Published online Mar 28, 2015. doi: 10.3748/wjg.v21.i12.3614
Peer-review started: October 21, 2014
First decision: October 29, 2014
Revised: November 25, 2014
Accepted: January 8, 2015
Article in press: January 8, 2015
Published online: March 28, 2015
Processing time: 160 Days and 14.3 Hours
AIM: To investigate the relationship between cholecystectomy and fatty liver disease (FLD) in a Chinese population.
METHODS: A total of 32428 subjects who had voluntarily undergone annual health checkups in the Second Affiliated Hospital of Nanjing Medical University from January 2011 to May 2013 were included in this study. Basic data collection, physical examination, laboratory examination, and abdominal ultrasound examination were performed.
RESULTS: Subjects undergoing cholecystectomy were associated with greater age, female sex, higher body mass index, and higher levels of systolic blood pressure, diastolic blood pressure, fasting plasma glucose, total cholesterol, and triglycerides. However, no significant differences were found in high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, albumin, and serum uric acid. The overall prevalence of FLD diagnosed by ultrasonography was high at 38.4%. The prevalence of FLD was significantly higher for subjects who had undergone cholecystectomy (46.9%) than those who had not undergone cholecystectomy (38.1%; χ2 test, P < 0.001). Cholecystectomy was positively associated with FLD (OR = 1.433, 95%CI: 1.259-1.631). However, after adjusting for possible factors associated with FLD, multivariate regression analysis showed that the association between cholecystectomy and FLD was not statistically significant (OR = 1.096; 95%CI: 0.939-1.279).
CONCLUSION: According to our study results, cholecystectomy may not be a significant risk factor for FLD.
Core tip: The prevalence of fatty liver disease (FLD) without cholecystectomy was 38.1%, and was up to 46.9% with cholecystectomy, showing an increase in the prevalence of FLD after cholecystectomy. However, no significant association was found between cholecystectomy and FLD after adjusting for multiple related factors. To the best of our knowledge, this is the first study on the correlation between cholecystectomy and FLD in a large Chinese population.
- Citation: Wang HG, Wang LZ, Fu HJ, Shen P, Huang XD, Zhang FM, Xie R, Yang XZ, Ji GZ. Cholecystectomy does not significantly increase the risk of fatty liver disease. World J Gastroenterol 2015; 21(12): 3614-3618
- URL: https://www.wjgnet.com/1007-9327/full/v21/i12/3614.htm
- DOI: https://dx.doi.org/10.3748/wjg.v21.i12.3614
Fatty liver disease (FLD) is a leading cause of chronic liver disease in China[1], and is classified as nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease according to etiology[2,3]. Recent population-based epidemiological studies indicate that the median prevalence of FLD in China is 17% (12.5%-27.3%), and approximately 90% of cases appear to be nonalcoholic[4-8]. FLD may progress to end-stage liver disease and then to steatohepatitis, advanced fibrosis, cirrhosis, and hepatocellular carcinoma[1,2,8-10]. Although it is not a direct cause of death, FLD is considered a preclinical condition related to cardiovascular disease and other metabolic diseases[2,9,11,12].
Cholecystectomy is one of the most common surgical procedures due to its curative effect. However, there are many long-term complications associated with this procedure. Whether cholecystectomy is a risk factor for FLD requires further study. According to a recent report[13], the prevalence of NAFLD has increased possibly due to the metabolic effects of the absence of the gallbladder after cholecystectomy. Cholecystectomy in mice also led to FLD by changing triglyceride metabolism[14]. This may be interpreted as an alteration in the enterohepatic circulation of bile acids[15] and the loss of metabolic activity of the gallbladder mucosa[16]. However, these reports are not enough to confirm this conclusion. Whether cholecystectomy increases the prevalence of FLD requires more research. In this study, we attempted to determine the association between cholecystectomy and FLD in a large population-based study.
All participants were informed about the purpose and general procedures of the examination. The Ethics Committee of Nanjing Medical University approved the study protocol and manner of consent.
Study subjects were recruited from participants who had voluntarily undergone annual health checkups at the Second Affiliated Hospital of Nanjing Medical University between January 2011 and May 2013. The analyses were limited to the subjects who underwent abdominal ultrasonography, and those who had full records of anthropometric and biochemical data. The subjects were included if they complied with the following criteria: (1) absence of markers of hepatitis B virus infection (hepatitis B surface antigen) and hepatitis C virus (HCV) infection (anti-HCV antibody); (2) no previous history of liver disease, including fatty liver; and (3) the absence of other factors inducing fatty changes in the liver, including the use of liver damaging drugs, and autoimmune diseases. Finally, a total of 32428 subjects (22463 men and 9965 women) were enrolled.
