLD | ELM, SVM | ELM: 96.75; SVM: 89.01 | NA/NA |
Byra et al[79], 2018 | Poland | MAFLD | Retrospective | Diagnosis of the amount of fat in the liver | 55 severely obese patients | CNNs, SVM | 96.3 | 100/88.2 |
Biswas et al[80], 2018 | United States | MAFLD | Retrospective | Detection and risk stratification of FLD | 63 patients: 27 healthy and 36 MAFLD | CNNs, SVM, ELM | CNNs: 100; SVM: 82; ELM: 92 | NA/NA |
Cao et al[81], 2020 | China | MAFLD | Retrospective | Detection and classification of MAFLD | 240 patients: 106 healthy, 57 mild MAFLD, 67 moderate MAFLD, and 10 severe MAFLD | CNNs | 95.8 | NA/NA |
Guo et al[82], 2018 | China | Liver tumors | Retrospective | Diagnosis of liver tumors | 93 patients with liver tumors: 47 malignant lesions (22 HCC, 5 CC, and 10 RCLM), and 46 benign lesions | DNNs | 90.41 | 93.56/86.89 |
Schmauch et al[83], 2019 | France | FLL | Retrospective | Detection and characterization of FLL | Training: 367 patients (367 images); Testing: 177 patients | CNNs | Detection: 93.5; Characterization: 91.6 | NA/NA |
Yang et al[84], 2020 | China | FLL | Retrospective | Detection of FLL | Training: 1815 patients with FLL (18000 images); Testing: 328 patients with FLL (3718 images) | CNNs | 84.7 | 86.5/85.5 |
CT/MRI-based medical image recognition | ||||||||
Choi et al[85], 2018 | South Korea | Hepatic fibrosis | Retrospective | Staging liver fibrosis by using CT images | Training: 7461 patients: 3357 F0, 113 F1, 284 F2, 460 F3, 3247 F4; Testing: 891 patients: 118 F0, 109 F1, 161 F2, 173 F3, 330 F4 | CNNs | 92.1–95.0 | 84.6–95.5/89.9–96.6 |
He et al[86], 2019 | United States | Hepatic fibrosis | Retrospective | Staging liver fibrosis by using MRI images | Training: 225 CLD patients; Testing: 84 patients | SVM | 81.8 | 72.2/87.0 |
Ahmed et al[87], 2020 | Egypt | Hepatic fibrosis | Retrospective | Detection and staging of liver fibrosis by using MRI images | 37 patients: 15 healthy and 22 CLD | SVM | 83.7 | 81.8/86.6 |
Hectors et al[88], 2020 | United States | Liver fibrosis | Retrospective | Staging liver fibrosis by using MRI images | Training: 178 patients with liver fibrosis; Testing: 54 patients with liver fibrosis | CNNs | F1-F4: 85; F2-F4: 89; F3-F4: 91; F4: 83 | F1-F4: 84/90; F2-F4: 87/93; F3-F4: 97/83; F4: 68/94 |
Vivanti et al[89], 2017 | Israel | Liver tumors | Retrospective | Detection and segmentation of new tumors in follow-up by using CT images | 246 liver tumors (97 new tumors) | CNNs | 86 | 70/NA |
Yasaka et al[90], 2018 | Japan | Liver masses | Retrospective | Detection and differentiation of liver masses by using CT images | Training: 460 patients with liver masses (1068 images: 240 Category A, 121 Category B, 320 Category C, 207 Category D, 180 Category E); Testing: 100 images with liver masses: 21 Category A, 9 Category B, 35 Category C, 20 Category D, 15 Category E | CNNs | 84 | Category A: 71/NA; Category B: 33/NA; Category C: 94/NA; Category D: 90/NA; Category E: 100/NA |
Ibragimov et al[91], 2018 | United States | Liver diseases requiring SBRT | Retrospective | Prediction of hepatotoxicity after liver SBRT by using CT images | 125 patients undergone liver SBRT: 58 liver metastases, 36 HCC, 27 cholangiocarcinoma, and 4 other histopathologies | CNNs | 85 | NA/NA |
Abajian et al[92], 2018 | United States | HCC | Retrospective | Prediction of HCC response to TACE by using MRI images | 36 HCC patients treated with TACE | RF | 78 | 62.5/82.1 |
