Minireviews
Copyright ©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Oct 14, 2016; 22(38): 8489-8496
Published online Oct 14, 2016. doi: 10.3748/wjg.v22.i38.8489
Elucidation of the early infection machinery of hepatitis B virus by using bio-nanocapsule
Qiushi Liu, Masaharu Somiya, Shun’ichi Kuroda
Qiushi Liu, Masaharu Somiya, Shun’ichi Kuroda, Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
Author contributions: Liu Q performed the majority of the writing, and prepared the figures; Somiya M provided the input in writing the paper; Kuroda S designed the outline and coordinated the writing of the paper.
Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Shun’ichi Kuroda, PhD, Professor, Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan. skuroda@sanken.osaka-u.ac.jp
Telephone: +81-6-68798460 Fax: +81-6-68798464
Received: May 1, 2016
Peer-review started: May 2, 2016
First decision: June 20, 2016
Revised: July 19, 2016
Accepted: August 5, 2016
Article in press: August 5, 2016
Published online: October 14, 2016
Processing time: 164 Days and 12.4 Hours
Core Tip

Core tip: Owing to the poor availability and the difficulty of manipulations of hepatitis B virus (HBV), it has been difficult to analyze its early infection events in human hepatocytes. Using a bio-nanocapsule, a unique model of HBV, we could study these events by biochemical and cytochemical methods, and finally identify a low pH-dependent fusogenic domain in HBV pre-S1 region, which might play a pivotal role in the endosomal escape of HBV. We hereby postulate a model in which each domain in HBV envelope L protein participates in cell attachment, endocytosis, membrane fusion, and consequent endosomal escape (i.e., uncoating process of HBV).