Clinical examinations were performed by trained staff using standardized procedures. Height and weight were measured using an automatic digital stadiometer. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared. After resting for at least ten minutes, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured. Venous blood samples were also obtained from subjects following an overnight fast of more than eight hours and alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides (TG), fasting plasma glucose (FPG), albumin, and serum uric acid (SUA) levels were measured using standard techniques. All subjects received abdominal ultrasonography to determine FLD and cholecystectomy combined with a surgical history.
Statistical analyses were performed using SPSS 18.0 software for Windows (SPSS Inc., Chicago, IL, United States). Due to non-normal distribution, continuous variables were expressed as median and interquartile range (25%-75%) due to abnormal distribution of the data. Comparisons between the independent groups were conducted using the Mann-Whitney U test. Categorical variables were compared using the χ2 test. Multivariate logistic regression analyses were conducted to assess the odds ratio (OR) for FLD, comparing subjects with cholecystectomy to those without cholecystectomy. P < 0.05 (2-tailed) was considered statistically significant.
Of 32428 subjects enrolled in this study, 949 subjects had a history of cholecystectomy. Compared with subjects without cholecystectomy, cholecystectomy was associated with higher age, female sex, higher BMI, and higher levels of SBP, DBP, FPG, TC, and TG. However, between the two groups, no significant differences were found in HDL cholesterol, LDL cholesterol, ALT, AST, GGT, albumin, and SUA (Table 1). These results indicate that cholecystectomized subjects may not have more metabolic abnormalities than those without cholecystectomy, particularly serum lipids and liver function abnormalities.
With cholecystectomy (n = 949) | Without cholecystectomy (n = 31479) | P value | |
Age (yr) | 63 (54-73) | 49 (36-59) | < 0.001 |
Sex (male/female) | 447/502 | 22016/9463 | < 0.001 |
BMI (kg/m2) | 24.26 (22.55-26.65) | 23.92 (21.71-26.09) | < 0.001 |
SBP (mmHg) | 131 (121-141) | 125 (116-135) | < 0.001 |
DBP (mmHg) | 80 (72-88) | 77 (69-86) | < 0.001 |
FPG (mmol/L) | 5.41 (4.97-5.99) | 5.04 (4.68-5.47) | < 0.001 |
TC (mmol/L) | 5.07 (4.43-5.74) | 4.93 (4.34-5.57) | < 0.001 |
TG (mmol/L) | 1.28 (0.92-1.74) | 1.14 (0.82-1.67) | < 0.001 |
HDL cholesterol (mmol/L) | 1.28 (1.10-1.51) | 1.28 (1.09-1.50) | 0.240 |
LDL cholesterol (mmol/L) | 2.88 (2.37-3.42) | 2.88 (2.39-3.40) | 0.987 |
ALT (U/L) | 19 (14-26) | 19 (14-27) | 0.132 |
AST (U/L) | 20 (17-24) | 20 (17-24) | 0.237 |
GGT (U/L) | 22 (16-33) | 22 (15-36) | 0.243 |
Albumin (g/L) | 47.7 (45.8-49.3) | 47.7 (45.6-49.6) | 0.835 |
SUA (mmol/L) | 327 (265-379) | 329 (275-386) | 0.070 |
FLD (yes/no) | 445/504 | 12003/19476 | < 0.001 |
In this study, the overall prevalence of FLD diagnosed by ultrasonography was high at 38.4%. Using the χ2 test, the prevalence of FLD was significantly higher for cholecystectomized subjects (46.9%) than those without cholecystectomy (38.1%; χ2 test, P < 0.001). In addition, logistic regression analysis, not considering other risk factors, showed that cholecystectomy was positively associated with FLD (OR = 1.433, 95%CI: 1.259-1.631) (Table 2). In order to avoid the influence of other relevant factors, multiple logistic regression analysis was further performed to investigate the ORs for FLD with cholecystectomy. After adjusting for possible factors associated with FLD, multivariate regression analysis showed that the association between cholecystectomy and FLD was not statistically significant (OR =1.096; 95%CI: 0.939-1.279). These results may indicate that there is no significant association between cholecystectomy and FLD.
Multivariate regression analysis | |||
OR | 95%CI | P value | |
Cholecystectomy (not adjusted) | 1.433 | 1.259-1.631 | < 0.001 |
Cholecystectomy (adjusted1) | 1.096 | 0.939-1.279 | 0.245 |
Several studies have investigated the positive association between cholecystectomy and FLD[13,14]. However, in our study, the results indicated that cholecystectomy may not be associated with FLD. Although the prevalence of FLD in the cholecystectomized subjects was higher than those without cholecystectomy, no significant association was found between cholecystectomy and FLD after adjusting for multiple related factors.
