Yang C, Zhang JJ, Zhang XP, Xiao R, Li PG. Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression. World J Gastroenterol 2019; 25(25): 3196-3206 [PMID: 31333311 DOI: 10.3748/wjg.v25.i25.3196]
Corresponding Author of This Article
Peng-Gao Li, PhD, Associate Professor, School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, 10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China. penggao@ccmu.edu.cn
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Basic Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Jul 7, 2019; 25(25): 3196-3206 Published online Jul 7, 2019. doi: 10.3748/wjg.v25.i25.3196
Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression
Chun Yang, Jing-Jie Zhang, Xiao-Peng Zhang, Rong Xiao, Peng-Gao Li
Chun Yang, Jing-Jie Zhang, Xiao-Peng Zhang, Rong Xiao, Peng-Gao Li, School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, Beijing 100069, China
Author contributions: Yang C and Zhang JJ contributed equally to the work and should be regarded as co-first authors; Li PG designed the research; Zhang JJ and Zhang XP performed the research; Yang C and Zhang JJ analyzed the data and wrote the paper; Xiao R revised the manuscript; Li PG has primary responsibility for the final content.
Supported bythe National Natural Science Foundation of China, No. 81573128 and No. 81703216.
Institutional animal care and use committee statement: This study was approved by the institutional animal care and use committee of Capital Medical University.
Conflict-of-interest statement: The authors declare no conflicts of interest.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Peng-Gao Li, PhD, Associate Professor, School of Public Health, Capital Medical University, Beijing Key Laboratory of Clinical Epidemiology, 10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China. penggao@ccmu.edu.cn
Telephone: +86-10-83911651 Fax: +86-10-83911651
Received: February 23, 2019 Peer-review started: February 23, 2019 First decision: April 4, 2019 Revised: May 14, 2019 Accepted: May 31, 2019 Article in press: June 1, 2019 Published online: July 7, 2019 Processing time: 133 Days and 23.2 Hours
Core Tip
Core tip: Sporamin, a Kunitz-type trypsin inhibitor, restrains the growth of intraperitoneally xenografted LoVo [also known as colorectal cancer (CRC) cells] in athymic BALB/c mice. The mechanism determined by changes in morphology and tumor biomarkers in the liver involves sporamin-induced down-regulation of β-catenin secretion and vascular endothelial growth factor expression. This suppresses the formation of xenografted tumor nodules in vivo and subsequently inhibits the transcription of downstream genes involved in cancer progression and angiogenesis. The anti-cancer effects of sporamin against CRC are closely associated with its inhibitory effect on these tumor biomarkers. Further studies are warranted to elucidate the corresponding signal transduction events that mediate this process.