Becker AE, Hernandez YG, Frucht H, Lucas AL. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol 2014; 20(32): 11182-11198 [PMID: 25170203 DOI: 10.3748/wjg.v20.i32.11182]
Corresponding Author of This Article
Aimee L Lucas, MD, MS, Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1069, New York, NY 10029, United States. aimee.lucas@mssm.edu
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Topic Highlight
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
In 2009, the use of gene sequencing identified PALB2, which had previously been implicated in breast cancer, as a susceptibility gene for PDAC[28]
Expression of the palladin gene has been shown to be upregulated by cohabitance of normal fibroblasts with epithelial cells expressing the K-Ras oncogene. In 2012, it was shown that the palladin gene, which codes for a cytoskeletal protein, promotes mechanisms for metastasis and outgrowth of tumerogenic cells[90]
Also in 2012, gene sequencing indicated that ATM mutations result in a predisposition to PDAC; LOH was demonstrated in 2 kindreds with PDAC[77]
Therapy
For patients with diabetes, treatment with metformin is associated with a lower relative risk of pancreatic cancer[127,136,137]
A 2011 case report detailing a complete pathological response of a BRCA2-associated pancreatic tumor to gemcitabine plus iniparib showed the potential for PARP inhibitors in the treatment of BRCA2-associated pancreatic cancer[41]. Similar clinical trials are currently underway
Screening
Screening goals
The goal of PDAC screening is the detection and treatment of (1) resectable PDAC; (2) PanIN-3 lesions; and (3) IPMN with high-grade dysplasia
Low prevalence and high risk cohort enrichment
The low absolute risk of PDAC development precludes population-wide screening from a cost-benefit and absolute harm perspective. The opportunity to screen high-risk cohorts will vastly increase the PPV of a screening test
Screening efforts
Past screening efforts, using patients cohorts at a high risk of developing PDAC, have demonstrated diagnostic yields from 1.1% to 50%, depending on their definition of yield (Table 3). Current screening modalities may be costly and invasive, and therefore associated with some patient risk. Furthermore, the long-term implications for detection of small and clinically insignificant lesions are uncertain. Further studies are needed to determine appropriate surveillance
Anticipated future advances and screening possibilities
Risk stratification
Personal, family, genetic and environmental history will allow risk stratification and development of tailored screening and surveillance programs
Biomarkers
Ongoing research that suggests a future for gene expression profiling, proteomics, metabolomics, and microRNA as diagnostic PDAC biomarkers
Targeted therapy
As with BRCA2-associated tumors and PARP inhibitors, tumor biology will increasingly dictate the subsequent therapy
Citation: Becker AE, Hernandez YG, Frucht H, Lucas AL. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol 2014; 20(32): 11182-11198