Published online Apr 7, 2024. doi: 10.3748/wjg.v30.i13.1911
Peer-review started: October 10, 2023
First decision: December 27, 2023
Revised: January 7, 2024
Accepted: February 25, 2024
Article in press: February 25, 2024
Published online: April 7, 2024
Processing time: 176 Days and 4.8 Hours
Nucleoside/nucleotide analogs (NAs) are the most commonly-used anti-hepatitis B virus (HBV) agents. They effectively inhibit viral replication, whereas the suppressive effects are much weaker on HBV antigen and drug-resistant HBV. Therefore, it is very important and meaningful to find new drugs to make up for the deficiency of NAs. Liuweiwuling Tablet (LWWL) is a licensed Chinese patent medicine for anti-inflammation of chronic HBV infection. We previous found that LWWL has an anti-HBV effect in wild-type HBV model for the first time, but the mechanism is still unclear.
The objective of this study was to elucidate the scientific significance of LWWL’s antiviral advantages, in order to provide a reference for the clinical application of LWWL against HBV.
The study aimed to explore the potential mechanism of anti-HBV, and further comprehensively evaluate its anti-HBV effect in drug-resistant HBV model.
In vitro experiments utilized three HBV-replicating cell lines and three non-HBV-replicating cell lines, while an in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were employed to investigate the underlying mechanisms.
Our study establishes the potent HBV-suppressive capability of the Chinese patent medicine LWWL. Furthermore, these suppressive effects surpassed those of tenofovir disoproxil fumarate in terms of antigen expression in both in vitro and in vivo. A foundational insight into the mechanism of LWWL’s anti-HBV action suggests its involvement in the regulation of selective apoptosis, selectively inducing apoptosis in HBV-replicating hepatic cells while not affecting non-HBV-replicating hepatic cells.
The preliminary revelation in the anti-HBV pharmacological mechanism is that LWWL exerts a potent inhibitory impact on both wild-type and drug-resistant HBV, potentially involving a selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.
Novel anti-HBV drugs were developed by using a selective regulation of apoptosis mechanism.