Zhang et al[93], 2018 | United States | HCC | Retrospective | Classification of HCC by using MRI images | 20 patients with HCC | CNNs | 80 | NA/NA |
Morshid et al[94], 2019 | United States | HCC | Retrospective | Prediction of HCC response to TACE by using CT images | 105 HCC patients received first-line treatment with TACE | CNNs | 74.2 | NA/NA |
Nayak et al[95], 2019 | India | Cirrhosis; HCC | Retrospective | Detection of cirrhosis and HCC by using CT images | 40 patients: 14 healthy, 12 cirrhosis, 14 cirrhosis with HCC | SVM | 86.9 | 100/95 |
Hamm et al[96], 2019 | United States | Common hepatic lesions | Retrospective | Classification of common hepatic lesions by using MRI images | Training: 434 patients with common hepatic lesions; Testing: 60 patients with common hepatic lesions | CNNs | 92 | 92/98 |
Wang et al[97], 2019 | United States | Common hepatic lesions | Retrospective | Demonstration of a proof-of-concept interpretable DL system by using MRI images | 60 common hepatic lesions patients | CNNs | NA | 82.9/NA |
Jansen et al[98], 2019 | Netherlands | FLL | Retrospective | Classification of FLL by using MRI images | 95 patients with FLL (125 benign lesions: 40 adenomas, 29 cysts, and 56 hemangiomas; and 88 malignant lesions: 30 HCC and 58 metastases) | RF | 77 | Adenoma: 80/78; Cyst: 93/93; Hemangioma: 84/82; HCC: 73/56; Metastasis: 62/77 |
Mokrane et al[99], 2020 | France | HCC | Retrospective | Diagnosis of HCC in patients with cirrhosis by using CT images | Training: 106 patients: 85 HCC and 21 non-HCC; Testing: 36 patients: 23 HCC and 13 non-HCC | SVM, KNN, RF | 70 | 70/54 |
Shi et al[100], 2020 | China | HCC | Retrospective | Detection of HCC from FLL by using CT images | Training: 359 lesions: 155 HCC and 204 non-HCC; Testing: 90 lesions: 39 HCC and 51 non-HCC | CNNs | 85.6 | 74.4/94.1 |
Alirr et al[101], 2020 | Kuwait | Liver tumors | Retrospective | Segmentation of liver tumors | Training: 100 images with liver tumors;Testing: 31 images with liver tumors | CNNs | 95.2 | NA/NA |
Zheng et al[102], 2020 | China | Pancreatic cancer | Retrospective | Pancreas segmentation by using MRI images | 20 patients with PDAC | CNNs | 99.86 | NA/NA |
Radiomics | ||||||||
Liang et al[103], 2014 | China | HCC | Retrospective | Prediction of recurrence for HCC patients who received RFA | 83 patients with HCC receiving RFA as first treatment (18 recurrence and 65 non-recurrence) | SVM | 82 | 67/86 |
Zhou et al[104], 2017 | China | HCC | Retrospective | Characterization of HCC | 46 patients with HCC: 21 low-grade (Edmondson grades I and II) and 25 high-grade (Edmondson grades III and IV) | Free-form curve-fitting | 86.95 | 76.00/100.00 |
Abajian et al[105], 2018 | United States | HCC | Retrospective | Prediction of response to intra-arterial treatment | 36 patients undergone trans-arterial treatment | RF | 78 | 62.5/82.1 |
Ibragimov et al[91], 2018 | United States | Liver tumors | Retrospective | Prediction of hepatobiliary toxicity of SBRT | 125 patients undergone liver SBRT: 58 metapatients, 36 HCC, 27 cholangiocarcinoma, and 4 other primary liver tumor histopathologies | CNNs | 85 | NA/NA |
Morshid et al[94], 2019 | United States | HCC | Retrospective | Prediction of HCC response to TACE | 105 patients with HCC: 11 BCLC stage A, 24 BCLC stage B, 67 BCLC stage C, and 3 BCLC stage D | CNNs | 74.2 | NA/NA |
