Copyright
©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Dec 21, 2020; 26(47): 7436-7443
Published online Dec 21, 2020. doi: 10.3748/wjg.v26.i47.7436
Published online Dec 21, 2020. doi: 10.3748/wjg.v26.i47.7436
Artificial intelligence-aided colonoscopy: Recent developments and future perspectives
Giulio Antonelli, Cesare Hassan, Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome 00153, Italy
Giulio Antonelli, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome 00185, Italy
Paraskevas Gkolfakis, Department of Gastroenterology Hepatopancreatology and Digestive Oncology, Erasme University Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
Georgios Tziatzios, Ioannis S Papanikolaou, Konstantinos Triantafyllou, Hepatogastroenterology Unit, Second Department of Internal Medicine – Propaedeutic, Medical School, National and Kapodistrian University of Athens, ‘‘Attikon” University General Hospital, Athens 12462, Greece
Author contributions: Antonelli G conceived the idea for the manuscript; Antonelli G and Gkolfakis P reviewed the literature and drafted the manuscript; Tziatzios G, Papanikolaou IS, Triantafyllou K and Hassan C drafted and finally approved the manuscript.
Conflict-of-interest statement: All authors declare no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Paraskevas Gkolfakis, MD, Consultant Physician-Scientist, Department of Gastroenterology Hepatopancreatology and Digestive Oncology, Erasme University Hospital, Université Libre de Bruxelles, Rue de Lennik 808, Brussels 1070, Belgium. pgkolfakis@med.uoa.gr
Received: October 13, 2020
Peer-review started: October 13, 2020
First decision: November 13, 2020
Revised: November 18, 2020
Accepted: November 29, 2020
Article in press: November 29, 2020
Published online: December 21, 2020
Processing time: 66 Days and 18.7 Hours
Peer-review started: October 13, 2020
First decision: November 13, 2020
Revised: November 18, 2020
Accepted: November 29, 2020
Article in press: November 29, 2020
Published online: December 21, 2020
Processing time: 66 Days and 18.7 Hours
Core Tip
Core Tip: Artificial intelligence systems using deep learning techniques are constantly developing in all fields of medicine including diagnostic colonoscopy. They aim to become part of daily routine and eliminate inherent examination’s shortcomings and lead to a higher level of provided health services. In this opinion review we present the existing evidence regarding the impact of artificial intelligence systems on the improvement of colonoscopy’s outcomes, namely adenoma detection rate and adenoma miss rate, focusing mainly on clinical trials and meta-analyses evaluating real-time computer aided detection and characterization.