In a population from the United States, the prevalence of NAFLD with cholecystectomy was 48.4%. In addition, the prevalence was higher than that in subjects with (34.4%) or without gallstone disease (17.9%). Controlling for numerous factors associated with both NAFLD and gallstone disease, multivariate-adjusted analysis confirmed the association between NAFLD and cholecystectomy (OR = 2.4; 95%CI: 1.8-3.3), indicating that cholecystectomy may be a risk factor for NAFLD[13]. In our study, the prevalence of FLD without cholecystectomy was 38.1%, and was up to 46.9% with cholecystectomy, showing an increase in the prevalence of FLD after cholecystectomy. However, no significant association was found when adjusted by age, gender, BMI, SBP, DBP, FPG, TC, TG, HDL cholesterol, LDL cholesterol, ALT, AST, GGT, albumin, and SUA. These metabolic factors are closely related to FLD. Therefore, to study the relationship between cholecystectomy and FLD, these metabolic factors should be considered.
The previous study from the United States[17] found that subjects with cholecystectomy were more likely to have elevated serum ALT and GGT, and was associated with the development of cirrhosis. However, the levels of serum liver enzymes, including ALT, AST and GGT, were not changed after cholecystectomy in our study. There is no reasonable explanation for this, although different eating habits and different BMI between subjects in the United States and China may play a part. In addition, several possible biological mechanisms were analyzed. Following cholecystectomy, bile is continuously secreted into the duodenum, and the bile acid pool circulates more quickly, exposing the liver to a greater flux of bile acids[18-20]. The gallbladder mucosa is metabolically active, secreting and absorbing compounds to and from the bile and loss of the gallbladder provides another possible mechanism for the increased risk of NAFLD following cholecystectomy[13].
However, our results are not entirely consistent with other studies, which might be due to the following shortcomings. First, information regarding smoking and drinking status, physical activity, and the surgical approach for cholecystectomy (open or laparoscopic) were not available, and these factors may act as confounding variables in the association between cholecystectomy and FLD. Further longitudinal studies should consider these confounding factors. Second, the causal relationship between cholecystectomy and FLD might not be reliable using a cross-sectional analysis, although we ensured all cholecystectomy subjects had no FLD before cholecystectomy. Thus, a prospective cohort study may be more convincing. Finally, the study subjects were recruited at one provincial hospital and therefore may not represent the entire community. Fortunately, these limitations may be partly balanced by the benefits of using a large population-based sample, particularly the avoidance of ascertainment bias which occurs in studies of selected patients.
In conclusion, in 32428 Chinese subjects, cholecystectomy might not be a significant risk factor for FLD according to our findings. Further studies should be performed to verify these results due to the limitations of our study.
Fatty liver disease (FLD) is considered a preclinical condition related to cardiovascular disease and other metabolic diseases. It has been reported that the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased possibly due to the metabolic effects of the absence of the gallbladder after cholecystectomy. However, whether cholecystectomy is a risk factor for FLD remains to be further studied.
In a population from the United States, the prevalence of NAFLD with cholecystectomy was 48.4%. The prevalence was higher than that in subjects with (34.4%) or without gallstone disease (17.9%). Controlling for numerous factors associated with both NAFLD and gallstone disease, multivariate-adjusted analysis confirmed the association between NAFLD and cholecystectomy (OR = 2.4; 95%CI: 1.8-3.3), indicating that cholecystectomy may be a risk factor for NAFLD.
In this study, the prevalence of FLD without cholecystectomy was 38.1%, and was up to 46.9% with cholecystectomy, showing an increase in the prevalence of FLD after cholecystectomy. However, no significant association was found between cholecystectomy and FLD after adjusting for multiple related factors.
In this study, cholecystectomy may not be a significant risk factor for FLD in our 32428 Chinese subjects. Further studies should be performed to verify the results due to the limitations of our study.
As the manuscript point out, FLD was classified as NAFLD and alcoholic liver disease. The author analysis the data by combining the two types, and concluded that cholecystectomy does significantly increase the risk of FLD.
