Published online Apr 14, 2020. doi: 10.3748/wjg.v26.i14.1638
Peer-review started: December 19, 2019
First decision: February 18, 2020
Revised: March 6, 2020
Accepted: March 14, 2020
Article in press: March 14, 2020
Published online: April 14, 2020
Processing time: 117 Days and 10.7 Hours
Biliary diseases may combine with biliary tract infection such as cholecystitis or cholangitis which possibly lead to severe sepsis and septic shock or even multiple organ dysfunction syndrome and eventually death. However, bile culture requires more time and has lower positive rates. Most related studies were conducted decades ago and lack a large sample size.
Using a large sample size and ten years of study, we fully understand the bacterial species and antibiotic susceptibility for antibacterial therapy in patients with biliary diseases.
The identification of bacterial species and their antibiotic susceptibility for early empiric antibacterial therapy are crucial for reducing the mortality of patients with biliary tract infection.
Clinical data were collected from hospital medical records. Species identification and initial drug susceptibility were further identified by biochemical characterization using the VITEK 2 Compact test. All statistical analyses were performed using the SPSS software. Between-group analyses were conducted using the t-test or χ2 test.
The most frequently encountered strains were gram-negative bacteria (74.94%), including Escherichia coli (37.78%), Pseudomonas aeruginosa (8.96%), and Klebsiella pneumoniae (10.29%). Bile bacteria were largely sensitive to carbapenems, piperacillin/tazobactam, and gentamicin. We found almost the same micro-organisms present in patients with malignant and benign diseases. Age (P < 0.001), fever (P < 0.001), history of biliary tract diseases and surgeries (both P < 0.001), benign disease (P = 0.002), and the comorbidity chronic renal insufficiency (P = 0.007) affected the positive rates of the bile samples.
We found that gram-negative strains had low susceptibility to ceftriaxone, quinolones and ampicillin. In addition, some risk factors such as age, fever, history of biliary tract diseases and surgeries, benign diseases, and the comorbidity chronic renal insufficiency positively influenced the detection rates. Bile samples for microbiological analysis may enable a more accurate selection of antibiotic treatments.
The risk factors for antibiotic resistance rate and bacterial resistance genes should be analyzed.