Gastric Cancer
Copyright ©The Author(s) 2004.
World J Gastroenterol. Dec 15, 2004; 10(24): 3549-3552
Published online Dec 15, 2004. doi: 10.3748/wjg.v10.i24.3549
Table 1 Depth of submucosal invasion as compared with three SM category measurements
Depth (μm)SM1 (%)SM2 (%)SM3 (%)
≤ 500 (n = 23)19 (68)4 (8)0 (0)
500-1000 (n = 17)8 (28)8 (17)1 (3)
1000-2000 (n = 19)1 (4)14 (30)4 (13)
> 2000 (n = 46)0 (0)21 (45)25 (84)
Total284730
Table 2 Relationship between clinicopathological factors and lymph node metastasis
TotalNode-negativeNode-positive (n, %)P
Sex
M745717 (23.0)0.965
F312417 (22.6)
Age (yr)10554.8 ± 12.555.4 ± 12.20.822
Tumor location
Upper110 (0)0.614
Middle534211 (20.8)
Lower483513 (27.1)
Entire330 (0)
Gross appearance
Elevated23158 (34.8)0.055
Flat633 (50.0)
Depressed766313 (17.1)
Tumor differentiation
Differentiated473512 (25.5)0.557
Undifferentiated584612 (20.7)
Lauren’s classification
Intestinal44359 (20.5)0.572
Diffuse534112 (22.6)
Mixed853 (37.5)
Depth of invasion
SM128244 (14.3)0.448
SM2473512 (25.5)
SM330228 (26.7)
Lymphatic invasion
Absence866917 (19.8)0.109
Presence19127 (36.8)
Table 3 Lymph node status according to depth of invasion
Depth (μm)Lymph node status (%)
pN0pN+pN1pN2
≤ 500 (n = 23)21 (91)2 (9)a20
500-1000 (n = 17)14 (82)3 (18)30
1000-2000 (n = 19)15 (79)4 (21)31
> 2000 (n = 46)31 (67)15 (33)a132
Table 4 Lymph node status according to tumor size
Size (cm)Lymph node status (%)
pN0pN+pN1pN2
≤ 2 (n = 27)24 (89)3 (11)30
2-3 (n = 30)22 (73)8 (27)71
3-4 (n = 20)15 (75)5 (25)50
> 4 (n = 28)20 (71)8 (29)62
Table 5 Logistic regression analysis for factors associated with lymph node metastasis in submucosal gastric cancer
VariablesOdds ratio95%CIP-value
Depth of invasion (μm)
≤ 5001
500-10002.020.30-13.860.473
1000-20003.140.49-20.240.228
> 20006.811.36-34.170.020
Tumor size (cm)
≤ 21
2-34.350.95-19.960.059
3-44.050.78-20.970.096
> 44.801.05-22.060.044
Table 6 Lymph node status assessed by co-factor of size and depth in submucosal gastric cancer
Depth (μm)Size (cm)
≤ 22-33-4> 4
≤ 500 (n = 23)0a/4b0/60/62/7
500-1000 (n = 17)0/11/61/41/6
1000-2000 (n = 19)0/52/81/21/4
> 2000 (n = 46)3/175/103/84/11