Topic Highlight
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Nov 14, 2015; 21(42): 11954-11963
Published online Nov 14, 2015. doi: 10.3748/wjg.v21.i42.11954
Rapid and quantitative detection of hepatitis B virus
Yue-Ping Liu, Chun-Yan Yao
Yue-Ping Liu, Chun-Yan Yao, Department of Laboratory Medicine, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
Author contributions: Liu YP wrote the paper; and Yao CY revised the paper.
Supported by National Natural Science Foundation of China, No. 81371885.
Conflict-of-interest statement: The authors declare that there is no conflict of interest in this study.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Correspondence to: Chun-Yan Yao, MD, PhD, Associate Professor, Department of Laboratory Medicine, Southwest Hospital, the Third Military Medical University, No. 30 Gaotanyan street, Chongqing 400038, China.
Telephone: +86-23-68765447 Fax: +86-23-65460909
Received: April 23, 2015
Peer-review started: April 24, 2015
First decision: July 13, 2015
Revised: July 29, 2015
Accepted: September 14, 2015
Article in press: September 14, 2015
Published online: November 14, 2015
Core Tip

Core tip: The combination of quantitative detection of hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA can be used to classify individuals during the course of HBV infection and to monitor therapy. The most popular platforms for HBsAg detection are based on chemiluminescent microparticle immunoassay, while polymerase chain reaction based methods are widely used for HBV DNA assay. Recently, isothermal amplification and biosensors offered a lower cost and more rapid alternative for HBV quantification. This article reviews the most commonly used quantitative methods for HBV.