Ma et al[106], 2019 | China | HCC | Retrospective | Prediction of MVI in HCC | Training: 110 patients with HCC: 37 with MVI and 73 without MVI; Testing: 47 patients with HCC: 18 with MVI and 29 without MVI | SVM | 76.6 | 65.6/94.4 |
Dong et al[107], 2020 | China | HCC | Retrospective | Prediction and differentiation of MVI in HCC | Prediction: 322 patients with HCC: 144 with MVI and 178 without MVI; Differentiation: 144 patients with HCC and MVI | RF, mRMR | Prediction: 63.4; Differentiation: 73.0 | Prediction: 89.2/48.4; Differentiation: 33.3/80.0 |
He et al[108], 2020 | China | HCC | Prospective | Prediction of MVI in HCC | Training: 101 patients with HCC; Testing: 18 patients with HCC | LASSO | 84.4 | NA/NA |
Schoenberg et al[109], 2020 | Germany | HCC | Prospective | Prediction of disease-free survival after HCC resection | Training: 127 patients with HCC; Testing: 53 patients with HCC | RF | 78.8 | NA/NA |
Zhao et al[110], 2020 | China | HCC | Retrospective | Prediction of ER of HCC after partial hepatectomy | Training: 78 patients with HCC: 40 with ER and 38 without ER; Testing: 35 patients with HCC: 18 with ER and 17 without ER | LASSO | 80.8 | 80.0/81.6 |
Liu et al[111], 2020 | China | HCC | Retrospective | Prediction of progression-free survival of HCC patients after RFA and SR | RFA: Training: 149 HCC patients undergone RFA Testing: 65 HCC patients undergone RFA; SR: Training: 144 HCC patients undergone SR Testing: 61 HCC patients undergone SR | Cox-CNNs | RFA: 82.0; SR: 86.3 | NA/NA |
Chen et al[112], 2021 | China | HCC | Retrospective | Prediction of HCC response to first TACE by using CT images | Training: 355 patients with HCC; Testing: 118 patients with HCC | LASSO | 81 | 85.2/77.2 |
Ref. | Country | Disease studied | Design of study | Application | Number of cases | Type of machine learning algorithm | Outcomes (%) | |
Accuracy | Sensitivity/Specificity | |||||||
Basic AI-based pathology: diagnosis | ||||||||
Tomita et al[118], 2019 | United States | BE and EAC | Retrospective | Detection and classification of cancerous and precancerous esophagus tissue | Training: 379 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma; Testing: 123 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma | CNNs | Mean: 83; BE-no-dysplasia: 85; BE-with-dysplasia: 89; Adenocarcinoma: 88 | Normal: 69/71 BE-no-dysplasia: 77/88; BE-with-dysplasia: 21/97; Adenocarcinoma: 71/91 |
Sharma et al[119], 2017 | Germany | GC | Retrospective | Classification and necrosis detection of GC | 454 patients (6810 WSIs: 4994 for cancer classification and 1816 for necrosis detection) (HER2 immunohistochemical stain and HE stained) | CNNs | Cancer classification: 69.90; Necrosis detection: 81.44 | NA/NA |
Li et al[120], 2018 | China | GC | Retrospective | Detection of GC | 700 images: 560 GC and 140 normal (HE stained) | CNNs | 100 | NA/NA |
Leon et al[121], 2019 | Colombia | GC | Retrospective | Detection of GC | 40 images: 20 benign and 20 malignant | CNNs | 89.72 | NA/NA |
Sun et al[122], 2019 | China | GC | Retrospective | Diagnosis of GC | 500 WSIs of gastric areas with typical cancerous regions | DNNs | 91.6 | NA/NA |
Ma et al[123], 2020 | China | GC | Retrospective | Classification of lesions in the gastric mucosa | Training: 534 WSIs (1616713 images: 544925 normal, 544624 chronic gastritis, and 527164 cancer) (HE stained) Testing: 153 WSIs (399240 images: 135446 normal, 125783 chronic gastritis, and 138011 cancer) (HE stained) | CNNs, RF | Benign and cancer: 98.4; Normal, chronic gastritis, and GC: 94.5 | Benign and cancer: 98.0/98.9; Normal, chronic gastritis, and GC: NA/NA |
