Published online Aug 21, 2021. doi: 10.3748/wjg.v27.i31.5219
Peer-review started: February 10, 2021
First decision: May 1, 2021
Revised: May 13, 2021
Accepted: July 16, 2021
Article in press: July 16, 2021
Published online: August 21, 2021
Processing time: 188 Days and 15.3 Hours
Hepatitis C virus (HCV) infection is a major global public health problem. Although direct-acting antivirals are capable to eliminate HCV, they are not yet widely available in Cyprus. However, when direct-acting antivirals become available, an appropriate long-term strategic plan to guide elimination efforts will be necessary to maximize the benefits of treatment.
An appropriate long-term elimination plan will maximize the benefits of treatment.
This study aims to simulate the implementation of an integrated HCV strategy in the Republic of Cyprus to determine the programmatic targets to eliminate HCV.
A dynamic, discrete-time, stochastic, individual-based model of HCV transmission, disease progression, and a cascade of care was fitted to epidemiological and clinical data from the Republic of Cyprus. The model stratifies the population into two groups: the infected general population [e.g., HCV+ but not people who inject drugs (PWID)] and the PWID population. The model was run until it achieved a steady-state (the level of prevalence in PWID population in 2020 without the use of a treatment) by varying the infection rate. After reaching a steady-state, the model was seeded with a cohort that represents the infected patients from the general population (size of the infected population, fibrosis stage, share of diagnosed, and mean age of the infected patients).
The analysis showed that under the status quo scenario 75 (95% confidence interval: 60, 91) and 575 (95% confidence interval: 535, 615) liver-related deaths and new infections would occur by 2034, respectively. Without screening interventions, launching an expanded treatment program would cause modest outcomes regarding chronic hepatitis C prevalence (16.6% reduction in 2034 compared to 2020) and liver-related deaths (10 deaths would be prevented compared to the status quo scenario by 2034). Implementing a test and treat strategy among the general population but without any intervention in the PWID population would suffice to meet the mortality target but not the incidence target. To achieve HCV elimination in Cyprus, 3080 (95% confidence interval: 3000, 3200) patients need to be diagnosed and treated by 2034 (2680 from the general population and 400 from PWID), and harm reduction coverage among PWID should be increased by 3% per year (from 25% in 2020 to 67% in 2034).
Our study highlighted that without the implementation of large awareness or screening programs, HCV elimination cannot be achieved, due to suboptimal treatment coverage. Elimination of HCV is a demanding public health strategy that requires significant public health reforms (e.g., enhancing harm reduction programs, implementing case-finding, linkage to care interventions).
Elimination of HCV is a demanding public health intervention, which poses significant challenges in any health care system. Nevertheless, our analysis highlighted that HCV elimination is an achievable target.