Copyright
©The Author(s) 2020.
World J Gastroenterol. Oct 21, 2020; 26(39): 5911-5918
Published online Oct 21, 2020. doi: 10.3748/wjg.v26.i39.5911
Published online Oct 21, 2020. doi: 10.3748/wjg.v26.i39.5911
Ref. | Study type | CADe system | ARM | ADR |
Repici et al[25], 2020 | Multicenter RCT | GI Genius | WL | 40, 40% |
CADe | 54, 80% | |||
Wang et al[26], 2019 | Monocenter RCT | Endoscreener | WL | 20% |
CADe | 29% | |||
Wang et al[27], 2020 | Monocenter RCT | Endoscreener | WL | 28% |
CADe | 34, 10% | |||
Gong et al[28], 2020 | Monocenter RCT | ENDOANGEL | WL | 8, 20% |
CADe | 16, 70% | |||
Liu et al[29], 2020 | Monocenter RCT | HenanTongyu | WL | 24% |
CADe | 39, 20% |
Ref. | Target | System | Performance | Year | Country |
Aihara et al[35] | All polyps (n = 102) | AFE | Sensitivity: 94.2 % Specificity: 88.9% NPV: 85.2% | 2013 | Japan |
Kuiper et al[36] | < 10 mm polyps (n = 207) | WAVSTAT, WAVSTAT + HRE | Accuracy: 74.4% Accuracy + HRE: 79.2% NPV: 73.5% NPV + HRE: 73.9 % | 2015 | Netherlands |
Rath et al[37] | ≤ 5 mm polyps (n = 137) | WAVSTAT4 + LIFS | Accuracy: 84.7% Sensitivity: 81.8% Specificity: 85.2% NPV: 96.1% | 2016 | Germany |
Kominami et al[38] | All polyps (n = 118) | NBI | Concordance: 97.5% Accuracy: 93.2 % Sensitivity: 93% Specificity: 93.3% PPV: 93% NPV: 93.3% | 2016 | Japan |
Mori et al[39] | ≤ 5 mm polyps (n = 466) | EC-NBI-CAD EC-MB-CAD | Accuracy: 98.1% NPV EC-NBI-CAD:96.5% NPV EC-MB-CAD: 96.4% | 2018 | Japan |
- Citation: Sinagra E, Badalamenti M, Maida M, Spadaccini M, Maselli R, Rossi F, Conoscenti G, Raimondo D, Pallio S, Repici A, Anderloni A. Use of artificial intelligence in improving adenoma detection rate during colonoscopy: Might both endoscopists and pathologists be further helped. World J Gastroenterol 2020; 26(39): 5911-5918
- URL: https://www.wjgnet.com/1007-9327/full/v26/i39/5911.htm
- DOI: https://dx.doi.org/10.3748/wjg.v26.i39.5911