P- Reviewer: Chen LZ S- Editor: Ma YJ L- Editor: Webster JR E- Editor: Wang CH
1. | Cao HX, Fan JG. Editorial: Fatty liver disease: a growing public health problem worldwide. J Dig Dis. 2011;12:1-2. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis (0)] |
2. | Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005-2023. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 2413] [Cited by in F6Publishing: 2542] [Article Influence: 195.5] [Reference Citation Analysis (1)] |
3. | O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Am J Gastroenterol. 2010;105:14-32; quiz 33. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 837] [Cited by in F6Publishing: 823] [Article Influence: 54.9] [Reference Citation Analysis (2)] |
4. | Fan JG, Zhu J, Li XJ, Chen L, Li L, Dai F, Li F, Chen SY. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol. 2005;43:508-514. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 283] [Cited by in F6Publishing: 287] [Article Influence: 14.4] [Reference Citation Analysis (0)] |
5. | Zhou YJ, Li YY, Nie YQ, Ma JX, Lu LG, Shi SL, Chen MH, Hu PJ. Prevalence of fatty liver disease and its risk factors in the population of South China. World J Gastroenterol. 2007;13:6419-6424. [PubMed] [DOI] [Cited in This Article: ] [Cited by in CrossRef: 123] [Cited by in F6Publishing: 145] [Article Influence: 8.1] [Reference Citation Analysis (0)] |
6. | Li H, Wang YJ, Tan K, Zeng L, Liu L, Liu FJ, Zhou TY, Chen EQ, Tang H. Prevalence and risk factors of fatty liver disease in Chengdu, Southwest China. Hepatobiliary Pancreat Dis Int. 2009;8:377-382. [PubMed] [Cited in This Article: ] |
7. | Shi XD, Wei Q, He SM. Epidemiology and analysis on risk factors of non-infectious chronic diseases in adults in northeast China. Jilin Daxue Xuebao (Yixue). 2011;37:379-384. [Cited in This Article: ] |
8. | Wong VW, Chu WC, Wong GL, Chan RS, Chim AM, Ong A, Yeung DK, Yiu KK, Chu SH, Woo J. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography. Gut. 2012;61:409-415. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 356] [Cited by in F6Publishing: 372] [Article Influence: 28.6] [Reference Citation Analysis (0)] |
9. | Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221-1231. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 3655] [Cited by in F6Publishing: 3651] [Article Influence: 158.7] [Reference Citation Analysis (2)] |
10. | Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202-1219. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 1488] [Cited by in F6Publishing: 1467] [Article Influence: 66.7] [Reference Citation Analysis (0)] |
11. | Hamaguchi M, Kojima T, Takeda N, Nagata C, Takeda J, Sarui H, Kawahito Y, Yoshida N, Suetsugu A, Kato T. Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J Gastroenterol. 2007;13:1579-1584. [PubMed] [DOI] [Cited in This Article: ] [Cited by in CrossRef: 373] [Cited by in F6Publishing: 403] [Article Influence: 22.4] [Reference Citation Analysis (4)] |
12. | Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, Whelton PK, He J. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005;365:1398-1405. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 666] [Cited by in F6Publishing: 680] [Article Influence: 34.0] [Reference Citation Analysis (0)] |
13. | Ruhl CE, Everhart JE. Relationship of non-alcoholic fatty liver disease with cholecystectomy in the US population. Am J Gastroenterol. 2013;108:952-958. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 77] [Cited by in F6Publishing: 97] [Article Influence: 8.1] [Reference Citation Analysis (0)] |
14. | Amigo L, Husche C, Zanlungo S, Lütjohann D, Arrese M, Miquel JF, Rigotti A, Nervi F. Cholecystectomy increases hepatic triglyceride content and very-low-density lipoproteins production in mice. Liver Int. 2011;31:52-64. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis (0)] |
15. | Kullak-Ublick GA, Paumgartner G, Berr F. Long-term effects of cholecystectomy on bile acid metabolism. Hepatology. 1995;21:41-45. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 51] [Cited by in F6Publishing: 61] [Article Influence: 2.0] [Reference Citation Analysis (0)] |
16. | Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, Jansen PL, Schaap FG. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology. 2012;55:575-583. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 96] [Cited by in F6Publishing: 113] [Article Influence: 8.7] [Reference Citation Analysis (0)] |
17. | Ioannou GN. Cholelithiasis, cholecystectomy, and liver disease. Am J Gastroenterol. 2010;105:1364-1373. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.0] [Reference Citation Analysis (0)] |
18. | Almond HR, Vlahcevic ZR, Bell CC, Gregory DH, Swell L. Bile acid pools, kinetics and biliary lipid composition before and after cholecystectomy. N Engl J Med. 1973;289:1213-1216. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 113] [Cited by in F6Publishing: 110] [Article Influence: 2.1] [Reference Citation Analysis (0)] |
19. | Shaffer EA, Small DM. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. J Clin Invest. 1977;59:828-840. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 248] [Cited by in F6Publishing: 217] [Article Influence: 4.5] [Reference Citation Analysis (0)] |
20. | Roda E, Aldini R, Mazzella G, Roda A, Sama C, Festi D, Barbara L. Enterohepatic circulation of bile acids after cholecystectomy. Gut. 1978;19:640-649. [PubMed] [DOI] [Cited in This Article: ] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 1.6] [Reference Citation Analysis (0)] |