Yoshida et al[124], 2018 | Japan | Gastric lesions | Retrospective | Classification of gastric biopsy specimens | 3062 gastric biopsy specimens (HE stained) | CNNs | 55.6 | 89.5/50.7 |
Qu et al[125], 2018 | Japan | Gastric lesions | Retrospective | Classification of gastric pathology images | Training: 1080 patches: 540 benign and 540 malignant; Testing: 5400 patches: 2700 benign and 2700 malignant | CNNs | 96.5 | NA/NA |
Iizuka et al[126], 2020 | Japan | Gastric and colonic epithelial tumors | Retrospective | Classification of gastric and colonic epithelial tumors | 4128 cases of human gastric epithelial lesions and 4036 of colonic epithelial lesions (HE stained) | CNNs, RNNs | Gastric adenocarcinoma: 97; Gastric adenoma: 99; Colonic adenocarcinoma: 96; Colonic adenoma: 99 | NA/NA |
Korbar et al[127], 2017 | United States | Colorectal polyps | Retrospective | Classification of different types of colorectal polyps on WSIs | Training: 458 WSIs; Testing: 239 WSIs | A modified version of a residual network | 93 | 88.3/NA |
Wei et al[128], 2020 | United States | Colorectal polyps | Retrospective | Classification of colorectal polyps on WSIs | Training: 326 slides with colorectal polyps: 37 tubular, 30 tubulovillous or villous, 111 hyperplastic, 140 sessile serrated, and 8 normal; Testing: 238 slides with colorectal polyps: 95 tubular, 78 tubulovillous or villous, 41 hyperplastic, and 24 sessile serrated | CNNs | Tubular: 84.5; Tubulovillous or villous: 89.5; Hyperplastic: 85.3; Sessile serrated: 88.7 | Tubular: 73.7/91.6; Tubulovillous or villous: 97.6/87.8; Hyperplastic: 60.3/97.5; Sessile serrated: 79.2/89.7 |
Shapcott et al[129], 2018 | UnitedKingdom | CRC | Retrospective | Diagnosis of CRC | 853 hand-marked images | CNNs | 84 | NA/NA |
Geessink et al[130], 2019 | Netherlands | CRC | Retrospective | Quantification of intratumoral stroma in CRC | 129 patients with CRC | CNNs | 94.6 | 91.1/99.4 |
Song et al[131], 2020 | China | CRC | Retrospective | Diagnosis of CRC | Training: 177 slides: 156 adenoma and 21 non-neoplasm; Testing: 362 slides: 167 adenoma and 195 non-neoplasm | CNNs | 90.4 | 89.3/79.0 |
Wang et al[132], 2015 | China | Hepatic fibrosis | Retrospective | Assessment of HBV-related liver fibrosis and detection of liver cirrhosis | Training: 105 HBV patients; Testing: 70 HBV patients | SVM | 82 | NA/NA |
Forlano et al[133], 2020 | UnitedKingdom | MAFLD | Retrospective | Detection and quantification of histological features of MAFLD | Training: 100 MAFLD patients; Testing: 146 MAFLD patients | K-means | Steatosis: 97; Inflammation: 96; Ballooning: 94; Fibrosis: 92 | NA/NA |
Li et al[134], 2017 | China | HCC | Retrospective | Nuclei grading of HCC | 4017 HCC nuclei patches | CNNs | 96.7 | G1: 94.3/97.5; G2: 96.0/97.0;G3: 97.1/96.6; G4: 99.5/95.8 |
Kiani et al[135], 2020 | United States | Liver cancer (HCC and CC) | Retrospective | Histopathologic classification of liver cancer | Training: 70 WSIs: 35 HCC and 35 CC Testing: 80 WSIs: 40 HCC and 40 CC | SVM | 84.2 | 72/95 |
Advanced AI-based pathology: prediction of gene mutations and prognosis | ||||||||
Steinbuss et al[136], 2020 | Germany | Gastritis | Retrospective | Identification of gastritis subtypes | Training: 92 patients (825 images: 398 low inflammation, 305 severe inflammation, and 122 A gastritis) (HE stained) Testing: 22 patients (209 images: 122 low inflammation, 38 severe inflammation, and 49 A gastritis) (HE stained) | CNNs | 84 | A gastritis: 88/89; B gastritis: 100/93; C gastritis: 83/100 |
Liu et al[137], 2020 | China | Gastrointestinal neuroendocrine tumor | Retrospective | Prediction of Ki-67 positive cells | 12 patients (18762 images: 5900 positive cells, 6086 positive cells, and 6776 background from ROIs) (HE and IHC stained) | CNNs | 97.8 | 97.8/NA |
Kather et al[138], 2019 | Germany | GC and CRC | Retrospective | Prediction of MSI in GC and CRC | Training: 360 patients (93408 tiles); Testing: 378 patients (896530 tiles) | CNNs | 84 | NA/NA |
Bychkov et al[139], 2018 | Finland | CRC | Retrospective | Prediction of CRC outcome | 420 CRC tumor tissue microarray samples | CNNs, RNNs | 69 | NA/NA |
Kather et al[140], 2019 | Germany | CRC | Retrospective | Prediction of survival from CRC histology slides | Training: 86 CRC tissue slides (> 100000 HE image patches); Testing: 25 CRC patients (7180 images) | CNNs | 98.7 | NA/NA |
Echle et al[141], 2020 | Germany | CRC | Retrospective | Detection of dMMR or MSI in CRC | Training: 5500 patients; Testing: 906 patients | A modified shufflenet DL system | 92 | 98/52 |
Skrede et al[142], 2020 | 3R23 Song 2020 | CRC | Retrospective | Prediction of CRC outcome after resection | Training: 828 patients (> 12000000 image tiles); Testing: 920 patients | CNNs | 76 | 52/78 |
Sirinukunwattana et al[143], 2020 | UnitedKingdom | CRC | Retrospective | Identification of consensus molecular subtypes of CRC | Training: 278 patients with CRC; Testing: 574 patients with CRC: 144 biopsies and 430 TCGA | Neural networks with domain-adversarial learning | Biopsies: 85; TCGA: 84 | NA/NA |
Jang et al[144], 2020 | South Korea | CRC | Retrospective | Prediction of gene mutations in CRC | Training: 629 WSIs with CRC (HE stained) Testing: 142 WSIs with CRC (HE stained) | CNNs | 64.8-88.0 | NA/NA |
Chaudhary et al[145], 2018 | United States | HCC | Retrospective | Identification of survival subgroups of HCC | Training: 360 HCC patients’ data using RNA-seq, miRNA-seq and methylation data from TCGA; Testing: 684 HCC patients’ data (LIRI-JP cohort: 230; NCI cohort: 221; Chinese cohort: 166, E-TABM-36 cohort: 40, and Hawaiian cohort: 27) | DL | LIRI-JP cohort: 75; NCI cohort: 67; Chinese cohort: 69; E-TABM-36 cohort: 77; Hawaiian cohort: 82 | NA/NA |
Saillard et al[146], 2020 | France | HCC | Retrospective | Prediction of the survival of HCC patients treated by surgical resection | Training: 206 HCC (390 WSIs); Testing: 328 HCC (342 WSIs) | CNNs (SCHMOWDER and CHOWDER) | SCHMOWDER: 78; CHOWDER: 75 | NA/NA |
Chen et al[11], 2020 | China | HCC | Retrospective | Classification and gene mutation prediction of HCC | Training: 472 WSIs: 383 HCC and 89 normal liver tissue; Testing: 101 WSIs: 67 HCC and 34 normal liver tissue | CNNs | Classification: 96.0; Tumor differentiation: 89.6; Gene mutation: 71-89 | NA/NA |
Fu et al[147], 2020 | UnitedKingdom | EAC, GC, CRC, and liver cancers | Retrospective | Prediction of mutations, tumor composition and prognosis | 17335 HE-stained images of 28 cancer types | CNNs | Variable across tumors/gene alterations | NA/NA |
- Citation: Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27(16): 1664-1690
- URL: https://www.wjgnet.com/1007-9327/full/v27/i16/1664.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i16.1664